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Abstract 

Environmental DNA (eDNA) metabarcoding is transforming biodiversity monitoring in aquatic 

environments where the method has repeatedly shown comparable or better performance 

than conventional approaches to fish monitoring. This method has been developed and 

deployed, primarily using shoreline sampling during the winter months, across 101 lakes in 

Great Britain alone, covering a wide spectrum of lake types and ecological quality. Previous 

analyses on a subset of these lakes indicated that 20 water samples per lake are sufficient 

to reliably estimate fish species richness, but it is unclear how reduced eDNA sampling effort 

affects richness, or other biodiversity estimates and metrics. As the number of samples 

strongly influences the cost of monitoring programmes, it is essential that sampling effort is 

optimised for a specific monitoring objective. The aim of this project was to explore the effect 

of reduced eDNA sampling effort on biodiversity metrics (namely species richness and 

community composition) using algorithmic and statistical resampling techniques. The results 

showed that reliable estimation of lake fish species richness could in fact usually be 

achieved with a much lower number of samples. For example, in almost 90% of lakes, 95% 

of complete fish richness could be detected with only 10 water samples, regardless of lake 

area. Similarly other measures of alpha and beta-diversity were not greatly affected by a 

reduction in sample size from 20 to 10 samples. We also found that there is no significant 

difference in detected species richness between shoreline and offshore sampling transects, 

allowing for simplified field logistics. This could potentially allow the effective sampling of a 

larger number of lakes within a given monitoring budget. However, rare species were more 

often missed with fewer samples, with potential implications for monitoring of invasive or 

endangered species. These results should inform the design of eDNA sampling strategies, 

so that these can be optimised to achieve specific monitoring goals.  
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Introduction 

Environmental DNA (eDNA) metabarcoding of water samples is now regularly used for the 

detection and monitoring of fish species and the assessment of fish community structure 

(Wang et al. 2021). It is a non-invasive method proven to be more effective at detecting 

elusive species than established invasive surveying techniques such as electrofishing, fyke 

netting or gill netting (Hänfling et al. 2016, Pont et al. 2018, Lawson Handley et al. 2019, 

Griffiths et al. 2020, McElroy et al. 2020, Pukk et al. 2021, Czeglédi et al. 2021). Aquatic 

eDNA metabarcoding relies on the capture, extraction and sequencing of DNA within a water 

sample from a water body or a watercourse. However, DNA is rarely homogeneously 

distributed in aquatic environments (Lawson Handley et al. 2019, Beentjes et al. 2019, 

Bedwell & Goldberg 2020, Pukk et al. 2021). This is especially true in lentic environments 

where the dispersion of eDNA through hydraulic processes is often limited compared to lotic 

or marine environments (Li et al. 2019b, Brys et al. 2021). Hence fish species detection 

relies on the collection of an adequate number of samples from a water body to capture the 

heterogeneity of the eDNA signal and be representative of the biodiversity present (Bruce et 

al. 2021). Sampling strategies vary according to the research question and are generally 

more intensive for detection of rare and/or low abundance species (Jerde et al. 2011, Dejean 

et al. 2012) and determining fish species richness in high diversity ecosystems (Cantera et 

al. 2019, Blackman et al. 2021), than when the requirement is simply to establish the 

presence of common, widely distributed species (Sato et al. 2017). 

In this context, the UK Technical Advisory Group (UKTAG) on the European Union Water 

Framework Directive (WFD) initiated a research programme to evaluate the suitability of 

eDNA metabarcoding approaches for monitoring lake fish communities, largely with the 

objective to develop a tool which is compatible with requirements under the WFD. The 

research output of the original pilot study was published in 2016 (Hänfling et al. 2016), with 

subsequent development of the method published in (Li et al. 2018), (Sellers et al. 2018) and 

(Lawson Handley et al. 2019). The findings of this pilot demonstrated that 20 water samples 

were sufficient to detect the vast majority of fish species from England’s largest lake, 

Windermere, and to provide ecologically meaningful relative abundance estimates (Hänfling 

et al. 2016). Subsequent results indicated that maximum species richness could be achieved 

by simply collecting samples from the shoreline during winter, due to increased water mixing 

as a result of more turbulent conditions (e.g. greater rainfall and winds) and less thermal 

stratification (Lawson Handley et al. 2019). Using this approach, additional data were 

collected between 2016 and 2019 from a range of lake types and environments across Great 

Britain (Li et al. 2019a), Hänfling et al. 2020) resulting in a data set of 10-20 water samples 

collected from each of 101 lakes (hereafter referred to as the “101 lakes data set”). 

