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 39 

HIGHLIGHTS 
 

• Diets formulated with up to 25% of POMM, did not compromised growth of tilapia. 

• Diets formulated with graded levels of POMM did not affect survival of tilapia 

• Diets formulated with 100% of POMM, increased crude fiber of whole of tilapia. 

• Diets formulated with up to 25% of POMM did not compromise lipase activity of tilapia. 
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ABSTRACT:  40 

Expansion of aquaculture industry is evidently accompanied by an urgent necessity of aquaculture feed 41 

production. Traditionally, fish meal (FM) and soybean meal (SBM) have been the primary protein 42 

source ingredient in aquaculture diets.  However, over exploitation of these commodities has 43 

conducted to their unsustainability. Hence, research of unconventional protein alternatives has 44 

emerged. Mushroom meal is one of them. To date, mushroom meals have been investigated when 45 

supplemented in low levels in aquaculture diets. Furthermore, effects of diets supplemented with 46 

mushroom meals have assessed different parameters such as, haematology, immunity, anti–bacterial 47 

& anti–oxidant activities, and heat stress. Present study, is aimed to study the effects of graded levels 48 

of dietary pink oyster mushroom (Pleurotus djamor) meal (POMM), in growth, feed efficiency, protein 49 

utilization, digestive enzymes activities and whole body proximate composition of Nile tilapia 50 

(Oreochromis niloticus) fingerlings. Experimental design included a control diet (POMM0) 51 

formulated with soybean meal, as main protein source, and four diets designed with increasing levels 52 

of POMM: 25%(POMM25); 50%(POMM50); 75%(POMM75); and 100%(POMM100). 53 

Experimental diets and final whole body were submitted to a proximate composition analysis. Growth, 54 

feed efficiency, protein utilization, and digestive enzyme activities were assessed.  Compared to 55 

POMM0 and POMM25, weight gain (WG), and specific growth rate (SGR), significantly (P<0.05) 56 

decreased in fish fed POMM50, POMM75 and POMM100%. Feed conversion ratio (FCR), protein 57 

efficiency ratio (PER) and survival rate (SR) were not significantly affected by experimental diets. 58 

Daily feed intake (DFI), and daily protein intake (DPI), decreased as POMM increased in diets. 59 

Compared to POMM0 experimental group, condition factor (K), showed a significantly higher value 60 

in fish fed POMM50, and POMM100 experimental diets. Crude fiber of final whole body of 61 

POMM100 resulted significantly higher (P<0.05) compared to that shown in fish fed the rest of 62 

experimental diets. Acid and alkaline proteases, trypsin, chymotrypsin, leucine aminopeptidase and 63 

amylase of Nile tilapia fingerlings, were not significantly affected by experimental diets. Compared to 64 

fish fed POMM0 and POMM25 diets, experimental fish fed POMM50, POMM75, and POMM100 65 

showed a reduction of lipase activity. In conclusion, a POMM level higher than 25% affects growth 66 

and lipase activity. While a POMM level higher than 50% affects fiber content in whole body of final 67 

fish.  68 

Running title: Graded levels of pink oyster mushroom meal in Nile tilapia fingerlings diets. 69 

Keywords: carcass, digestive physiology, fiber, growth, mushroom meal, tilapia. 70 

 71 

INTRODUCTION 72 

The expansion of the aquaculture industry is evidently accompanied by an urgent need of aquafeed 73 

production Gambelli et al. 2019, Botta et al. 2020, Chu et al. 2020). This condition leads to a necessity 74 

of a steady supply of protein.  Traditionally, fish meal (FM) and soybean meal (SBM) have been the 75 

primary protein source ingredient in fish feeds (Wang et al. 2020).  However, their over exploitation 76 

has conducted to a shortage of these commodities (Galkanda–Arachchige and Davis 2019, Ye et al. 77 

2019, Li et al. 2023, Nunes et al. 2022, Soltan et al. 2023). Therefore, several studies have been 78 

conducted to investigate alternative and unconventional protein meals for aquaculture diets. One of 79 

these, are the mushrooms (Chelladurai and Venmathi–Maran 2019) 80 

Edible mushrooms are a rich source of caloric value, essential fatty acids, amino acids, protein levels, 81 

vitamins and minerals. To date, there are several studies focusing on the research of products derived 82 

from mushroom as dietary inclusion in feeds for farmed aquatic organisms (Safari and Sarkheil 2018, 83 

