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Abstract 7 

Rana hanluica is an endemic amphibian in China that is distributed in the hills and mountains south of the Yangtze 8 

River. In this study, 162 samples (comprising six groups) from 19 localities were collected, and the genetic diversity 9 

of R. hanluica groups was studied using mitochondrial cytb and nuclear rag2. The results showed that the genetic 10 

diversity of R. hanluica groups as a whole is high in haplotype diversity and low in nucleotide diversity. All 11 

haplotypes clustered into one branch and showed inconsistencies with the geographic structure. The levels of gene 12 

flow between the NL group and the other five groups as well as between the LXS group and two groups (WYS and 13 

NL) were all greater than 1, indicating that there was no barrier to gene flow between the above groups. Analysis of 14 

molecular variance also showed that genetic variation primarily occurred within groups, but the higher genetic 15 

differentiation reflected differentiation between groups of R. hanluica that may have been caused by genetic drift. 16 

Among the six groups of R. hanluica, only the LXS and NL groups have expanded. In conclusion, the degree of 17 

genetic diversity in each group of R. hanluica was not very high, while the level of genetic diversity varied 18 

significantly among groups. It is recommended that priority should be given to protecting groups with a large 19 

number of unique haplotypes (e.g., NL and LXS); the NL group is distributed in the South Ridge, as an important 20 

biological corridor. 21 

 22 
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Introduction 26 

The protection of the genetic diversity of species is one of the core contents of biodiversity 27 

conservation. Research on genetic diversity helps understand the evolutionary history and potential 28 

as well as population development trends of species. Thus, genetic diversity is significant for 29 

biodiversity conservation and sustainable development (Jiang and Ma 2014). Amphibians as an 30 

important branch of vertebrates are experiencing severe population decline globally due to their 31 

special life history characteristics and body structures that require a very specific environment (Fu 32 
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et al. 2021; Houlahan et al. 2000). Currently, habitat degradation or loss, illegal capture, and 33 

environmental pollution are the most serious threats to amphibians in China (Jiang et al. 2016). In 34 

this context, it is particularly important to study the genetic diversity of amphibians and determine 35 

their spatial distribution patterns for amphibian conservation (Fu et al. 2021). The genetic variation 36 

in the genus Rana has received extensive attention. However, there are few studies on the genetic 37 

diversity of individual species (Chen et al. 2022; Kim et al. 1999; Zhan et al. 2009; Zhou et al. 38 

2012). R. hanluica is an endemic species in China that is largely distributed in the hills and 39 

mountains south of the Yangtze River (Jiang et al. 2021; Shen et al. 2007). Studies on this species 40 

have generally focused on species validity (Wang et al. 2009) and population ecology (Xia et al. 41 

2021; Xia et al. 2022). It is necessary to determine the status of the genetic diversity of this species 42 

to provide more scientifically based guidance for the rational formulation of conservation and 43 

management measures. 44 

Mitochondrial DNA (mtDNA) has unique features, including maternal inheritance and lack of 45 

recombination, that provide significant advantages in analyzing the evolutionary history and 46 

phylogenetic status of amphibians (Wilkinson et al. 1996). The cytochrome b (cytb) sequence in 47 

mtDNA is commonly used in molecular research and has been widely applied in the evolutionary 48 

analysis of amphibians. However, the evolutionary information from mtDNA cannot fully represent 49 

the evolutionary history of both parents. Therefore, nuclear DNA (nuDNA) must be used in 50 

combination with mtDNA to comprehensively explore genetic diversity and population genetic 51 

structure (Behura 2006). The recombinase activating 2 protein (rag2) gene in nuDNA, which 52 

belongs to the family of recombination activating genes (rags), plays a crucial role in 53 
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vertebrate-specific immune responses and has been frequently used in phylogenetic studies when 54 

combined with mtDNA (Agrawal et al. 1998). 55 

In this study, we analyzed the genetic diversity of R. hanluica by collecting samples within its 56 

known distribution range and using mtDNA and nuDNA. We conducted this study in four aspects: 57 