The objective of this study was to carry out a meta-analysis of the 101 lakes data set to 

investigate the effect of sample number and location on estimation of fish biodiversity 

metrics (species richness, community composition) using random and non-random data 

resampling techniques. The number of samples needed to achieve 95% coverage of the 

total species detected (i.e. sampling threshold) has so far received limited attention, but this 

is crucial in order to maximise the cost-effectiveness of monitoring programmes. Based on 

the normal asymptotic shape of species accumulation curves, we hypothesise that a 

reduction in the number of water samples from the original data set will still be adequate to 

detect fish species in any given UK lake, regardless of its area. We further hypothesise, 
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based on our previous study, that biodiversity metrics obtained from shoreline and offshore 

samples do not differ significantly within lakes. 

Methods 

Study lakes and water sample collection 

We utilised eDNA metabarcoding data from 101 lakes which were sampled between January 

2015 and March 2019 largely during the winter season (November - March, Fig. 1). This 

includes previously published data from 14 Cheshire Meres and Welsh lakes (Li et al. 2019). 

Lakes were chosen to represent various typologies (UKTAG, 2004) representative across 

Great Britain, including alkalinity and ecological quality (Fig. 1). The surface area spectrum 

ranged from Scoat Tarn (4.3 ha) to Great Britain’s largest, Loch Lomond (5158.7 ha), and 

included shallow lowland lakes as well as deep upland lakes. A pre-existing classification of 

the ecological quality based on WFD methodologies was available for all lakes (Fig. 1B). A 

consistent approach was used for sample collection and filtration as described in Hӓnfling et 

al. (2016b; 2016c). Shoreline samples were collected from all 101 lakes. Each individual 

shoreline sample contained 2 L of surface water and was composed of subsamples from five 

points along a 100 m transect, parallel to the shoreline. Where possible, 20 shoreline 

samples were collected at roughly equidistant points around the perimeter of each lake. Due 

to logistic constraints and varying objectives during early project phases, the actual number 

of shoreline samples collected across all lakes ranged from 10 to 21 shoreline samples 

(mean 17.74 ± 4.01 SD). An additional 8 to 25 offshore samples (mean 14.10 ± 5.67 SD) 

were collected from 20 of the lakes using a Friedinger or Ruttner sampler deployed at a 

specified depth. Each 2 L offshore sample was a composite of 5 x 400 mL samples collected 

from five points within a radius of 100 m around the sampling point. At least one field blank 

was included for each lake. 
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Figure 1. Distribution and characteristics of 101 UK lakes sampled for eDNA in this study. A 

alkalinity type and B existing WFD classification for each lake. For alkalinity types: High 

= >50 mg/L CaCO3; Medium = 10-50 mg/L CaCO3; Low =<10 mg/L CaCO3. WFD 

classifications are based on an aggregate view of data for biological and physicochemical 

quality elements collected over the previous five years. Reproduced based on data from 

Willby et al. (2019). 

Water filtration and DNA extraction 

Samples were stored immediately in cool boxes on ice, and filtered within 24 hours of 

collection. Samples were vacuum filtered through sterile Whatman 0.45 μm 47 mm cellulose 

nitrate membrane or mixed cellulose ester filters (GE Healthcare). Two litres were filtered 

when possible, but filtration time was capped at one hour. Two filters were used for turbid 

samples. Filters for each sample were stored separately at -20°C until extraction. 

Two slightly different but related protocols were used for DNA extraction over the course of 

the project. During the initial phase (2015 - 2017; n = 20 lakes; Hanfling et al. 2016a; Li et al. 

2019; Lawson Handley et al. 2019), DNA was extracted from filters using the MoBio 

PowerWater DNA Isolation Kit (now Qiagen DNeasy PowerWater Kit). In later phases (2017 

- present, n = 81 lakes), DNA was extracted from filters using the Mu-DNA Water protocol 

(Sellers at al. 2018). Field and extraction blanks were extracted alongside samples using the 

relevant protocol. Extraction blanks, having no filter, consisted of the reagents used in each 

step of the relevant protocol. 
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Sequencing library preparation 

All samples were processed and sequenced following metabarcoding protocols established 

at the University of Hull using a vertebrate-specific 12S marker, amplifying a ~106 bp 

fragment in fish (Riaz et al. 2011; Kelly et al. 2014). Genomic DNA from non-native cichlid 

species (Astatotilapia calliptera, Maylandia zebra and Rhamphochromis esox) were used as 

PCR positive controls during library preparation.  