Author-formatted, not peer-reviewed document posted on 02/05/2023. DOI:  https://doi.org/10.3897/arphapreprints.e105690



  
 

 
  

Chelladurai and Venmathi–Maran 2019, Dawood et al. 2020a). Most of the studies using mushrooms 84 

have been mainly focused on the effects in aquatic organism immunity, hematological profiles, disease 85 

resistance and growth (Katya et al. 2016, Chelladurai and Venmathi–Maran 2019, Dawood et al. 86 

2020a,). 87 

Pleurotus spp is an edible mushroom that belongs to the Agaricales order and Pleurotaceae family 88 

(Justo et al. 2013). P. djamor, is mainly produced with research and food purposes for human nutrition 89 

in Brazil and Mexico (Chintati et al. 2022).  Although P. djamor has been widely studied as additive 90 

supplemented at low inclusion levels (Zhang et al. 2016, Hu et al. 2017, Jiao et al. 2017, Maity et al. 91 

2019, Pereira de Oliveira and Naozuka 2019, Vasconez–Velez 2019, Nattoh et al. 2022;), only few 92 

studies have been focused on the use of P. djamor, as dietary supplement, in fish feed formulations. 93 

Cruz–García et al. (2022), studied the effects of mushroom (Pleurotus djamor var. roseus) meal as 94 

feed supplement on the hematological responses and growth of Nile tilapia (Oreochromis niloticus) 95 

fingerlings when fed diets formulated with 0%, 15%, 20% and 25% of P. djamor.   Therefore, present 96 

research is aimed to study the effects (growth, feed efficiency, protein utilization, whole body 97 

proximate composition, and digestive enzyme activities) of increasing levels, 0%, 25%, 50%, 75% and 98 

100%, of P. djamor meal, in diets for Nile tilapia fingerlings (used as model fish species).  99 

 100 

MATERIAL AND METHODS 101 

 102 

Experimental Nile tilapia fingerlings 103 

Animals were handled in compliance with the Norma Oficial Mexicana (NOM-062-ZOO-1999 2001). 104 

Masculinized Nile tilapia (Oreochromis niloticus, VAR gift) fingerlings (0.3 ± 0.01 g) were obtained 105 

from the brood stock in the Tropical Aquaculture Laboratory of the Academic Division of Biological 106 

Sciences (DACBiol), Juarez Autonomous University of Tabasco (UJAT). Before feeding experiment, 107 

health status of Nile tilapia fingerlings was checked by visual observation, according to indications 108 

proposed by Johansen et al. (2006).  420 fish were randomly distributed in 15 (100 L) plastic tanks. 109 

 110 

Pink oyster mushroom (CH-240) 111 

Pink oyster mushroom, strain CH–240, belonging to the herbarium of the DACBiol-UJAT, was reared 112 

in an edible mushroom greenhouse (28 ºC, using coconut paste as substrate), the harvest of the 113 

mushroom was done when there was a complete extension of the pileus.  All farming process was 114 

carried out in an innocuous environment, in order to avoid contaminating P. djamor culture. Collected 115 

mushroom, were dried in an oven, pulverized with a hammer mill, and analyzed for proximate 116 

composition (AOAC 2020).  117 

 118 

Experimental diets 119 

Iso–nitrogenous and iso–lipidic diets were designed, including a control diet formulated with SBM (as 120 

main protein source) and four diets formulated with increasing levels of POMM. In each diet, protein 121 

level was adjusted by reducing SBM levels. Experimental diets were assigned as follows: 25% 122 

(POMM25), 50% (POMM50), 75% (POMM75) and 100% (POMM100) (Table 2).  Diet formulation 123 
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followed the method proposed by Álvarez–González et al. (2001). Experimental diets were designed 124 

with assistance of MIXITWIN V. 5.0 software. Diets were manufactured according to previously 125 

standardized methods at DACBiol–UJAT. Experimental diets were submitted to a proximate 126 

composition analysis AOAC (2020). 127 

 128 

Feeding test and rearing system 129 

Experimental diets were administered by triplicate for 45-day period. Each experimental tank was 130 

randomly assigned to each diet and the feeder (person in charge of feeding daily), was rotated in order 131 

to obtain a blinded feed delivery. Feeding test was conducted in a recirculating aquaculture system 132 