(1) analysis of the genetic diversity of R. hanluica based on DNA sequences; (2) understanding the 58 

genetic structure of populations by constructing phylogenetic analysis and haplotype networks; (3) 59 

determination of the degree of genetic variation among R. hanluica populations by estimating 60 

genetic differentiation and gene flow; and (4) exploration of the historical demography of R. 61 

hanluica populations using neutrality tests and mismatch distribution. 62 

Methods 63 

Sampling 64 

A total of 162 individuals from 19 localities covering nearly the entire range of R. hanluica 65 

were collected between 2019 and 2021 (Figure 1 and Table S1). These samples were divided into 66 

six groups based on mountain ranges (Table S1). A small piece of muscle tissue or liver tissue was 67 

clipped and stored in 95% ethanol. Voucher specimens for populations were deposited in the 68 

Zoology Specimen Room, Institute of Wildlife Conservation, Central South University of Forestry 69 

and Technology (China); College of Ecology, Lishui University (China); College of Life Sciences, 70 

Guizhou Normal University (China); the Museum of Biology, Sun Yat-sen University (China); and 71 

College of Life Science, Guizhou University (China). 72 
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 73 

Figure 1. Sampling sites of R. hanluica 74 

DNA extraction and sequencing 75 

Genomic DNA was extracted using a Tsingke TSP201-200 (https://www.tsingke.net) DNA 76 

extraction kit. A partial fragment of the mitochondrial gene encoding cytb was amplified for 162 77 

individuals, and partial sequences of the nuclear gene encoding rag2 were amplified for 143 78 

individuals. Primers used for cytb were Cytbs and Cytba following the study of Zhou et al. (2012) 79 

and L14850 and H15502 following the study of Tanaka-Ueno et al. (1998), and for rag2, primers 80 

used were RAG2s and RAG2a following the study of Zhou et al. (2012). Standard polymerase 81 

chain reactions (PCR) were performed in a 50 μl volume with the following cycling conditions: an 82 

initial denaturing step at 98°C for 2 min, 30 cycles of denaturing at 98°C for 10 s, annealing at 50–83 

57°C for 10 s, and extension at 72°C for 10 s, followed by a final extension step of 72°C for 5 min. 84 
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PCR purification and sequencing were performed by Biomarker Technologies Co. Ltd (China). 85 

Sequence analyses and haplotype network 86 

For molecular analyses, we also retrieved cytb and rag2 sequences of other R. hanluica 87 

individuals from GenBank (https://www.ncbi.nlm.nih.gov/) (Table 1) (Yan et al. 2011; Yuan et al. 88 

2016; Zhou et al. 2017). All sequences were checked and assembled using the SeqMan II program 89 

included in the LASERGENE 7.0 software package (DNAStR Inc., Madison, WI, USA). Sequence 90 

alignment was performed using MEGA v.7.0 with default settings (Kumar et al. 2016). The 91 

concatenation of the two genes was conducted in PhyloSuite v.1.2.2 (Zhang et al. 2020). The 92 

nucleotide diversity (π) and haplotype diversity (hd) of each group were analyzed using DnaSP v.5 93 

(Librado and Rozas 2009). To infer allelic phases from polymorphic sites in the nuDNA, the 94 

program PHASE v.2.1 (Stephens et al. 2001) was used, with input files created using seqPHASE 95 

(Flot 2010). Haplotype networks under the median-joining algorithm were produced to display 96 

intraspecific variation for R. hanluica for the cytb and rag2 using PopART v.1.7 (Bandelt et al. 97 

1999; Leigh and Bryant 2015). 98 

 99 

Table 1. Localities, voucher information, and GenBank numbers of the sequences downloaded from NCBI 100 

No. Species Voucher Locality 
GenBank No. 

References 
cytb  rag2  

1 R. chensinensis KIZ-RD05SHX01 Huxian, Shaanxi, China KX269333 KX269626 Yuan[19] 

2 R. dybowskii tissue ID: MSUZP-IVM-1d Khasanskii District, Primorye region, Russia KX269335 KX269628 Yuan[19] 

3 

R. hanluica 

KIZ03477 Mt. Mangshan, Hunan, China JF939135 — Yan[20] 

4 KIZYPX1172 Mt. Yangmingshan, Hunan, China JF939136 — Yan[20] 

5 KIZYPX1177 Mt. Yangmingshan, Hunan, China JF939137 — Yan[20] 

6 KIZYPX1182 Mt. Yangmingshan, Hunan, China JF939139 — Yan[20] 

7 KIZHuN024 Jiemuxi National Nature Reserve, Hunan, China JF939114 — Yan[20] 

8 KIZHuN01 Jiemuxi National Nature Reserve, Hunan, China JF939113 — Yan[20] 

9 KIZHuN06 Jiemuxi National Nature Reserve, Hunan, China JF939115 — Yan[20] 

10 KIZGX84 Mt. Maoer'shan, Guangxi, China JF939112 — Yan[20] 

11 KIZYPX10654 Mt. Maoer'shan, Guangxi, China JF939123 — Yan[20] 

12 KIZYPX10656 Mt. Maoer'shan, Guangxi, China JF939124 — Yan[20] 
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No. Species Voucher Locality 
GenBank No. 

