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Abstract 22 

Ecological niche models (ENMs) are a powerful tool to predict the spread of invasive 23 

alien species (IAS) and support the implementation of actions aiming to reduce the 24 
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impact of biological invasions. While calibrating ENMs with distribution data from 25 

species' native ranges can underestimate the invasion potential due to possible niche 26 

shifts, using distribution data combining species’ native and invasive ranges may 27 

overestimate the invasion potential due to a reduced fitness and environmental 28 

tolerance of species in invaded ranges. An alternative may be using the increasingly 29 

available distribution data of IAS as they spread their invaded ranges, to iteratively 30 

forecast invasions as they unfold. However, while this approach accounts for possible 31 

niche shifts, it may also underestimate the species’ potential range, particularly at the 32 

early stages of the invasion when the most suitable conditions may not yet be 33 

represented in the distribution range data set. Here, we evaluate the capacity of ENMs 34 

to forecast the distribution of IAS based on distribution data on invaded ranges as 35 

these data become available. We further use dispersion models to assess the 36 

expansion process using the predicted potential distributions. Specifically, we used 37 

the common waxbill (Estrilda astrild) in the Iberia Peninsula as a model system, 38 

building ENMs with distribution records for each decade from 1960 to 2019 and yearly 39 

bioclimatic variables, to forecast the species potential range in the coming decades. 40 

Then, we analysed the performance of the models for each decade in forecasting the 41 

species observed range expansion in the following decades and evaluated how the 42 

number of distribution records determined the quality of the forecasts. Finally, we 43 

performed dispersal estimates (based on species traits, topography, climate and land 44 

cover) to analyse the prediction capacity of models as their uncertainty may be 45 

reduced when projecting them to the next decades. Our results show that invasion-46 

only ENMs successfully forecasted the species’ range expansion over three decades 47 

after invasion, while dispersion models were not important in forecasting common 48 

waxbill expansion. Our study highlights the importance of constantly monitoring alien 49 
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species, suggesting that iterative updating of ENMs with observed distribution data 50 

may accurately forecast the range expansion of alien species. 51 

 52 
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 56 

Introduction 57 

Biological invasions are among the most worrisome environmental problems of 58 

modern times (Díaz et al. 2019). The spread of invasive alien species (IAS) across the 59 

globe has been responsible for population declines of native species, changes in 60 

community composition (Bellar et al. 2016, 2021), alterations of ecosystem processes 61 

and functioning (Ehrenfeld 2010), disruptions of socio-economic activities (Diagne et 62 

al. 2021) and public health concerns (e.g. Naeem et al. 2009; Fournier et al. 2019; 63 

Ogden et al. 2019). In a globalised world, the number of IAS is expected to increase 64 

(Seebens et al. 2021) as well as their potential impacts (Fournier et al. 2019; Essl et 65 

al. 2020), promoted by increasing international wildlife trade and global changes 66 

(Scheffers et al. 2019; Naimi et al. 2022). As a response to this urgency, several 67 

international regulations and mechanisms have been implemented in the last decades 68 

aiming at preventing the introduction and spread of IAS. This includes the 69 

establishment of a legal framework with specific legislation, as the EU Regulation 70 

1143/2014 on IAS (Regulation EU 2014). However, the successful implementation of 71 

these mechanisms requires the anticipation of new invasion areas which have been 72 

hampered by the lack of monitoring data on species distributions at adequate spatial 73 

and temporal resolutions. There is thus a need for a continuing effort to develop 74 
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approaches, which may include ecological modelling tools, to accurately predict IAS 75 

expansion, in order to reduce both ecological and socio-economic impacts of IAS. 76 

 77 

Modelling and projecting the realised niche of IAS in the geographical space allows 78 

for identifying the areas at risk of invasion (Jiménez-Valverde et al. 2011; Guisan et 79 

al. 2014). The realised niche is part of the fundamental niche, i.e. the abiotic 80 

environmental space where a species can maintain a viable population and persist 81 

over time without immigration, which is then further limited by biotic interactions, 82 

dispersal capacity, or historical aspects (Soberón & Peterson 2005). This assessment 83 

is often done through correlative ecological niche modelling (ENM) (Peterson and 84 

Vieglais 2001; Jiménez-Valverde et al. 2008; Jeschke and Strayer 2008; Capinha and 85 