(RAS) maintaining a constant aeration. In order to avoid, the effects of the natural high temperature 133 

per se existing in Villahermosa city (tropical weather), the RAS was designed and built under a 134 

controlled air conditioner environment in order to avoid significant oscillation of temperature during 135 

all feeding experiment. Fish were fed three times per day (9:00, 13:00 and 17:00). Unconsumed feed 136 

and feces were siphoned 30 min after each feeding. RAS water was replaced (50%) every week. Water 137 

quality was monitored on daily basis: Dissolved oxygen – DO – (5.19 ± 0.3 mg L-1) and temperature 138 

(28 ± 0.1 °C) were measured with a YSI 55 oximeter, with an accuracy of 0.1°C and 0.01mg L-1, 139 

California, USA. While pH (7.2 ± 0.1) was assessed with a potentiometer (Hanna Instruments, HI 140 

98311, Rhode Island, USA). These parameters were measured in both experimental tanks and in the 4 141 

m3 main reservoir of RAS.  142 

 143 

Growth and feed utilization samplings  144 

All fish per tank were sampled for weight and total length every 15 days. At the end of the feeding 145 

test, additional to weight sampling, growth performance (weight gain–WG–, specific growth rate–146 

SGR–, condition factor –K–), feed utilization parameters (feed conversion ratio –FCR–, daily feed 147 

intake–DFI–, daily protein intake –DPI–, protein efficiency ratio –PER–) and survival rate (SR) were 148 

calculated. 149 

 150 

Proximate composition analysis 151 

POMM, experimental diets and final whole body were submitted to proximate composition analysis 152 

(AOAC 2020) at Chemistry Laboratory of Norwest Biological Research Center (CIBNOR). Before 153 

sending to laboratory analysis, and in order to preserve biochemical profiles intact, whole body 154 

samples were lyophilized.  155 

 156 

Digestive enzyme activity sampling and analysis 157 

Upon completion of feeding test, three fish (per experimental tank) 9 fish (per experimental group), 158 

45 fish (per all tested groups), were dissected in order to extract stomach and intestine for digestive 159 

enzyme activity analysis. The stomach samples were homogenized in buffer solution of glycine–HCl 160 

0.1 M, pH 2 and the intestines were homogenized in solution of Tris–HCl 100 mM + CaCl2 10 mM 161 

pH 9. Both samples were centrifuged at 16000g for 30 min to extract the supernatant or enzymatic 162 
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extract by separating in 400 μl aliquots and freezing at -20 ºC until their further use. The soluble protein 163 

concentration was evaluated using a bovine serum albumin calibration curve (600 mg/mL). 164 

Alkaline proteases activity was determined according to (Walter 1984), using Hammerstein–grade 165 

casein 0.5% in buffer (100 mmol/L Tris-HCl; 10 mmol/L CaCl2, pH 9); one unit of activity was defined 166 

as 1–µg of tyrosine released per min at Abs280. The acid protease activity was determined using Anson 167 

(1938) technique, and hemoglobin (1%) in buffer solution of glycine–HCl 0.1 M, pH 2. The released 168 

peptide levels were determined through a quartz cell (700 μl) at 280 nm in the spectrophotometer. 169 

Trypsin activity determination used the Erlanger et al. (1961) technique with the substrate BAPNA 170 

(N-α-benzoyl-DL-arginine p-nitroanilide) with dimethyl sulfoxide (DMSO). Sample reading was 171 

conducted with a spectrophotometer at 410 nm. Chymotrypsin activity was determined following the 172 

method proposed by Del Mar et al. (1979). Absorbance was measured at 405 nm. Leucine 173 

aminopeptidase activity was evaluated following the methodology proposed by Maraux et al. (1973). 174 

Absorbance was measured at 410 nm. The α-amylase activity was determined by the method of Robyt 175 

and Whelan (1968), using soluble starch (2%) in a buffer (100 mmol/L citrate-phosphate; 50 mol/L 176 

NaCl, pH 7.5). Lipase activity was measured as previously described by Versaw et al. (1989) but using 177 

ß-naphthyl acetate 100 mmol/L as substrate; one unit of activity was defined as 1 µg de naphthol 178 

released per min at 540 nm.  179 

The enzymatic activity of the extracts was determined with the following equations: 1) Units per mL 180 

= [Δ abs x final reaction volume (mL) / CEM x time (min) x extract volume (mL)], and 2) Units x mg 181 

of protein-1 = Units per mL mg of soluble protein-1.  Δabs is determined by the length of the wave of 182 

each technique and the CEM is the molar extinction coefficient for the reaction product (mL x μg-1 x 183 

cm-1). All enzyme activities were expressed per mg of protein. Protein concentration was determined 184 

according to Bradford (1976), using a standard curve with bovine serum albumin (BSA). All assays 185 

were performed in triplicate. 186 

 187 

Statistical Analysis 188 

Data was statistically analyzed by one-way ANOVA, previously verified the assumptions of normality 189 