References 
cytb  rag2  

13 SYNU07100490 Mt. Yangmingshan, Hunan, China KF020629 KJ371968 Zhou[21] 

14 KIZGX07112915 Mt. Maoer'shan, Guangxi, China KX269338 KX269631 Yuan[19] 

 101 

Phylogenetic analyses 102 

Phylogenetic analyses of the cytb and rag2 sequences were conducted using Bayesian 103 

inference (BI). Two species (R. chensinensis and R. dybowskii) were selected as outgroups. BI 104 

analyses were performed using MrBayes 3.2.7 (Ronquist et al. 2012). The best-fitting substitution 105 

model for each gene was selected using ModelFinder (Kalyaanamoorthy et al. 2017). The Bayesian 106 

information criterion was used to select a model because of its high accuracy and precision. Two 107 

independent runs were conducted in the BI analysis using four Markov Chain Monte Carlo chains 108 

starting with a random tree; each chain was run for 1,000,000 generations and sampled every 100 109 

generations. The first 25% of the samples were discarded as a burn-in, resulting in a potential scale 110 

reduction factor (PSRF) of < 0.01. Nodes in the trees were considered well supported when 111 

Bayesian posterior probabilities (BPP) were ≥ 0.95. 112 

Genetic variation 113 

A total of 145 sequences of concatenated cytb and rag2 with a total length of 1062 bp were 114 

used to analyze genetic variation and historical demography. Analysis of molecular variance 115 

(AMOVA) was completed using Arlequin v.3.11 to detect the partitions of genetic diversity within 116 

and among populations (Excoffier and Lischer 2010). The pairwise fixation index (Fst) values were 117 

estimated to measure the genetic differentiation between the groups using Arlequin v.3.11. Gene 118 

flow (Nm) was calculated according to the formula: Nm = (1 − Fst)/4Fst, ignoring Fst values that 119 

were not statistically significant (Slatkin and Barton 1989). 120 
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Historical demography 121 

Neutrality tests and Mismatch distributions were calculated using Arlequin v.3.11 (Excoffier 122 

and Lischer 2010). Multimodal distributions are expected in populations at demographic 123 

equilibrium or in decline, and unimodal distributions are anticipated in populations having 124 

experienced a recent demographic expansion (Rogers and Harpending 1992). The expected 125 

distributions were generated by bootstrap resampling (1000 replicates) using a model of sudden 126 

demographic expansion. The sum of squared deviations (SSD) and raggedness index (RI) between 127 

the observed and the expected mismatch were used as test statistics. P-values were calculated as 128 

the probability of simulations producing a greater value than the observed value. 129 

The time of population expansion (t, time in generations) was calculated through the 130 

relationships  = 2ut, where  is the mode of the mismatch distribution; u is the substitution rate per 131 

generation for the whole sequence under study considering that u =  k, where k is the number of 132 

nucleotides (Rogers and Harpending 1992). Due to the lack of fossil records, we adopted a 133 

substitution rate of the cytb gene in most amphibians ( = 0.65‒1.00% per Ma) (Li et al. 2015). 134 

Results 135 

Sequence information 136 

We obtained cytb sequences for 174 individuals of R. hanluica, comprising 162 that were 137 

newly sequenced and 12 retrieved from previous studies (Yan et al. 2011; Yuan et al. 2016; Zhou et 138 

al. 2017). Rag2 sequences for 145 individuals of R. hanluica were obtained from a subset of 143 139 

newly obtained sequences and two sequences retrieved from previous studies (Yuan et al. 2016; 140 

Zhou et al. 2017). All newly obtained sequences were deposited in GenBank (Table S1). 141 
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Genetic diversity 142 

Cytb sequences consisted of 635 base pairs (bp), of which 35 positions exhibited variation and 143 