Anastácio 2011; Venette 2015; Sillero et al. 2021), which quantify species-86 

environment relationships based on observed patterns of species distributions and 87 

environmental predictors (Franklin 2010; Peterson et al. 2011; Guisan et al. 2019; 88 

Sillero et al 2021). A procedure of key practical importance concerns the geographical 89 

areas used to calibrate the ENMs. For IAS, these models can be calibrated using 90 

distribution data from the species’ native range (Peterson et al. 2003), thus assuming 91 

that the native species distribution represents the entire suite of suitable environments 92 

(i.e., distributional equilibrium; Guisan and Zimmermann 2000; Araújo and Pearson 93 

2005; Araújo et al. 2005), or at least, all suitable habitats where the species is able to 94 

disperse (i.e. pseudo-equilibrium; Anderson and Raza 2010; Sillero et al. 2021). 95 

However, species’ realised niches may shift in new areas or time periods (i.e. niche 96 

shift sensu Guisan et al. 2014), which implies that IAS will not be necessarily 97 

circumscribed to areas that are environmental analogues to their native ranges 98 

(Peterson 2003; Jeschke and Strayer 2008; Elith and Leathwick 2009). This is 99 
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because, when the environmental conditions change, or the species arrives in a new 100 

area, the drivers limiting the species’ realised niche can change (e.g. the new area 101 

lacks a competing species or the species can now disperse to new habitats), enabling 102 

the exploration of new areas inside its fundamental niche (Sillero et al. 2022). Some 103 

IAS have shown marked climatic niche shifts during invasion (i.e., a divergence 104 

between climatic conditions in native and alien ranges; sensu Broennimann et al. 105 

2009), likely driven by adaptive changes enabling species to endure conditions that 106 

were previously unsuitable (Blossey and Notzold et al. 1995),  i.e., shift in its realised 107 

climatic niche (Sillero et al 2022). 108 

 109 

Considering the potential for realised niche shifts, previous works have recommended 110 

calibrating ENMs using distribution data of IAS in both native and invasive ranges 111 

(Fitzpatrick et al. 2006; Broennimann 2007; Broennimann and Guisan 2007; Urban et 112 

al. 2007; Beaumont et al. 2009; Pili et al. 2020). While this approach potentially 113 

captures niche shifts as they emerge in invaded areas, the combination of native and 114 

invasive distribution data also raises relevant practical and conceptual issues. The 115 

existence of higher quality distribution data for the species in one range versus the 116 

other (Vanette et al. 2010), may require the reduction of the spatial resolution leading 117 

to information loss when merging both dataframes (Jarnevich et al. 2022). Although 118 

spatial downscaling can be employed to enable modeling at a coarse resolution and 119 

projection onto the Schuyler area at a higher resolution, this approach introduces 120 

uncertainty due to assumptions regarding the consistent relationships between coarse 121 

and fine-resolution data within the area, on the employed methods (Key et al. 2012). 122 

On the other hand, and perhaps more importantly, the use of native distribution data 123 

may overestimate invasion ranges, as there are circumstances where invasive species 124 
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may not be able to colonise similar environmental conditions to their native areas, due 125 

to the presence of novel negative interspecific interactions (e.g., predators, parasites, 126 

competitors) (Sih et al. 2010; Dostal et al. 2013; Carthley and Banks 2018), genetic 127 

bottlenecks and founder effects, driving a reduction in the species environmental 128 

tolerances, and species dispersal capacity, that cannot be included directly in the 129 

native model, which will provide the maximum extent of the species distribution in the 130 

invasive range if the environmental conditions are the same (Jarnevich et al. 2022). 131 

 132 

Invasion monitoring efforts are producing high-quality spatiotemporal data of spread 133 

for a large number of IAS in invaded ranges (e.g. Groom et al. 2019, GBIF - the Global 134 

Biodiversity Information Facility, https://www.gbif.org/). Hence, given the impossibility 135 

of reconstructing the invasive process over time, an alternative is to use 136 

spatiotemporal invasion data to iteratively forecast invasions as they unfold. By 137 

restricting the calibration of ENMs to the region being invaded, the issues raised by 138 

using native distribution data are overcome. However, any approach relying only on 139 

invasive distribution data for calibrating ENMs must acknowledge the likely 140 

underestimation of species’ potential ranges, particularly at early stages of invasion, 141 

when most suitable conditions may not yet be represented in the distribution range 142 

data set. In this context, it is pivotal to clarify the data requirements ensuring accurate 143 