(Kolmogorov-Smirnov test) and homoscedasticity (Levine test). Where significant differences were 190 

assessed, applying a Tukey test. Analyses were performed with the statistical software Statistica TM 191 

v.8.0 (StatSoft, Inc., Tulsa, OK) using a significance value of P<0.05. The results were presented as 192 

mean ± standard deviation, SD.  193 

 194 

Results 195 

Proximate composition of POMM 196 

Proximate composition of POMM is shown in Table 1. Crude protein and crude fiber showed similar 197 

values. As expected, crude lipid, recorded a remarkably lower value (0.50%). While the Nitrogen free 198 

extract recorded the highest content (45.96%), compared to other nutrients. 199 

 200 

Proximate composition of experimental diets 201 
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Experimental diets did not show relevant differences regarding to crude protein, crude lipid, ash and 202 

energy.  However, crude fiber and ash increased as POMM level increased in experimental diets. While 203 

Nitrogen free extract decreased as POMM level increased in diets (Table 2).  204 

 205 

Growth performance, feed utilization and survival 206 

All experimental diets were well accepted by the fish during the feeding test. Experimental diets did 207 

not affect feed conversion rate (FCR), protein efficiency ratio (PER) and survival rate (SR). In contrast, 208 

fish fed POMM25 diet did not show significant (P>0.05) differences in weight gain (WG), and specific 209 

growth rate (SGR), compared to those shown in experimental group POMM0. While POMM50, 210 

POMM75 and POMM100 experimental groups, showed significantly (P<0.05) lower WG and SGR 211 

compared to those shown in POMM0 experimental group. Although K did not show significant 212 

(P>0.05) differences among POMM0, POMM25 and POMM75 experimental groups, there was a 213 

significantly higher (P<0.05) K value in POMM50 and POMM100 experimental groups, compared to 214 

that recorded in POMM0 experimental group. DFI and DPI significantly (P<0.05) decreased as levels 215 

of POMM increased in experimental diets (Table 3).  216 

 217 

Whole body proximate composition 218 

There was not significant (P>0.05) differences, among experimental groups, in terms of moisture (%), 219 

crude protein (%) and crude lipid (%) contents. In contrast, crude fiber resulted significantly (P<0.05) 220 

higher in POMM100 experimental group compared to that shown in the rest of experimental groups 221 

(Table 4). 222 

 223 

Digestive enzyme activities 224 

Acid protease, alkaline protease, trypsin, chymotrypsin, leucine aminopeptidase and amylase activities 225 

were not significantly (P>0.05) affected by consumed experimental diets. However, lipase activity 226 

resulted significantly (P<0.05) lower in POMM50, POMM75 and POMM100 experimental groups 227 

compared to that observed in POMM0 and POMM25%. There was not significant (P>0.05) difference 228 

of lipase activity between POMM0 and POMM25% (Table 5).  229 

 230 

DISCUSSION 231 

Present study was designed to study the effects on growth, feed efficiency, protein utilization, survival, 232 

final whole body proximate composition, and digestive enzyme activities of Nile tilapia fingerlings, 233 

fed diets formulated with increasing levels of a locally available and unconventional protein meal, 234 

POMM.  Levels of protein and lipid content of P. djamor in this study, are similar to those previously 235 

reported in Cruz–Solorio et al. (2014) and Salmones (2017). Mushroom species are characterized for 236 

their high fiber content. In this research, 20.05% of fiber was recorded in pink oyster mushroom meal. 237 

[11] reported 21.4% of crude fiber in edible P. eryngii powder. In contrast, lower crude fiber levels 238 

(9.29% - 8.60%) in two strains of Pleurotus spp were recorded by Cruz–Solorio et al. (2014).  239 
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Current study showed that a maximum 25% of POMM can be supplemented in Nile tilapia fingerlings 240 

without affecting WG and SGR of fish. Pink oyster mushroom has nutritional, nutraceutical, and 241 

biodegradable features Dulay et al. (2017). A limited inclusion of POMM may be attained to the 242 

presence of certain biochemical components naturally occurring in POMM that at high levels could 243 

produce certain growth depressing effects (Salmones 2017). Nutritional quality of Pleurotus has been 244 

widely studied and it has been robustly demonstrated.  Studies have detected 16 components (2–245 

pentanone, 3–pentanone, butyrate de methyl and 2–methyl–3 pentanone, 3–octanol, 3–octanone, 246 

among the main ones) influencing in P. djamor flavor, hence palatability (Zhang et al. 2022, Andrew 247 