14 were parsimony informative, resulting in 20 haplotypes for the ingroup (Table 2). For cytb, the 144 

overall π value was 0.00215, and the hd value was 0.653. For individual populations, the LXS 145 

group showed the highest genetic diversity (π = 0.00337 and hd = 0.827), while WYS had the 146 

lowest (π = 0.00036 and hd = 0.216). The NL group had seven endemic haplotypes, followed by 147 

the LXS, WLS, WYS, and HS groups, while the XFS group had no endemic haplotypes. 148 

Rag2 sequences consisted of 429 bp containing 15 variable sites and nine 149 

parsimony-informative sites for a total of 15 haplotypes (Table 2). The overall π value was 0.00254, 150 

and the hd value was 0.659. The LXS group showed the highest genetic diversity (π = 0.00310 and 151 

hd = 0.779), while WYS had the lowest level (π = 0.00052 and hd = 0.209). The HS group only 152 

contained one haplotype, indicating no nucleotide or hd. Among the endemic haplotypes, the NL 153 

group had the largest number, followed by LXS, WLS, WYS, HS, and XFS groups that did not 154 

have any endemic haplotypes. 155 

Table 2. Genetic diversity parameters and haplotype distribution of R. hanluica 156 

Groups 
Sample 

size 
Genes 

Number of 

haplotype 

Distribution  

of haplotypes 

Nucleotide 

 diversity 

Haplotype 

 diversity 

HS 

5 Cytb 2 C-H1,H2 0.00131 0.400 

5 Rag2 1 R-H1 0.00000 0.000 

LXS 

25 Cytb 7 C-H3,H4,H5,H6,H12,H15,H18 0.00337 0.827 

23 Rag2 7 R-H1,H2,H4,H5,H6,H14,H15 0.00310 0.779 

NL 74 Cytb 11 
C-H1,H3,H4,H8,H9,H10,H11,H12,H

13,H14,H19 
0.00295 0.743 
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Groups 
Sample 

size 
Genes 

Number of 

haplotype 

Distribution  

of haplotypes 

Nucleotide 

 diversity 

Haplotype 

 diversity 

55 Rag2 8 R-H1,H2,H5,H7,H8,H10,H11,H12 0.00257 0.681 

WLS 

29 Cytb 4 C-H3,H15,H16,H17 0.00065 0.259 

23 Rag2 3 R-H1,H3,H13 0.00248 0.245 

XFS 

23 Cytb 1 C-H3 0.00000 0.000 

21 Rag2 2 R-H1,H2 0.00063 0.257 

WYS 

18 Cytb 3 C-H3,H7,H20 0.00036 0.216 

18 Rag2 2 R-H2,H9 0.00052 0.209 

ALL 

174 Cytb 20 C-H1,H2,H3…H18,H19,H20 0.00215 0.653 

145 Rag2 15 R-H1,H2,H3…H13,H14,H15 0.00254 0.659 

Phylogeny and haplotype network 157 

For cytb, the topology of the phylogenetic tree showed inconsistencies with the geographic 158 

structure (Figure 2A). Samples of R. hanluica from different localities were included in Clade A, 159 

showing high support (BPP = 1). The haplotype network constructed based on the cytb sequence 160 

was consistent with the phylogenetic analysis (Figure 3A). The C-H3 haplotype had the highest 161 

frequency and was in the central position, and there was almost no intersection between the 162 

endemic haplotypes (C-H8, C-H9, C-H11, and C-H14) of the NL group and other haplotypes. 163 

There may be a certain number of missing haplotypes in this population. 164 

BI analyses of rag2 data supported the results of cytb (Figure 2B). Due to the limited number 165 

of potential parsimony-informative sites, rag2 sequences did not form geographic units but rather 166 

were nested together. The haplotype network constructed based on the rag2 sequences showed that 167 
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the population of R. hanluica presented a network structure, with the highest frequency of R-H1 168 

and R-H2 in the center of the entire population, from which the largest number of differentiated 169 

haplotypes was derived (Figure 3B). 170 

 171 

Figure 2. Phylogenetic tree of R. hanluica haplotypes from Bayesian analysis. (A): cytb. (B): rag2. Numbers 172 

beside nodes are BPP, and values above 0.95 are shown. 173 

 174 

Figure 3. Haplotype network of R. hanluica based on Median-joining method. (A): cytb. (B): rag2. The area of a 175 

circle represents numbers of individuals sharing a haplotype and black dotes represent missing haplotypes. 176 
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Genetic variation 177 