ENM for IAS, and particularly, the extent to which invasion-only distribution data can 144 

be used to accurately predict the expansion of IAS. Modelling the invasive over time 145 

will provide information about the routes used by the species during the expansion 146 

process. 147 

 148 
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Here we evaluate the capacity of iterative calibration of ENM models based on 149 

invasion-only distribution data for predicting the invasion potential and analysing the 150 

expansion process of IAS. We specifically address how much data do we need to 151 

predict IAS expansion range (i.e. the length of the time series of the species 152 

distribution data in the invaded range since establishment) required to provide an 153 

informative prediction of the species' invasion potential. We also assessed the 154 

importance of accounting for the dispersal capacity of species to predict its expansion. 155 

For this, we considered one of the most studied alien bird species, established in 156 

different environments and biogeographic regions worldwide: the afro-tropical 157 

common waxbill (Estrilda astrild). Using a unique high-quality database on spatial 158 

dispersion of this species through the Iberian Peninsula over six decades (Reino and 159 

Silva 1998; Silva et al. 2002; Reino 2005; Sullivan et al. 2012), we applied a 160 

backcasting approach, fitting each ENM using distribution data available until the end 161 

of each decade and using the resulting model to project the distribution for the next 162 

decade. Then, we analysed how the number of observation records used in each ENM 163 

related to the performance of the forecasts of species dispersal over time. Finally, 164 

because ENMs do not account for species’ dispersal per se (Sillero et al. 2021; Sillero 165 

et al. 2022), we also implemented a species dispersal model over time considering a 166 

comprehensive set of species traits and climatic and landscape variables (Engler et 167 

al. 2012). We discuss these results in light of the amount of distribution data (i.e. length 168 

of the time series since establishment) needed for invasion-only ENMs and dispersal 169 

analyses to predict the invasion potential of IAS and iteratively forecast future 170 

invasions. 171 

 172 

 173 
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Material and Methods 174 

Study area 175 

The Iberian Peninsula (southwestern Europe), covers an area of 582,860 km2 and 176 

mainly includes the continental territories of Spain and Portugal (Fig. 1). It is bordered 177 

to the southeast and east by the Mediterranean Sea and to the south, north and west 178 

by the Atlantic Ocean, and is separated from the rest of Europe by the Pyrenees in the 179 

northeast. The Peninsula has a high diversity of climatic conditions, influenced by both 180 

the Atlantic Ocean and the Mediterranean Sea, with a longitudinal gradient of 181 

precipitation and a latitudinal gradient of precipitation and temperature (Capel 1981). 182 

 183 

Common waxbill distribution data 184 

We gathered historical data on the common waxbill expansion in the Iberia Peninsula 185 

since its first introduction in the 1960s. For this, we obtained presence data of the 186 

species in the continental territories from Sullivan et al. (2012), including the national 187 

and regional breeding bird atlases from Portugal and Spain, updated with all-year-188 

round information from the eBird database (eBird 2019). Following data compilation, 189 

we mapped all records into a 10x10 UTM km grid of Portugal and Spain, keeping only 190 

the oldest record for each cell (Fig. 1, Suppl. material 1). We then aggregated the 191 

data by decade, ranging from the first reported record to the present time. Therefore, 192 

we represented the species expansion along six decades: 1960-1969 (8 cells), 1970-193 

1979 (47 cells), 1980-1989 (97 cells), 1990-1999 (157 cells), 2000-2010 (369 cells) 194 

and 2011-2019 (330 cells) (Fig. 1).  195 
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 196 
Figure 1. Location of the study area in the Iberia Peninsula, southwest Europe (upper 197 

panel) and distribution of the common waxbill Estrilda astrild from 1960 to 2019 198 

(bottom panel). Black dots: point presences. Circles with dots: points of introduction. 199 

 200 

 201 
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Environmental data 202 

We obtained yearly climate data for the temporal period covered by the distribution 203 

data from the EuMedClim Database (http://gentree.data.inra.fr/climate/; Fréjaville and 204 