Modifications to improve the molecular protocols were made between different phases of the 

project. In the pilot stage of the project (2015, n = 2 lakes), samples were PCR amplified with 

a one-step library preparation protocol following (Kozich et al. 2013) (see Hanfling et al. 

2016a for full details). Following the pilot project, the protocol was further developed (2015 - 

2017, n = 18 lakes), adopting PCR amplification using a two-step nested tagging library 

preparation (Kitson et al. 2019) (see Li et al. 2019; Lawson Handley at al. 2019 for full 

details). The most current protocol (2017 - present, n = 81 lakes) followed that of the nested 

tagging, where 24 unique tags were used for both the forward and reverse primers. 

Regardless of protocol, all samples were PCR amplified in triplicate then the corresponding 

replicates pooled for sequencing. For full details of the current library preparation method, 

see Supporting Information. 

Bioinformatics and data set clean-up 

Raw sequence data were analysed using the same bioinformatics pipeline as described in 

Hänfling et al. (2016a) and Li et al. (2019). In summary, sequencing reads from all lakes 

underwent taxonomic assignment against a curated UK fish species reference database 

using a custom bioinformatics pipeline, metaBEAT (https://github.com/HullUni-

bioinformatics/metaBEAT). The workflow consisted of the following steps: 1) demultiplexing; 

2) trimming, quality filtering and merging; 3) chimera detection; 4) clustering; 5) taxonomic 

assignment. For full details of the bioinformatics workflow, see Supporting Information. 

Following taxonomic assignment, a noise threshold of 0.1% of total reads per sample was 

applied to remove low frequency reads (Hänfling et al. 2016a). Most reads were assigned to 

the species level, but as the molecular marker used here cannot distinguish certain species 

reliably, the reads belonging to these species were assigned to the next possible highest 

taxonomic level. Specifically, species belonging to the genera Coregonus, Lampetra and 

Salvelinus were assigned to genus level, and two members of the family Percidae (Perca 

fluviatilis, Sander lucioperca) were assigned to family level. Reads nominally assigned to 

Lota lota were excluded, primarily as the species is considered extinct in the UK, but also 

because the sequenced marker region is identical to that of the marine species Gadus 

morhua, a potential environmental contaminant via the human food chain. All remaining 

assignments to taxonomic levels higher than species were excluded from the analysis. 

Samples with less than 1,000 total reads were removed. Finally, reads assigned to positive 

controls and samples with no taxonomically assignable reads were removed from the data 

set.  
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Effect of sample number on lake fish biodiversity metrics  

Two principal approaches were used to evaluate the effect of sampling effort on fish 

detection and community composition estimation from eDNA metabarcoding: statistical 

estimation of sampling threshold and data resampling techniques. 

Species richness estimates were calculated based on all samples of each lake and for each 

reduced sample number replicate to ascertain the differences between the original lake data 

set and that of its resampled subsets. 

Read count data (number of raw reads assigned to fish species) for each lake were 

converted to species presence/absence. Species richness was calculated as the total 

number of fish species detected within each sample (α-diversity) and across all samples for 

each lake (γ-diversity). 

Total read counts per species across all samples from a lake were converted to relative 

species abundance (proportion reads) to create a standardised eDNA community 

composition estimate. 

Statistical estimation of sampling threshold 

Sampling threshold is defined as the minimum number of samples required to achieve 95% 

of complete species richness for a given lake, which is independent of species richness and 

therefore comparable across different lakes. Presence/absence data were used to determine 

the “sample coverage”, an estimate of sample completeness, defined as the proportion of 

taxa in the community detected in the sample (Chao et al. 2014). 

Random resampling of lake fish eDNA metabarcoding data 

A bootstrapping without replacement approach was used to generate replicate data sets with 

reduced sample numbers for each lake. In order to improve comparability across the data 

set, only lakes with ≥ 15 samples (82 lakes) were used for resampling. For each lake set 

consisting of n samples (n ranging from 15-20), all possible unique sample combinations at 

different sample sizes were generated, with sample size ranging from 2 to a maximum of n-

2. The number of possible sample combinations drawn without replacement varies 

depending on total n and ranges from 105 (n = 15, 13 samples drawn) to 184,756 (n = 20, 

10 samples drawn). For each lake, subsets of 100 unique combinations were randomly 

drawn and used as resampling replicates per sample size. Using this approach, there was 

no chance of a sample occurring more than once within a replicate, representing the reality 

of resampling lake samples. 