2023), affecting fish acceptance to feeds. This fact could explain why DFI of Nile tilapia fingerlings 248 

during a 45–day period, decrease as higher levels of POMM were supplemented in experimental diets. 249 

Other elements that are predominant in pink oyster mushroom are bioactive components with anti–250 

carcinogenic, immune stimulants, antibiotic, anti–inflammatory, immune stimulant and antioxidant 251 

properties (Salmones 2017). These components confer certain benefits (when present at certain levels) 252 

to fish physiology, growth performance, feed efficiency and nutrient utilization, as evidenced in 253 

Dawood et al. (2020a), who found that Nile tilapia fingerlings fed 2% and 4% supplementation levels 254 

of dietary white bottom mushroom powder, improved growth performance, digestibility, and feed 255 

intake. Dawood et al. (2020b) suggested that these benefits may be due to the content of non–digestible 256 

polysaccharides (acting as prebiotics), that can modulate the intestinal microbiota to secrete digestive 257 

enzymes in the fish gastrointestinal tract Moumita and Das (2022).   258 

In contrast, in present study, growth performance and feed utilization decreased as POMM level 259 

increased in experimental diet in Nile tilapia fingerlings. This can be explained by two factors. Firstly, 260 

amount of POMM supplemented in experimental diets, was remarkably higher (from 11 to 44% of 261 

total content of each diet) (Table 2), so bioactive components (such as antimicrobial, antioxidant, 262 

immune stimulant) naturally existing in P. djamor, were considerably higher. This abundant presence 263 

of bioactive components may cause a depressed growth rather than stimulating it. Secondly, a gradual 264 

increase of POMM in experimental diets, inevitably added higher fiber amounts to the feed. POMM 265 

showed a 20% of crude fiber while in experimental diets, this nutrient consequently increased as 266 

POMM level increased.  Results revealed that POMM25 experimental diet had 3.63% of crude fiber.  267 

This diet did not compromise growth of Nile tilapia fingerlings, while diets with a higher inclusion 268 

level of POMM showed a higher fiber content (4.91%, 6.15% and 7.14%; POMM50, POMM75, and 269 

POMM100 diets, respectively) and a significantly lower growth of experimental fish. Hilton et al. 270 

(1983), reported a reduction in growth of rainbow trout when fed high fiber diet. At certain levels, 271 

dietary fiber apparently influences the movement of nutrients along the gastrointestinal tract and 272 

significantly increases nutrient absorption (Lin et al. 2020). However, high levels of fiber can bind 273 

nutrients like lipids, proteins, and minerals (Obrero–Magbanua and Alano–Ragaza 2022), reducing 274 

their bioavailability. Fiber is the non-nutritive portion of feed ingredients. It is indigestible for 275 

carnivorous fish, while others such as channel catfish, has intestinal microflora capable of digesting 276 

small portion of dietary fiber (McLean 2023). Some herbivorous fish, such as grass carp, derive 277 

nutrients from fiber but some such as tilapia aurea, do not Turchini et al. (2018). High fiber content 278 

often results in growth depression (Zhang et al. 2022), as seen in present study. 279 

In aquaculture, condition factor (K) is a numerical value given to aquatic organisms that reflects this 280 

condition. A low K value could be determined by several factors such as stress, disease, starvation, 281 

and deficient nutrient composition in diets among the main ones. A high K value indicates a healthy 282 

fish and an optimal nutrient balance in diet (Kim and Cho 2019). Present study, recorded a slight or 283 

significant (P<0.05) increased K value in fish fed diets supplemented with increasing levels of POMM, 284 

compared to fish fed POMM0 diet.  This result suggests that experimental diets cover the necessary 285 

nutritional requirements for Nile tilapia fingerlings and even higher inclusion levels of POMM did not 286 

compromise the condition of the fish.  287 
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Results of SR, indicated that increased levels of POMM did not affect Nile tilapia fingerlings health 288 

for a 45–day period. A previous study testing dietary white button mushroom supplemented at 0, 0.5, 289 