Garzón 2018). EuMedClim provides yearly climate data between 1901–2014 at 1 km 205 

resolution for Europe and the Mediterranean Basin. These data comprise 21 variables: 206 

seven bioclimatic variables available from Worldclim (https://www.worldclim.org/; bio1 207 

- annual mean temperature; bio2 - mean diurnal temperature range; bio5 - Maximal 208 

temperature of the warmest month; bio6 - minimal temperature of the coldest month; 209 

bio12 - annual precipitation; bio13 - precipitation of the wettest month; bio14 - 210 

precipitation of the driest month); and 14 variables derived from monthly temperature 211 

and precipitation data from WorldClim: seasonal temperature and precipitation (winter, 212 

spring, summer, and autumn), potential evapotranspiration (PET, annual, minimal 213 

monthly, and maximal monthly) and water balance (precipitation minus PET). From 214 

these variables, to minimize cross-correlation between variables, we kept four 215 

variables that had an absolute value of Pearson correlation coefficient < 0.7 (Fig. 2): 216 

mean diurnal temperature range (bio2), minimal temperature of the coldest month 217 

(bio6), precipitation of the wettest month (bio13) and precipitation of the driest month 218 

(bio14). 219 

 220 

Statistical analysis 221 

Ecological Niche Models 222 

We estimated the realised niche of the species (sensu Sillero 2011) for each decade 223 

represented in our data (1960-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2010 224 

and 2011-2019). For that purpose, we fitted a model using species distribution data 225 

from that specific decade only, i.e., not cumulatively (Table 1). Then, we projected the 226 
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realised niche models for each decade to the following decades (Table 1). For 227 

example, we used the model calibrated with data from the first decade (1960-1969) to 228 

project the species' potential distribution in each of the next decades, i.e., 1970-1979, 229 

1980-1989, 1990-1999, 2000-2010 and 2011-2019. 230 

 231 

 232 
 233 

Figure 2. Bioclimatic variables (mean diurnal temperature range, ºC [bio2], minimal 234 

temperature of the coldest month, ºC [bio6], precipitation of the wettest month, mm 235 

[bio13] and precipitation of the driest month, mm [bio14]) considered in Maxent to 236 

estimate the ecological niche models. Temperature variables are multiplied by 10 to 237 

avoid decimals. 238 

 239 

 240 

 241 

 242 
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Table 1. Matrix of realised niche models (blue cells) and respective projections (yellow 243 

cells). Each row includes the model of that decade (M#), and all projections for the next 244 

decades (P#). 245 

 246 

 1960-69 1970-79 1980-89 1990-99 2000-01 2010-19 

1960-69 M1960-69 P1970-79 P1980-89 P1990-99 P2000-01 P2010-19 

1970-79  M1970-79 P1980-89 P1990-99 P2000-01 P2010-19 

1980-89   M1980-89 P1990-99 P2000-01 P2010-19 

1990-99    M1990-99 P2000-01 P2010-19 

2000-01     M2000-01 P2010-19 

2010-19      M2010-19 

 247 

We calculated realised niche models using Maxent v.3.4.4 (Phillips et al. 2006, 2017) 248 

following standard procedures (Sillero et al. 2021, Sillero & Barbosa 2021). Maxent 249 

uses presence/background data as dependent variables, where the background data 250 

represent the spectrum of environmental conditions available to the species (Phillips 251 

et al. 2009; Guillera-Arroita et al. 2014). Maxent output represents habitat suitability, 252 

ranging from 0.0 (not suitable) to 1.0 (suitable), in Cloglog format (Phillips et al. 2017). 253 

Because Maxent includes stochasticity in the training data random selection, different 254 

model runs can lead to slightly different outcomes (Phillips et al. 2006, 2017). For that 255 

reason, we here used the average of 10 distinct modelling events in order to obtain 256 

final suitability values for each decade, randomly selecting 70% of the occurrence 257 

records as training data and 30% as test data. We calculated the Maxent models with 258 

auto features, where different distribution functions are used depending on the sample 259 

size (Phillips et al. 2006, 2017). 260 

 261 

We measured model discrimination performance with the area under the curve (AUC) 262 

of the receiver operating characteristics (ROC) plots (Liu et al. 2005). The AUC 263 
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discriminates a species' model from a random model, with a value equal to or close to 264 