The effect of sample number on species detection and community composition estimates 

was investigated as follows. First, the number of undetected taxa compared to the full data 

set was calculated for all combinations at each sample size. Here we tested for Spearman’s 

rank coefficient correlations between the number of undetected species with total observed 

species richness and lake area. Values of 1, 2 and 3 were used for minimum undetected 

species thresholds. The sample size at which 95% of the lakes achieved less than these 

thresholds was considered. Second, the average deviation of a given sample combination’s 

community composition (proportion reads) from the full lake sample composite was 
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quantified for each sample size using pairwise dissimilarity measures (Bray-Curtis 

dissimilarity index). In order to quantify the effect across all lakes, the proportion of lakes 

which fall above an arbitrary dissimilarity value (0.1) at each sample size was calculated. 

As read counts from eDNA metabarcoding data have been shown to correlate with actual 

recorded abundance and biomass of fish communities within UK freshwater systems (Li et 

al. 2019a, Di Muri et al. 2020), we assessed the impact of resampling on a simple 

biodiversity index. Simpson’s reciprocal index was calculated using read counts per species 

for each lake for all combinations at each sample size and compared to the lake as a whole. 

The proportion variance between the values was used to gauge the level of overestimation 

or underestimation. 

Non-random reduced sampling of lake metabarcoding data 

Random resampling provides the opportunity to explore a wide range of sample numbers but 

ignores the spatial context in which the samples are collected. Hence, under the assumption 

that eDNA is not randomly distributed, random resampling might not represent a realistic 

(e.g. spatially dispersed) sampling strategy. For example, with the data set analysed here, 

samples were collected at equidistant points around a lake perimeter. To address this, we 

employed a hold-out method, which better reflected the original sampling design by splitting 

the samples from each lake into two interleaved subsets, i.e. two sets of 10 equidistantly 

distributed samples. Practically, this was achieved by grouping samples into odd and even 

sample numbers since samples were continuously numbered along the shoreline transect. 

Only lakes with exactly 20 samples (n = 63) were used for this comparison. Number of 

undetected species and dissimilarity indices were calculated for each lake subset as above 

and tested against the maximum threshold values decided for each (1 and 0.1 for 

undetected species and dissimilarity indices respectively). The possible effect of total 

species richness and lake area on the size of differences in species detection between odd 

and even subsets was assessed using Spearman’s rank coefficient correlations.  
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Shoreline sampling validation 

The data from shoreline and offshore samples were compared in lakes where both sample 

types were available (n = 20) to evaluate the generality of the findings from (Lawson 

Handley et al. 2019) that both sample types generate similar biodiversity estimates during 

the winter season. Total read counts per species across all samples from a lake were 

converted to relative species abundance (proportion reads). Species richness was 

calculated for each lake as a whole and per transect type for each lake. 

We determined if detected species richness was affected by sample type with a linear mixed 

effect model. Log transformed species richness, with sample type as a covariate and lake as 

a random variable, was compared to the null model (no covariate of transect) with a chi-

squared test of model likelihoods. 

Non-metric multidimensional scaling (NMDS) ordination, based on Bray-Curtis distances, 

was used to visualise differences in community estimates (relative abundance) between 

transects and the whole lake (combined transects). 

An analysis of similarities (ANOSIM) (Bray-Curtis dissimilarity index, 105 permutations) was 

performed to test if there were differences in relative species abundance between shoreline 

and offshore samples within each lake. Again, NMDS ordination, based on Bray-Curtis 

distances, was used to visualise differences in relative abundance between transects. 

Analysis and data availability 

All analyses were performed using R version 4.0.5 (R Core Team 2021). Linear model 

analysis was performed with “lme4” version 1.1.3 (Bates et al. 2015). Species accumulation 

and sample coverage were generated with “iNEXT” version 2.0.20 (Hsieh et al. 2020). Bray-

Curtis dissimilarity indices, ANOSIM and NMDS ordinations were generated with “Vegan” 

version 2.5.6 (Oksanen et al. 2019). Supporting Information is openly available at 

http://dx.doi.org/XXXXX/OSF.IO/XXX and a structured R analysis code repository is 

available at https://github.com/XXXX. 

Results 

Bioinformatics and data set clean-up 

After taxonomic assignment, average sample read counts for each of the 101 lakes 
(including both shoreline and offshore samples) ranged from 13,384.30 to 101,526.60 (mean 
52,646.1 ± 21,979.24 SD). Of these 2,134 samples, 2,074 remained following data set 
clean-up. 
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Effect of sample number on lake fish species biodiversity 

metrics 

The final cleaned data set for all 101 lakes used for resampling analysis consisted of 1,792 

shoreline samples. Individual lakes ranged from having 7 to 20 successfully sequenced 

samples with the majority (n = 63) having 20 samples. A total of 40 fish taxa were recorded 

across all lakes. Fish taxon richness per lake ranged from 2 to 18 (mean 7.71 ± 3.36 SD). 