From the AMOVA, the genetic variation within the groups accounted for 78.07%, while the 178 

variation among groups accounted for only 21.93% (Table 3). For the concatenated gene, 15 Fst 179 

values were obtained, of which 14 were statistically significant (Table 4). The value of Fst between 180 

the HS and WYS groups was the largest (0.7429), while Fst between the NL and LXS groups was 181 

the lowest (0.0856). The results for gene flow were consistent with those of genetic differentiation 182 

(Table 4), with the lowest level of gene flow observed between the HS and WYS groups (0.0865) 183 

and the highest level of gene flow observed between the NL and LXS groups (2.6695). 184 

Table 3. Analysis of molecular variances among R. hanluica groups 185 

Gene Source of variation 
Degree of 

freedom 

Sum of 

squares 

Variance 

components 

Percentage of 

variation 

Fixation 

index 

concatena

ted gene 

Among populations 5 36.533 0.28277 21.93 
0.21928** 

Within populations 139 139.943 1.00678 78.07 

Note：**extremely significant, P<0.01 186 

 187 

Table 4. Gene flow (below the diagonal) and genetic differentiation (above the diagonal) among R. hanluica 188 

groups 189 

Groups HS LXS NL WLS XFS WYS 

HS — 0.3274* 0.2156* 0.2421* 0.4149* 0.7429* 

LXS 0.5135 — 0.0856* 0.2794* 0.3336* 0.1729* 

NL 0.9094 2.6695 — 0.1595* 0.1802* 0.1890* 

WLS 0.7826 0.6446 1.3176 — －0.0080 0.4502* 

XFS 0.3526 0.4994 1.1377 — — 0.6301* 

WYS 0.0865 1.1957 1.0726 0.3053 0.1468 — 

Note: *significant, P < 0.05 190 

 191 
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Historical demography 192 

In the neutrality tests, the value of Tajima's D of the LXS group was significantly negative 193 

(−1.5616, P < 0.05), and Fu's FS values for the LXS, NL, and WYS groups were all significantly 194 

negative (−9.1281, P < 0.05; −9.9068, P < 0.05; and −2.0034, P < 0.05, respectively) (Table 5). 195 

The mismatch distribution (Figure 4) showed that the HS, LXS, and NL groups all exhibited a 196 

unimodal pattern, and the SSD and RI did not reach significant levels (SSD = 0.0129, PSSD > 0.05, 197 

RI = 0.1200, PRI > 0.05; SSD = 0.0034, PSSD > 0.05, RI = 0.0389, PRI > 0.05; SSD = 0.0066, PSSD > 198 

0.05, RI = 0.0348, PRI > 0.05) (Table 5). Mismatch distribution analyses accepted the hypothesis of 199 

sudden expansion. The  values of the LXS and NL groups in the mismatch distribution were 1.500 200 

and 1.189, respectively. From this, the expansion times of the LXS and NL groups were estimated 201 

to be 0.365–0.156 Ma and 0.388–0.169 Ma, respectively. 202 

Table 5. Neutrality test and mismatch distribution parameters for the R. hanluica groups 203 

Groups 
Neutrality test Mismatch distribution 

Tajima's D test Tajima's D p-value Fu's FS test FS p-value SSD PSSD RI PRI 

HS －0.1748 0.48 0.0607 0.30 0.0129 0.86 0.1200 0.84 

LXS －1.5616* 0.04 －9.1281* 0.00 0.0034 0.51 0.0389 0.64 

NL 0.1066 0.61 －9.9068* 0.00 0.0066 0.16 0.0348 0.53 

XFS 0.8930 0.79 －0.5486 0.30 0.0281 0.10 0.2047 0.06 

WLS －1.4797 0.07 0.4404 0.63 0.0301 0.05 0.1371 0.20 

WYS －1.4014 0.07 －2.0034* 0.01 0.0055 0.54 0.1675 0.45 

Note:*significant, P < 0.05 204 

 205 
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 206 
Figure 4. Mismatch distribution of R. hanluica groups. (A) HS group; (B) LXS group; (C) NL group; (D) WLS 207 

group; (E) WYS group; (F) XFS group. 208 

 209 

Discussion 210 

Genetic diversity is the foundation of a species' ability to adapt to a changing environment and 211 

thereby maintain a viable population (Allentoft and O’Brien 2010). Due to different selection 212 