0.5 corresponding to an accuracy similar to that of a random model and a value of 1 265 

corresponding to a perfect discrimination accuracy. Additionally, we calculated a set 266 

of null models following the methodology by Raes and ter Steege (2007). For this, we 267 

generated 100 different datasets with the same number of random points as each 268 

dataset following a Poisson distribution. We calculated a Maxent model for each of 269 

these random datasets and obtained the AUC values of the ROC plots. Then, we 270 

compared the training AUC values of the species models with the ones calculated for 271 

the null models using the non-parametric Wilcoxon test. We calculated the null models 272 

in R 3.4.4 (R Core Team 2020) with the ‘dismo’ package (Hijmans et al. 2017). 273 

 274 

We determined the contribution of each climatic variable in explaining the species’ 275 

distribution using a jackknife resampling based on: (1) values of the training and test 276 

gain; and (2) of AUC values. The jackknife resampling comprises two steps: (1) the 277 

generation of a model with all climatic variables except one; and (2) the generation of 278 

univariate models, each using only one climatic variable. In each step, the jackknife 279 

analysis measures the change in training and test gain, and the AUC determines the 280 

importance of each variable. Using the results from each of these procedures, Maxent 281 

calculated an average percentage contribution of each climatic variable. We also 282 

calculated the permutation importance: for each environmental variable in turn, the 283 

values of that variable on training presence and background data are randomly 284 

permuted. The model is re-evaluated on the permuted data, and the resulting drop in 285 

training AUC is calculated, normalised to percentages (Phillips et al. 2006). When 286 

variables interact, the variable contributions and the permutation importances are not 287 

equally ordered, preventing individual responses for each variable. 288 
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Ecological Niche Models validation over time 289 

We further validated the ENMs for each decade and their respective projections by 290 

counting the number of presences classified as presences or as absences. We used 291 

the presence records of: 1) each decade; 2) each decade and previous decades, i.e., 292 

cumulatively; and 3) the last decade (2010-19). In each case, we calculated the 293 

percentage of presences correctly identified as presences reflecting the model's 294 

capacity to produce accurate forecasts. In the last case, we evaluated the capacity of 295 

previous models to predict the final model (2010-19). 296 

 297 

Dispersal analyses 298 

Accounting for dispersal barriers/capacity has been pointed out as important to reduce 299 

uncertainty in future projections of species distribution (Engler et al. 2012). We 300 

estimated dispersal movements over time with R package ‘MigClim’ (Engler et al. 301 

2012), a cellular automaton model that simulates the dispersal of species in the 302 

landscape. MigClim uses ENMs as indicators of landscape permeability: the higher 303 

the habitat suitability index, the higher the permeability. We applied MigClim to each 304 

decadal Maxent model and respective projections (Table 1). Therefore, Migclim 305 

modelled how the species dispersed between Maxent models, i.e. from the first model 306 

to the next projections. The MigClim model considers short-distance and long-distance 307 

dispersal events, the type of dispersion through the landscape (using a continuous or 308 

a categorical Maxent model), propagule production probability, initial maturity age, and 309 

the presence of barriers. We considered three possible scenarios: i) no dispersal 310 

barriers; ii) weak barriers (i.e. barriers that can be transposed), and iii) strong barriers 311 

(i.e. barriers that cannot be transposed).  312 

 313 
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Dispersal barriers were represented by elevation, hydrological configuration and land 314 

cover (Fig. 3). We obtained elevation data from the Shuttle Radar Topography Mission 315 

(Farr et al. 2007) at 90 m and aggregated to 10x10km cell resolution. Following the 316 

results obtained in previous studies in Iberia (e.g. Silva et al. 2002), we considered 317 

elevations higher than 800 m as barriers to dispersion. We obtained land cover from 318 

the Global land cover 2000 dataset with 250 m of spatial resolution from the European 319 

Environmental Agency (https://www.eea.europa.eu/data-and-maps/data/global-land-320 

cover-250m). We considered the land cover classes including tree cover as barriers 321 

to the dispersal, as E. astrild  is mostly associated with open habitats (Payne et al. 322 