Initial sampling strategy 

Not all 101 lakes used in this study had 20 shoreline samples collected, but the sampling 
effort can nevertheless usually be considered adequate. Based on species accumulation 
estimates (Fig. 2), the majority of lakes (n = 82) had sufficient samples to detect the total 
species number predicted by extrapolation to 40 samples. In 10 of the remaining 19 lakes, 
one or more species remained undetected, and in nine lakes, two or more species remained 
undetected. Lakes where one or more species were potentially undetected through 
inadequate sampling effort tended to have higher species richness (14 of the 19 lakes had a 
detected species richness ≥ 10). 

  
Figure 2. Species accumulation curves for all 101 lakes used in this study. Grey indicates 

lakes with less than 1 estimated species undetected, yellow is lakes with less than 2 

estimated species undetected and red is lakes with more than 2 estimated species 

undetected. Solid lines are interpolated, and dashed lines are extrapolated. All lakes are 

extrapolated to a sample size of 40 for uniformity. 

Sampling threshold 

Regardless of actual sample size, all but five of the 101 lakes achieved sample coverage ≥ 

95% for fish species detection at 20 samples (Fig. 3A), with 93 lakes achieving ≥ 95% 

sample coverage with a sample size of 10. A total of 96 out of 101 lakes achieved ≥ 95% 

sample coverage at a sample size of 11 (Fig. 3B). The sampling threshold for lakes ranged 
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from 1 to 25 samples with the mean sample threshold at 5.37 (± 4.56 SD). Sampling 

threshold correlated with total species richness (rs = 0.41, p < 0.05). There was no 

correlation between sampling threshold and lake surface area (rs = -0.09, p = 0.39) or 

difference in sampling threshold between alkalinity types (high, medium and low) (Kruskal-

Wallis: X2 = 3.63, df = 2, p = 0.16). 

 

 

Figure 3. Sample coverage for all 101 UK lakes used in this study. Sample size cut off at 20 

for uniformity. A Lake sample coverage. Solid red lines are the interpolated sample 

coverage. Dashed red lines are extrapolated sample coverage. Grey area shows the range 

of upper and lower confidence intervals. Horizontal dashed line indicates 95% sample 
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coverage (i.e. sampling threshold). B Cumulative count of lakes with ≥ 95% sample 

coverage per sample size. Vertical dashed line indicates sample size at which ≥ 95% of 

lakes achieve ≥ 95% sample coverage. 

Random resampling of lake metabarcoding data 

The number of undetected fish species steadily decreased with increasing sample size (Fig. 

4A). The point at which 95% of the lakes fall below the thresholds of 1, 2 or 3 mean species 

undetected were at sample sizes of 14, 9 and 6 respectively. Number of undetected species 

at a sample size of 10 (half the ideal sample size of 20 aimed for during the project) 

correlated with total species richness (rs = 0.72, p < 0.05), implying that lakes with more 

species require a greater sampling effort for a given level of detection. There was no 

correlation between undetected species at sample size 10 and lake surface area (rs = 0.07, 

p = 0.51). The dissimilarity index of community composition also decreased continuously 

with increasing sample size and ≥ 95% of the lakes fell below a mean dissimilarity index 

threshold of 0.1 (i.e. were more similar) at a sample size of 15 (Fig. 4B). Simpson’s 

reciprocal index tended toward an underestimate of the lake as a whole at sample sizes less 

than 8 (Fig. 4C). Again, the amount of variance decreased and estimated indices became 

closer to the whole lake values with increased sample size. 
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Figure 4. Random resampling of lake fish metabarcoding data from 82 lakes used in this 

study. All lakes analysed had a successfully sequenced sample size of ≥ 15 (maximum 20). 

The effects on three metrics used in the analysis are shown. A Undetected fish species 

counts for a lake at a given sample size. Vertical dashed lines indicate sample sizes at which 

≥ 95% of lakes fell below the thresholds of 1, 2 or 3 species undetected (sample sizes of 14, 

9 and 6 respectively). B Bray-Curtis dissimilarity index of fish communities for a lake at a 
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given sample size to that of the whole lake. Vertical dashed line indicates sample size at 

which ≥ 95% of lakes achieved a mean sample dissimilarity index below an arbitrary 

threshold of 0.1 (horizontal dashed line). C Proportion variance in Simpson’s reciprocal index 

for a lake at a given sample size to that of the whole lake. In all figures, each point 

represents the mean of each metric for 100 unique resampling replicates of a lake at a given 

sample size. Solid lines show the mean of all points at a sample size. 