1, 2, and 4% in Nile tilapia, demonstrated that survival of experimental fish was not significantly 290 

affected by any experimental diet (Dawood et al. 2020a).  291 

In present study, final whole body proximate composition (moisture, crude protein and crude lipid) 292 

were not affected in experimental fish after a 45–day feeding period. However, experimental fish fed 293 

POMM100 diet, recorded a significantly higher crude fiber, compared to that shown in the rest of 294 

experimental groups.  These higher values are attained to the high level of fiber content (7.4%) in 295 

POMM100 experimental diet.  During all the history of fish nutrition science, fiber has been considered 296 

as an energy depletion agent, with undesirable effects when fish consumes diets with high contents of 297 

fiber Adorian et al. (2016). This statement, correlates with present research where high levels of crude 298 

fiber in experimental diets, mainly produced two effects: a decreased growth in experimental Nile 299 

tilapia fingerlings and an accumulation of this nutrient in final whole body proximate composition.  300 

Fiber accumulation in whole body composition, is explained because this nutrient is poorly digested 301 

by most of fish species, including Nile tilapia (Hilton et al. 1983).  302 

Present study analyzed digestive enzyme activities of Nile tilapia fingerlings fed diets formulated with 303 

increasing levels of POMM. Protease–acid, protease–alkaline, trypsin and chymotrypsin did not show 304 

significant differences among experimental groups. These enzymes have been proposed as indicators 305 

of the nutritional status in fish. Activity of these enzymes revealed the stomach functionality and ability 306 

of nutrient assimilation in the intestine (Wang et al. 2022). This enzymatic unaffected status can be 307 

correlated with the presence of sufficient protein in experimental diets, whereas a low value shall be 308 

correlated with starvation or feed deficiency (Xavier et al. 2023). In other words, activities of enzymes 309 

digesting proteins in fish, revealed the effects of diets in physiological status of experimental fish 310 

Guerrero–Zarate et al. (2019). In our study, activity of leucine aminopeptidase of experimental Nile 311 

tilapia fingerlings showed no significant differences among experimental groups. This enzyme is 312 

considered as indicator of nutritional quality, since a greater digestion, at a parietal level from luminal 313 

digestion by endoproteases, hydrolyzes peptides to release amino acids and to promote their absorption 314 

(Wang et al. 2022). This enzyme is a proteolytic enzyme that hydrolyses the peptide bond adjacent to 315 

a free amino group. Hence, it can be inferred that leucine aminopeptidase can hydrolyze ingested 316 

proteins of mushroom meal (Solovyev et al. 2023).  317 

In present research, lipase activity showed a significant (P<0.05) decrease in experimental groups fed 318 

POMM50, POMM75, POMM100 diets, which is correlated with a lower growth performance. There 319 

are several factors impacting lipid enzyme secretions including. feeding habits, feed preferences, 320 

formulation of diets and ANF´s (Thongprajukaew and Rodjaroen, 2020) In present study, fiber could 321 

have reduced the activity of lipase in experimental fish (Mirghaed et al. 2018).  This can be explained 322 

by the interference of fiber in not only the hydrolysis of lipids but also in the absorption of fatty acids 323 

(Dawood et al. 2020b).  324 

In this research, α–amylase activities did not show significant differences among experimental groups. 325 

α–amylase activity is modified according to the ingredients of diet formulation (Mohtashemipour et 326 

al. 2023). In this regard, α–amylase is positively correlated with dietary carbohydrate level (Qu et al. 327 

2022). Ability to secrete more α–amylase for dietary polysaccharides hydrolysis seems to be more 328 

efficient in herbivorous and omnivorous species (e.g., Nile tilapia) than in carnivorous fish such as 329 

rainbow trout (Oncorhynchus mykiss) where this digestive enzyme is not efficiently expressed 330 

(Bjørgen et al. 2020). It is well demonstrated that omnivore species like Nile tilapia has a better starch 331 

digestion rate than opportunistic carnivore species (Ferreira et al 2022). This fact can explain that even 332 

at high Nitrogen free extract in all experimental diets in this study, no differences in α–amylase activity 333 

among experimental groups were shown.  334 
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CONCLUSIONS 335 

Although diets formulated with increasing levels of POMM did not compromised FCR, PER, SR, Acid 336 

and alkaline proteases, trypsin, chymotrypsin, leucine aminopeptidase and amylase of Nile tilapia 337 

fingerlings,  results obtained in present study, indicated that high levels of fiber naturally present in 338 