pressures, mitochondrial genes and nuclear genes have different rates of evolution and therefore 213 

provide different genetic information. The dataset using concatenated mtDNA and nuDNA 214 

provides a theoretical basis for genetic research. Cytb and rag2 are protein-coding genes that 215 

contain important genetic information, and they have been widely used in analyses of systematics 216 

and genetic variation (Yuan et al. 2016). The frequently occurring and widely distributed shared 217 
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haplotypes in a population are often considered ancestral haplotypes, and the areas that contain 218 

ancestral haplotypes with the most abundant genetic diversity may be biological refugia (Crandall 219 

and Templeton 1993; Hewitt 2000). The haplotype distribution showed that both the C-H3 and 220 

R-H1 haplotypes were ancestral haplotypes, and the NL population not only contained the ancestral 221 

haplotypes but also had the greatest number of unique haplotypes, indicating that the Nanling 222 

Mountains may be a biological refugium for R. hanluica. Multiple studies have also confirmed that 223 

the Nanling Mountains in China have a high level of species diversity and harbor a large number of 224 

biological species (Li et al. 2015; Lyu et al. 2020; Tian et al. 2018). In addition, the absence of 225 

shared haplotypes between the HS and WYS group indicates that there may be some restrictions on 226 

gene flow between the two populations. However, due to the limited sample size for the Hengshan 227 

Mountains, increasing the sample size is necessary for further comparison and analysis of the 228 

reasons for the differences. 229 

Hd and π are two important indicators of the level of genetic variation within a population 230 

(Brooks et al. 2015). According to Grant and Bowen (1998), the entire population of R. hanluica 231 

exhibits high hd and low π (hd > 0.5, π < 0.005), indicating rapid population expansion and 232 

mutation after experiencing a bottleneck. Similar genetic diversity patterns have been reported in 233 

other species of Rana, including R. kukunoris (Zhou et al. 2012), R. kunyuensis (Cui 2018), and R. 234 

dybowskii (Li 2014). In terms of mountain grouping, the π values of all populations of R. hanluica 235 

were below 0.005, and only two groups (LXS and NL) showed high hd (> 0.5). This result suggests 236 

that the entire population of R. hanluica may have experienced a genetic bottleneck and that the 237 

LXS and NL populations underwent rapid expansion and accumulated many mutations after the 238 
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bottleneck effect. 239 

The phylogenetic analysis was consistent with the haplotype network. These results suggested 240 

that the genetic structure of R. hanluica did not exhibit clear geographic patterns, and the spatial 241 

distribution of genetic diversity conformed to the "allopatric distribution, spatial isolation, and 242 

lineage continuity" model proposed by Avise et al. (1987). Similar patterns have also been 243 

observed in other amphibians such as R. chensinensis (Zhan et al. 2009) and Bufo gargarizans (Wu 244 

and Hu 2009). 245 

The results from mtDNA and nuDNA were not entirely consistent. The haplotype network 246 

based on the cytb gene showed a star-like structure, and some haplotypes were not detected in the 247 

NL group, indicating a recent population expansion. However, the haplotype network based on the 248 

rag2 gene showed a reticulate distribution, with multiple connections between haplotypes from 249 

different populations, suggesting high levels of gene flow among R. hanluica groups. This may be 250 

related to the different rates of evolution of these two genes (Brown et al. 1979). 251 

Genetic variation is an important factor in the formation of new species, and determining the 252 

genetic differentiation among populations and analyzing its causes is essential for understanding 253 

the evolutionary history of a species. Some studies suggest that when Fst < 0.05, there is almost no 254 

differentiation between populations; when 0.05 < Fst < 0.15, there is mild differentiation; when 255 

0.15 < Fst < 0.25, there is moderate differentiation; and when Fst > 0.25, there is high 256 

differentiation (Weir and Cockerham 1984). Regarding gene flow between populations, Wright 257 

(1949) believed that if Nm is < 1, genetic differentiation between populations may be detected; if 258 

Nm is > 1, higher gene flow between populations may inhibit genetic differentiation caused by 259 
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genetic drift. The Nm values between groups of R. hanluica ranged from 0.0865 to 2.6695, and the 260 

gene flow between the NL group and the other five populations, as well as between the LXS group 261 

and two groups (WYS and NL), was greater than 1, indicating that there are no barriers to gene 262 

flow between these populations. The results of the AMOVA also indicated that genetic variation 263 

primarily occurs within populations of R. hanluica. However, higher genetic differentiation 264 