Non-random reduced sampling of lake fish species metabarcoding data 

In most cases, the number of undetected species was equal between lake subsets (n = 34) 

or differed by only a single species (n = 21) (Fig. 5A). In 27 of the 63 lakes, all species 

present were detected in both subsets. However, in a few cases (n = 8) the number of 

undetected fish species differed greatly between subsets. The size of differences in species 

detection between odd and even subsets correlated with total species richness (rs = 0.37, p 

< 0.05). There was no correlation with lake surface area (rs = -0.04, p = 0.78). Differences in 

the Bray-Curtis dissimilarity indices of the fish communities represented in odd and even 

subsets per lake were generally very small and equally dissimilar to the whole lake fish 

community (Fig. 5B). All but three of the lakes had dissimilarity indices for both subsets 

below the 0.1 threshold. Simpson’s reciprocal indices were highly similar for the majority of 

lakes with only four having more pronounced differences between subsets and the whole 

lake (Fig. 5C). There was no tendency between subsets toward overestimation (odd = 31, 

even = 25) or underestimation (odd = 32, even = 38) of the index to that of the whole lake. 
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Figure 5. Non-random reduced sampling of lake fish metabarcoding data from 63 lakes 

used in this study. All lakes had 20 samples divided into odd (triangles) and even (inverted 

triangles) 10-sample subsets. A Undetected fish species counts calculated from comparison 

of each 10-sample subset to the whole lake. B Bray-Curtis dissimilarity index of fish 

communities calculated from comparison of each subset community composition (proportion 

reads) to the whole lake. Horizontal dashed line indicates the decided dissimilarity index 
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threshold (0.1). C Simpson’s reciprocal index for odd and even subsets in comparison to the 

whole lake (circles). In all figures, vertical lines are visual links for corresponding lake whole, 

odd and even subsets. Lakes are ordered by surface area on the x-axis with size increasing 

from left to right. 

Shoreline sampling validation 

A total of 34 species were present across the 20 lakes used to validate shoreline sampling, 

with 33 species detected in shoreline and 28 in offshore sampling transects (Fig. 6). Six 

species (Alosa alosa, Ameiurus sp., Barbus barbus, Blicca bjoerkna, Leucaspius delineatus 

and Platichthys flesus) were unique to shoreline transects with only a single species unique 

to offshore transects (Pseudorasbora parva) (Fig. 6). 

 

Figure 6. Species lake occupancy for shoreline and offshore sampling transects across the 

20 lakes used to validate shoreline sampling. The number of lakes a species was detected in 

shoreline and offshore sampling transects is shown. Species are ranked by total shoreline 

and offshore lake occupancy.  
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Species richness showed no significant difference between transects (X2 = 0.121, df = 1, p = 

0.728). The proportion of total species detected in transects was similar across all lakes (Fig. 

7B); shoreline transects ranged from 62.5% to 100% of species detected (mean 87.36 ± 

14.13 SD), and offshore from 55.65% to 100% (mean 85.43 ± 13.43 SD). With the exception 

of species detected only in shoreline (n = 6) or offshore (n = 1) samples, all species had 

similar lake occupancy scores (Fig. 6), while the exceptional species occurred in a minority 

of lakes and in a minority (typically 10%) of samples from within those lakes. 

There were species unique to each transect type (i.e. shoreline and offshore) in all but one 

of the lakes, Loch Lubnaig (Fig. 7A). In eight of the 20 lakes, these unique species 

occurrences were only in shoreline samples (Fig. 7A). The majority of species detected in 

any given lake were shared between both transect types.  
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Figure 7. Overall species detection in sampling transects of the 20 lakes used to validate 

shoreline sampling. A Detected species richness (grey) in shoreline and offshore sampling 

transects of each lake and unique species occurrences (red) for each lake. B Proportion of 

the total species detected in shoreline and offshore sampling transects for each lake. 
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Non-metric multidimensional scaling of whole lake fish community estimates (species 

proportion reads) demonstrated there were some differences between shoreline and 

offshore sampling transects (Fig. 8). However, with the exception of nine of the selected 20 

lakes (those with extended ellipses), all whole lake ordinations were tightly grouped with 

those of their respective shoreline and offshore transects. 

In contrast, on an individual lake basis, ANOSIM tests showed that there were significant 

differences between transect species compositions in 11 of the 20 lakes (see Supplementary 

Fig. 1). 