POMM, inevitably increase this nutrient in experimental diets, hence significantly affecting other 339 

parameters such as, WG, SGR, DFI, DPI, and lipase activity when POMM is supplemented in levels 340 

above 25%. While a 100% supplementation, triggered an accumulation of fiber in final whole body of 341 

Nile tilapia fingerlings. This   may be attained to two factors: firstly, the interference of fiber in the 342 

hydrolysis of lipids and in the absorption of fatty acids and, secondly, fiber is poorly digested, therefore 343 

it is accumulated in final whole body of Nile tilapia fingerlings.   344 
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Table 1. Proximate composition of POMM. 561 

Moisture (%) 4.61 

Crude protein (%) 21.37 

Crude lipid (%) 0.50 

Crude fiber (%) 20.05 

Ash (%) 7.51 

Nitrogen free extract (%) 45.96 

Gross energy (kcal kg-1) 3899 
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Table 2. Dietary ingredients and proximate composition of experimental diets for Nile tilapia fingerlings, formulated with increasing levels of POMM.  589 

Ingredients (%) 
Substitution level 

POMM0 POMM25 POMM50 POMM75 POMM100 

Soybean meal 44%c 21 15 11 5 0 

Pink oyster mushroom mealb 0 11 22 33 44 

Sorghum meal 9%c 26 21 13 8 1 

Pork meal 50%a 25 25 26 26 26 

Fish meal 65%a 14 14 15 15 15 

Sardine Oila 6 6 6 6 6 

Soybean Oild 3 3 3 3 3 

Grenetine 2 2 2 2 2 

Previtf 1.5 1.5 1.5 1.5 1.5 

Preminf 1 1 1 1 1 

Vitamin Cg 0.5 0.5 0.5 0.5 0.5 

Proximate composition (g 100 g -1 dry matter)  

Crude Protein (%) 33.13 32.42 32.76 31.98 32.03 

Crude lipid (%) 13.77 13.85 13.99 14.08 14.23 

Ash (%) 11.94 12.26 12.88 13.20 13.78 

Crude fiber (%) 2.39 3.63 4.91 6.15 7.40 

Nitrogen Free Extract (%)1 38.78 37.84 35.46 34.59 32.56 

 energy (kcal kg-1)2 4776 4704 4638 4566 4499 

a Marine and Agricultural Protein (Proteínas marinas y agropecuarias S.A. de C.V., Guadalajara, Jalisco.  590 
b Edible mushroom greenhouse, Academic Division of Biological Science (DACBiol), Juarez Autonomous University of Tabasco (UJAT), Villahermosa, 591 

Tabasco.  592 
c GALMEX Comercializadora de Insumos Agrícolas S.A. de C.V., Villahermosa, Tabasco.  593 
d Pronat Ultra, Mérida, Yucatán.  594 
e D´gari, Productos alimenticios y dietéticos relámpago, S.A. de C.V., Tlalpan, D.F.  595 
f Consorcio Súper S.A. de C.V., Guadalajara, Jalisco.  596 
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g DSM® C-EC (Roche) active agent 35%. 597 

1Calculated manually: Nitrogen free extract and gross energy were manually calculated as follows: Nitrogen free extract (%) = [100 – (Protein + Lipid + Ash + 598 

Crude fiber)].  599 

2Calculated manually: gross energy (kcal Kg-1) = [(crude protein X 5.65) + (lipid X 9.4) + (NNE X 4.15)] x 10 (Gatlin III 2010). 600 
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Table 3. Growth, feed performance, protein utilization and survival of Nile tilapia fingerlings fed formulated diets with increasing levels of POMM for 45 days. 632 

Growth  POMM0 POMM25 POMM50 POMM75 POMM100 

WG (%)8 659.2 ± 97.7 a 553.1 ± 23.4 ab 462.4 ± 35.9 bc 433.7 ± 80.4 c 388.1 ± 22.9 c 

SGR (%)3 4.49 ± 0.28 a 4.16 ± 0.08 ab 3.83 ± 0.15 bc 3.70 ± 0.32 c 3.52 ± 0.11 c 

K4 1.64 ± 0.04 b 1.66 ± 0.03 ab 1.72 ± 0.02 a 1.69 ± 0.02 ab 1.71 ± 0.03 a 

FCR1 2.54 ± 0.35 2.34 ± 0.10 2.84 ± 0.24 2.95 ± 0.51 3.22 ± 0.21 

DFI (g day-1)5 0.110 ± 0.00 a 0.086± 0.00 b 0.086± 0.00 b 0.083± 0.00 c 0.082± 0.00 d 