2020, Ribeiro et al. 2020) (Suppl. material 2: table S1). We also calculated the 323 

average hierarchy of watercourses in each grid cell of 10x10 km. River hierarchy 324 

ranged from 1 to 8, with a value of 8 corresponding to large watercourses such as 325 

main rivers and 1 to small, often intermittent streams. For this variable, we considered 326 

as barriers those grid cells with a hierarchy of 1, reflecting the species’ association 327 

with permanent water courses (Ribeiro et al. 2020). The final layer of barriers 328 

corresponded to the combination (multiplication) of all barrier layers, resulting in a 329 

layer classified as 0 (without dispersal barriers) and 1 (with barriers) (Fig. 3). The 330 

parameters used in MigClim are shown in Table 2. 331 

 332 
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 333 
Figure 3. Variables (elevation, land cover, and river hierarchy) used to define the 334 

barriers to dispersal through the landscape, and the barriers used in MigClim to 335 

measure the dispersion across the landscape. Blue colour means barrier; red colour 336 

means no barrier. 337 

 338 

Results 339 

Common waxbill expansion patterns 340 

The geographic distribution of the common waxbill in the Iberia Peninsula spans most 341 

of the Iberian Atlantic coast, but also through large areas in Southern and Eastern 342 

Iberia extending to the Mediterranean coast, as far as Catalonia (Fig. 1). Although this 343 

species was initially introduced around the Lisbon region (Central Portugal), it rapidly 344 

spread in all directions. Its geographic expansion was also enhanced by more recent 345 

and independent introductions, as in Algarve (southern Portugal), Andalucia (southern 346 

Spain) and later in other regions in eastern Spain (Fig. 1). 347 
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Table 2. Parameters and their values introduced in dispersal models. 348 

 349 

Parameter Value 

Continuous mode 0 

Number of environmental change steps to perform 6 

Number of dispersal steps to perform within each environmental 
change step 

10 

Dispersal kernel: probability of colonising a directly adjacent cell 1 

Long-distance dispersal frequency 0.0001 

Minimum distance for long-distance dispersal in pixels 2 

Maximum distance for long-distance dispersal in pixels 4 

Initial maturity age of newly colonized cells 1 

Propagule production probability as a function of cell age 1 

Number of replicates 100 

Barriers 
No barriers; 

Weak; Strong 

 350 

The expansion process was faster in the Central and Northern regions of Portugal, 351 

whereas the spread in the south seemed to have been boosted by an additional 352 

introduction event (Algarve) that enabled the colonisation of Andalucia (Fig. 1). This 353 

event appears to underlie the colonisation of almost all Iberian southwestern coast, 354 

unifying the northern population - which had also started to colonise Alentejo 355 

(Portugal) from the Sado valley - with the southern population (Fig. 1). Spread 356 

eastwards was slower, and several areas remain uncolonized to the present, namely 357 

the mountainous regions of Northern and Central Spain (Fig. 1). Spanish populations 358 

have arisen from independent introductions and the expansion of Portuguese 359 

populations through the Tagus and Guadiana valleys in the Southern and Central 360 

regions, and directly from the extensive area bordered by the river Minho in Galicia 361 

(Fig. 1). 362 
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 363 

Temporal changes in ecological niche projections 364 

ENM for all decades had training and test AUC values higher than 0.8 and significantly 365 

differed from random (Table 3). For the first decade (1960-1969), the variable with 366 

higher contribution was the mean diurnal temperature range (bio2), while the minimum 367 

temperature of the coldest month (bio6) was the variable with the higher contribution 368 

for the following decades (Table 4). The permutation importance of variables 369 

maintained the same order as the variable contributions (Table 4). The areas identified 370 

as suitable widened over time, from the coastal areas towards the interior of the Iberian 371 

Peninsula (Fig. 4). Suitable areas based on data from the first decade (1960-1969) 372 

were enclosed within the vicinity of the introduction area around Lisbon (Portugal, Fig. 373 

4). There was an abrupt change in the extent of suitable areas between the third and 374 

the fourth decades (1980-1989 and 1990-1999, Fig. 4, Suppl. material 2: Fig. S1). 375 

The increment in suitable areas stabilised in the fourth decade after introduction (1990-376 

1999, Fig. 4, Suppl. material 2: Fig. S1). 377 

Table 3. Main Maxent results per decade model: number of training records (Training 378 

n), number of test records (Test n), mean and standard deviation of training and test 379 

AUC from empirical models, mean and standard deviation of AUC from null models 380 

(Null AUC), and Kruskal-Wallis test results for the comparisons of empirical and null 381 