 

Figure 8. Non-metric multidimensional scaling (NMDS) ordination for fish communities of the 
20 lakes used to validate shoreline sampling. NMDS generated from species composition 
(proportion reads) estimates using Bray-Curtis dissimilarity method in three dimensions 
(stress = 0.09). All lakes were divided into shoreline (triangles) and offshore (inverted 
triangles) transects. Whole lake (as both transects combined) ordinations (circles) are shown 
in relation to their shoreline and offshore transects. Ellipses denote the overall spread 
between transect composition estimates relative to that of the lake as a whole.  
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Discussion  

This study has shown that winter shoreline sampling is an effective approach to characterise 

the fish community of lakes in Great Britain. The application of algorithmic and statistical 

resampling approaches demonstrated that 10-20 samples per lake are sufficient to detect 

most species and to reliably describe their relative abundance and a range of biodiversity 

metrics. Below we discuss the implications for designing eDNA metabarcoding surveys for 

lake fish communities in detail. 

Effect of reduced sampling on species detection and 

community composition estimation 

The results of the sample coverage analysis confirmed that the sampling design used to 

create the original data set, i.e. 20 samples from equidistant locations around the lake shore, 

provided a very reliable estimation of the true species richness with less than 5% of lakes (5 

out of 101) having an estimated sample coverage below 95% at this sample size (Hänfling et 

al. 2016a; Willby et al. 2019) (Fig. 3). However, for most lakes the sample coverage curves 

started to reach a plateau at much lower sample numbers indicating that the loss of signal is 

relatively small even with a substantially lower sampling effort. This was confirmed by the 

resampling analysis which indicated that in the majority of lakes, fewer than two species 

remain undetected on average with a sample size of 10 randomly distributed samples, and 

there was an even lower rate of undetected species when samples are non-randomly 

distributed as would normally be the case. Interestingly, lake surface area does not directly 

influence the required sampling effort. However, as the required sample size increases with 

species richness, a priori knowledge of expected species richness informed by conventional 

sampling can be used to design efficient sampling strategies. The logistical effort of sampling 

is an important cost factor in eDNA-based monitoring programmes. Collection of fewer 

samples reduces person-hours in the field and also removes cost during downstream 

sample processing, such as filtration and molecular analysis. 

While a reduction from 20 to 10 samples does not greatly affect ecological community 

analysis it does have drawbacks as the detection of locally rare or low abundance species is 

reduced. Therefore, sampling strategies aiming to provide accurate distribution records for 

species of conservation importance (e.g. endangered, or establishing invasive non-native 

species) should be based around higher sample numbers, i.e. a minimum of 20 samples per 

lake. The reduced sampling approach is best suited to the lower diversity lakes of Great 

Britain where it reliably detected the commonly occurring species making it ideal for use with 

established fish-based water quality assessment metrics that are not reliant on rarer species 

(i.e. Willby et al. 2019). Increased diversity, as is found in mainland European lakes and the 

rest of the world, will possibly demand an increase in sample size. 

It is important to note that our results are influenced by the specific workflow used here. The 

detection probability of species through eDNA methods does not only depend on the number 

of samples taken within a habitat, but also on levels of replication during other stages of the 

workflow such as PCR and sequencing (Ficetola et al. 2015). Furthermore the specific 

laboratory protocols such as the choice of extraction method, choice of primer, number of 

amplification cycles or TaqPolymerase could also affect detection probability. Hence findings 
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may differ if methods are used which have lower or higher detection probabilities within 

individual samples. For example, fewer samples than indicated in our study might be needed 

if more than three PCR replicates per sample are used. However, it is likely that the broad 

trends we detected will be similar irrespective of such changes. 

Spatio-temporal considerations of sampling  

Our analysis across the entire data set demonstrated that winter shoreline sampling is 

sufficient to detect most fish species present in a Great Britain lake. Across the smaller 

subset of lakes with both shoreline and offshore transect samples (n = 20), there were no 

differences in species diversity (i.e. number of species detected) between offshore and 

shoreline samples, indicating that shoreline sampling is an effective method for species 

detection in lakes of Great Britain. This conclusion is in line with previous research 

conducted in Windermere, England (Lawson Handley et al. 2019) and three Chinese lakes 

which were sampled during the autumn (Zhang et al. 2020). During autumn and winter 

seasons, increased water circulation in temperate lakes due to the lack of thermal 

stratification, facilitates eDNA dispersal from the deeper areas of the lake to the shore. 