DPI (g day-1)6 0.037± 0.01 a 0.029± 0.01 b 0.028± 0.00 c 0.027± 0.00 d 0.026± 0.01 e 

PER7 1.20 ± 0.18 1.32 ± 0.06 1.09 ± 0.09 1.08 ± 0.20 0.97 ± 0.06 

SR (%)2 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 

Values in each row superscript with different letters indicate significant differences between groups (P<0.05). 633 
 634 
1 Weight gain: [(final average weight – initial average weight) / (final average weight)] x 100. 635 
2 Specific Growth Rate: {[(ln final weight) – (ln initial weight)] / days x100}. 636 
3 Condition Factor: [(final average weight / final total length3) x 100]. 637 
4 Feed Conversion ratio: [(Feed consumed, g) / (gain in weight, g)]. 638 
5Daily Food intake: {(consumed protein, g) / [time, day x N (final fish number)]}. 639 
6 Daily Protein intake: [(food consumption, g day base) / (number of fish / day)]. 640 
7 Protein efficiency ratio: [(weight gain, g) / (protein intake in Dry Matter, g)]. 641 
8 Survival rate: {(Initial fish number) – [(Final fish number) / (Final fish number)] x 100}. 642 

Different letters mean significant differences (P<0.05). 643 
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Table 4. Whole body proximate composition of Nile tilapia fingerlings, fed formulated diets with increasing levels of POMM, for 45 days 654 

Proximate 

composition  

(g 100 g-1 DM) 

Experimental groups 

POMM0 POMM25 POMM50 POMM75 POMM100 

Moisture (%) 6.54 ± 1.53 5.76 ± 1.74 6.19 ± 1.54 7.82 ± 0.69 5.21 ± 1.03 

Crude protein (%) 57.35 ± 2.8 56.66 ± 1.30 55.13 ± 1.40 53.13 ± 0.80 52.77 ± 1.20 

Crude lipid (%) 22.97 ± 1.14 24.50 ± 1.45 23.68 ± 2.08 26.64 ± 2.78 26.49 ± 1.50 

Crude Fiber (%) 0.14 ± 0.00 b 0.00 ± 0.00 bc 0.00 ± 0.00 bc 0.16 ± 0.02 b 0.24 ± 0.03 a 

Values in each row superscript with different letters indicate significant differences between groups (P<0.05). 655 
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Table 5. Digestive enzyme activities of Nile tilapia fingerlings, fed formulated diets with increasing levels of POMM, for 45 days 682 

Enzyme activity  

(U mg protein-1) 

Experimental groups 

POMM0 POMM25 POMM50 POMM75 POMM100 

Acid protease 4.72 ± 3.52 5.68 ± 1.58 6.57 ± 1.62 6.07 ± 0.78 6.30 ± 1.36 

Alkaline protease 9.93 ± 3.28 8.36 ± 3.30 9.17 ± 3.10 10.20 ± 1.48 10.29 ± 0.84 

Trypsin 
6.47x10-03 ± 

2.15x10-03 

7.83x10-03 ± 

1.78x10-03 

5.99x10-03 ± 

2.71x10-03 

5.94x10-03 ± 

1.13x10-03 

7.15x10-03 ± 

6.02x10-04 

Chymotrypsin 
2.35x10-02 ± 

4.87x10-04 

2.41x10-02 ± 

1.47x10-03 

2.22x10-02 ± 

2.98x10-03 

2.25x10-02 ± 

2.92x10-03 

2.19x10-02 ± 

2.55x10-03 

Leucine 

aminopeptidase 

8.66x10-04 ± 

2.96x10-04 

1.11x10-03 ± 

1.38x10-04 

1.13x10-03 ± 

3.37x10-04 

8.96x10-04 ± 

2.09x10-04 

1.15x10-03 ± 

4.34x10-04 

Lipase 130.09 ± 13.24a 130.47 ± 12.31a 96.05 ± 17.56b 84.51 ± 7.27b 90.29 ± 23.09b 

Amylase 141.63 ± 41.78 176.20 ± 7.69 168.51 ± 22.36 154.45 ± 27.63 147.14 ± 20.44 

Values in each row superscript with different letters indicate significant differences between groups (P<0.05). 683 

 684 

Author-formatted, not peer-reviewed document posted on 02/05/2023. DOI:  https://doi.org/10.3897/arphapreprints.e105690