(0.0856–0.7429) reflected the existence of differentiation between populations of R. hanluica, 265 

possibly due to genetic drift (Zhang et al. 2018). Previous studies have shown that the causes of 266 

genetic differentiation in amphibians in southern China are mainly geological history (Li et al. 267 

2022; Tian et al. 2018), climate fluctuations (Li et al. 2018), and sky islands (Pan et al. 2019; 268 

Shepard and Burbrink 2009). The distribution range of R. hanluica is in the middle and low 269 

altitudes, and its breeding environment is limited by stagnant waters such as ponds and paddy 270 

fields. High-altitude areas such as the Nanling and Luoxiao Mountains and large rivers such as the 271 

Xiangjiang and Ganjiang may also restrict the migration and diffusion of R. hanluica. However, the 272 

high level of gene flow and single phylogenetic branch both indicate gene exchange between 273 

populations of R. hanluica. Therefore, the authors believe that, on the one hand, these patterns may 274 

be due to the short time since the species differentiated; combined with the influence of genetic 275 

drift, the populations have not accumulated enough variation during the evolutionary process. On 276 

the other hand, multiple studies have shown that the Nanling Mountains are an important biological 277 

corridor, and after the expansion of the R. hanluica population, different subpopulations may have 278 

migrated and spread through the Nanling Mountains, resulting in secondary contact (Li et al. 2022; 279 

Li et al. 2015). 280 
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Neutrality tests and mismatch distribution analysis are commonly used to assess the historical 281 

demography of populations. A positive statistic in neutrality tests indicates the presence of a large 282 

number of alleles under neutral selection, while a significantly negative statistic suggests the 283 

existence of low-frequency alleles, reflecting population expansion and directional selection (Fu 284 

1997; Ramos-Onsins and Rozas 2002). When the population is stable for a long time, the mismatch 285 

distribution presents a multimodal form, whereas a single peak represents recent population 286 

expansion. SSD and RI are used to determine whether the observed mismatch distribution matches 287 

the expected model. A significant SSD indicates that the population does not conform to the 288 

population expansion model, whereas a small and insignificant RI value indicates that the observed 289 

values of the mismatch distribution are smoother than expected, suggesting consistency between 290 

population dynamics and in agreement with the expansion model (Harpending 1994; Slatkin and 291 

Hudson 1991). From the results of the neutrality tests and mismatch distribution analysis, only the 292 

LXS and NL groups of the six populations of R. hanluica exhibited significant and consistent 293 

expansion patterns. Furthermore, the expansion times of the LXS and NL groups were 0.365–0.156 294 

Ma and 0.388–0.169 Ma, respectively, both during the Pleistocene, which may be related to climate 295 

fluctuations during the Pleistocene. Population expansion after the ice age is a common 296 

evolutionary pattern for amphibians in China (Li et al. 2018). Although large-scale glaciers did not 297 

develop in southern China during the Quaternary, the climate oscillations during the ice age still 298 

had an effect on the distribution and evolution of amphibians in southern China (Jiang et al. 2022). 299 

For example, after the climate warmed following the ice age, Leptobrachium liui that inhabited 300 

refugia underwent expansion, leading to secondary contact among populations (Li et al. 2022). 301 
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Conclusions 302 

In summary, the genetic diversity of the entire population of R. hanluica was not very high, 303 

while the genetic diversity varied significantly among populations, a pattern that may indicate local 304 

population extinctions. The results suggested that the protection of populations with a high number 305 

of unique haplotypes, such as the NL and LXS groups, should be given high priority. Meanwhile, 306 

as the Nanling Mountains serve as an important corridor for gene flow among populations, they 307 

should be given special attention in conservation efforts. Additionally, as this study only used two 308 

genes and thus reflected limited evolutionary information, and some populations had small sample 309 

sizes, the results may be subject to error. It is recommended that future studies should increase the 310 

number and types of molecular markers and conduct in-depth social surveys and population 311 

ecology studies to accumulate more basic data for the conservation of the genetic resources of R. 312 

hanluica. At the same time, residents should be encouraged to participate in wildlife conservation 313 

education, and protective artificial breeding should be promoted to preserve high-quality genetic 314 

resources and prevent the loss of genetic diversity in this species. 315 
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