AUC values (χ2, degrees of freedom - DF, and p-value). 382 

 383 

Decade Training 
n 

Test 
n 

Training 
AUC 

Test AUC Null AUC KW 
χ2 

DF p-value 

1960-69 4 1 0.99±0.003 0.99±0.008 0.61±0.09 27.43 1 <0.0001 

1970-79 21 8 0.99±0.002 0.99±0.005 0.65±0.03 27.03 1 <0.0001 

1980-89 51 21 0.95±0.009 0.94±0.006 0.61±0.02 27.03 1 <0.0001 

1990-99 102 43 0.91±0.011 0.90±0.018 0.59±0.02 27.03 1 <0.0001 

2000-09 269 115 0.87±0.006 0.86±0.014 0.56±0.01 27.03 1 <0.0001 

2010-19 229 98 0.86±0.010 0.84±0.014 0.56±0.01 27.03 1 <0.0001 

 384 
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Table 4. Contributions and permutation importance of the bioclimatic variables (mean 385 

diurnal temperature range [bio2], minimal temperature of the coldest month [bio6], 386 

precipitation of the wettest month [bio13] and precipitation of the driest month [bio14]) 387 

on the Maxent models per decade. Higher values of variable contribution and 388 

permutation importance for each decade are highlighted in bold. 389 

 390 

  Variable contribution   Permutation importance 

Decade bio2 bio6 bio13 bio14   bio2 bio6 bio13 bio14 

1960-69 50.4 20.9 0.04 28.65  40.39 3.55 0.07 55.99 

1970-79 6.62 73.16 6.58 13.64  2.79 89.82 1.89 5.5 

1980-89 5.52 79.98 8.3 6.2  5.64 85.13 5.07 4.16 

1990-99 8.51 68.19 13.6 9.7  7.85 68.84 17.04 6.26 

2000-09 4.53 66.31 20.11 9.05  5.31 59.93 25.16 9.6 

2010-19 6.18 66.42 10.46 16.94   5.68 55.01 13.38 25.93 

 391 

Ecological Niche Models validation 392 

Validation of the ENMs of each decade projected to the remaining periods (Fig. 5a, 393 

Suppl. material 2: table S2) indicated that the number of presences correctly 394 

classified decreased over time in each decade, i.e. the model of the first decade 395 

predicted more incorrectly the models from the furthest decades. On the other hand, 396 

the number of presences correctly classified increased over time in each decade; 397 

however, from the fourth decade (1990-99), this number decreased when predicting 398 

the last decade (2010-19). These patterns were the same when considering the 399 

number of cumulative presences classified as absences or presences over time (Fig. 400 

5b, Suppl. material 2: table S3) or in relation to the last decade (2010-19) (Fig. 5c, 401 

Suppl. material 2: table S4; in this case the pattern was opposite). 402 

 403 

Dispersal analyses 404 

The species’ potential range accounting for dispersal capacity increased over time 405 

driven by the results of ENM projections. In the first decade, the range deemed 406 

susceptible to colonisation is narrow, and almost all of the Iberian Peninsula is beyond 407 
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reach. On the other hand, for the last decade, these areas are much wider (Fig. 6). 408 

Similarly to what was verified for the ENM, the spatial patterns of the dispersal models 409 

have remained quite stable since the third decade (1990-1999). There were some 410 

differences when introducing barriers or not in the dispersal models (Fig. 6), but the 411 

results with weak or strong barriers are very similar. Dispersal models thus confirmed 412 

that the species was able to disperse over time following suitable areas identified by 413 

ENM. 414 

 415 

Figure 4. Ecological niche models by decade and their projections to the next 416 

decades. The maps are organised in a matrix as in Table 1: each decade is a row; 417 

models (light blue background) and projections (yellow background) are placed in 418 

columns. Habitat suitability ranges from blue colours (low suitability) to red colours 419 

(high suitability), following the rainbow palette. 420 
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421 