Additionally, low temperature during these seasons can slow down DNA degradation 

processes (Jo et al. 2019, Harrison et al. 2019). A study in three French lakes also 

demonstrated that offshore sampling was not necessary when lakes showed a lack of 

stratification (Herve et al. 2022). In contrast, DNA dispersal might be more limited during 

warmer seasons. (Littlefair et al. 2021) showed that stratification of Canadian lakes 

prevented detection of deepwater species through the water column. Our previous study on 

Windermere indicated a more localised distribution of eDNA during the summer and that 

fewer species were detected in shoreline samples during the summer period compared to 

winter (Lawson Handley et al. 2019). Additionally, studies on the spatial distribution of eDNA 

in summer ponds using cage experiments have shown that eDNA detection probability 

decreases drastically after 5-10m from the source (Li et al. 2019a, Brys et al. 2021). The 

combined evidence suggests that shoreline sampling might be less effective during the 

summer months. While there was no evidence of a difference in detection probability 

between shoreline and offshore samples for any individual species across the entire data 

set, the species composition differed significantly between offshore and shoreline samples in 

11 out of 20 lakes. However, these differences were relatively small compared to differences 

among lakes and mainly due to variation in relative abundance of some frequent species. 

Some rare species were only present in one of the two sample types. This is likely due to 

stochastic effects as there was no evidence of a systematic bias for individual species in 

relation to transect type across the data set (Fig. 6). These exceptional species were also 

rare within the lakes where they were found. Nevertheless, monitoring programmes need to 

consider potential differences between offshore and shoreline samples when measuring 

temporal trends in community composition and use a consistent sampling approach over 

time. 

As sample site access is a major logistical concern and shoreline sites are generally more 

accessible than offshore sites, removing the potential complications of boat use to access 

offshore sites would be highly beneficial for lake monitoring. Even in lakes with difficult land 

access to the shoreline, boat sampling of surface water near the shoreline is logistically 

easier than collecting samples in deeper water offshore. These simpler logistics suggested 

by our results therefore further help to reduce the costs of lake eDNA sampling programmes. 
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For example pelagic/profundal offshore species such as Coregonus and S. alpinus were 

detected by winter shoreline sampling. 

 

A further reduction in sample numbers could be achieved by collecting high volume samples 

over a transect rather than multiple point samples or at the major outflow of the lake. This is 

an alternative approach to the method described in this study and has been successfully 

employed in a number of studies estimate species richness in lentic systems (Civade et al. 

2016, Sepulveda et al. 2019, Schabacker et al. 2020) as well as large rivers (Pont et al 

2018). However, this method does not provide information about the spatial distribution of 

species and occupancy based abundance estimates and is therefore less adaptable to 

different project aims. 

In the data set analysed here, we detected some fish species more typically associated with 

river systems (rheophilic fish) in lake water samples, such as European bullhead (Cottus 

gobio), grayling (Thymallus thymallus), lamprey (Lameptra spp.) and salmon (Salmo salar). 

Rivers have been shown to transport eDNA over great distances (Deiner et al. 2016), 

although eDNA quantity decreases rapidly during this process (Pont et al. 2018). Hence 

some detections, especially rare ones, could reflect influence from upstream river water. 

However, rheophilic fish also occur in lake estuaries, stray into the lakes or utilise lakes for a 

part of their life cycle (e.g. salmonids (Arostegui & Quinn 2019)). From sequencing data 

alone, it is therefore impossible to disentangle if detection within a lake is true occupancy or 

transport of eDNA from upstream rivers. It is therefore more appropriate to regard the eDNA 

sampling in lakes as sampling of the lake itself and locally connected freshwater habitat. 

Conclusion 

The results of this study provide an important overview of how sampling effort and design 

affect various metrics of fish species richness in lakes which will provide guidance on 

optimising sampling strategies for individual projects. This will however require projects to 

have clear objectives and predefined standards in terms of acceptable error. As a general 

rule, to achieve an overview of species composition in relatively low fish diversity lakes, as is 

typical for many regions of Great Britain, 10 samples per lake taken during the winter season 

will suffice, regardless of lake surface area. However, sample size will need to be increased 

if detection of rarer species is required or is a priority, or when sampling high diversity lakes. 

These results are not necessarily directly transferable to other systems as different 

temperature regimes and hydrological conditions are likely to affect the spatial distribution 

and detection probability of eDNA in lentic systems. Although our understanding of these 

factors has improved considerably over the last ten years, there is still a knowledge gap in 

the effect of seasonal variation in detection in different ecosystems. The approach presented 

here should be seen as a framework for optimising sampling effort in other lentic 

ecosystems. 
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