422 

 423 

Figure 5. Percentage number of presences correctly classified as presences in each 424 

model (blue) and projection (yellow) by decade. a) Each decade only includes data 425 

from that period; b) Each decade includes the number of cumulative presences of the 426 

previous decade(s); c) In relation to the last decade (2010-19, in bold). Our 427 

backcasting approach showed a high forecast capacity of EMNs models since the third 428 

decade after the common waxbill establishment (high % of correctly classified 429 

presences). 430 

 431 
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 432 

Figure 6. Dispersal models per decade and type of barriers (no barriers, weak barriers, 433 

and strong barriers). The colour sequence Orange -> Yellow -> Light green -> Light 434 

blue indicates the dispersal of species over time in each decade. Blue indicates areas 435 

where the species did not have time to arrive. Red indicates zones where the species 436 

cannot occur. 437 

 438 
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Discussion 439 

This study evaluates the use of increasingly available spatiotemporal data of IAS 440 

spread to iteratively forecast invasions as they unfold. The backbone of these 441 

forecasts were ENMs using detailed distribution data of the common waxbill expansion 442 

through the Iberia Peninsula over six decades. Our projections based on invasion-443 

range data were successful to forecast the species' current distribution after three 444 

decades following its establishment. These results support the idea that ENMs can 445 

successfully forecast the species’ range expansion, though they may have limited 446 

utility in the early stages of invasion, supporting the use of an iterative approach 447 

(Dietze et al. 2018), where models are recurrently updated with the species' most 448 

recent distribution data. This implies the need to constantly monitor IAS, which despite 449 

receiving long-standing support in invasion science and policy (Genovesi and Shine 450 

2004; Büyüktahtakın and Haight 2018), depends strongly on the availability of 451 

resources (Groomet al. 2019). 452 

 453 

Our results are in line with previous studies arguing ENMs may underestimate the 454 

species’ potential ranges (Liu et al. 2020), particularly at the early stages of the 455 

invasion when the most suitable conditions may not yet be represented in the 456 

distribution range data set. Our projections based on invasion-only data failed to 457 

forecast the species distribution in the first two decades after species introduction, 458 

likely because the species range was still not representative of the species’ suitable 459 

environmental conditions (Araújo & Pearson 2005). Models disregarding the species’ 460 

global distribution provide worse results than full distribution models (Barbet-Massin 461 

et al. 2010; Jarnevich et al. 2022). This is because, ENM algorithms assume that the 462 

species distribution data used is a good representation of the species’ environmental 463 
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requirements (Sillero et al. 2021). In other words, the algorithm assumes that the data 464 

used represents a species in equilibrium with the environment, i.e. the species 465 

occupies all available suitable habitats where it can disperse (Guisan and Thuiller 466 

2005; Anderson & Raza 2010; Sillero et al. 2021). Distributional data representing only 467 

a portion of a species' global range may fail to capture all the suitable conditions where 468 

the species can thrive, potentially leading to an underestimation of its potential range. 469 

Therefore, modeling the realized niche of an expanding alien species presents 470 

significant challenges (Ficetola et al. 2005). It is expected that the ENM of a particular 471 

period will fail to forecast imminent range expansion stages, although this does not 472 

mean that the ENM is wrong (Barbet-Massin et al. 2018). The ENM for that particular 473 

period can be correct, but the ENM does not have enough information to predict the 474 

upcoming dispersion process. This is our case: the increment of new suitable areas in 475 

ENM predictions stabilised from the third decade after introduction (1990-1999), i.e., 476 

only after three decades of dispersion, the species’ occurrence data were 477 

representative of the species' environmental requirements. These results thus suggest 478 

that modelling expansion based on the early stages of introduction may provide limited 479 

results, demanding the interactive recalibration of models as new distribution data 480 

becomes available. 481 

 482 

Contrary to expectations, our results suggest that barriers to dispersion were not 483 

insuperable by the common waxbill, although they might be important for other species 484 

with lower dispersal capacity. The few differences found in the projections using the 485 

ENM-only and dispersion models (with strong and weak barriers) indicate that the 486 

species was able to disperse over time following the suitable areas predicted by ENMs. 487 

Previous studies have suggested that the dispersion capacity of the common waxbill 488 
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across Iberia was very low in the first decades after the first introduction (e.g., Silva et 489 

al. 2002; Reino 2005). Justifications for this relied on the absence of favourable habitat 490 

conditions (i.e. agricultural fields near water bodies, Ribeiro et al. 2020) out of the 491 

areas where the species was first introduced. This was based on the slower 492 

colonisation process in the southern regions of Portugal, where initial populations were 493 

very small and limited to the Tagus valley around Lisbon and the westernmost region 494 

of Iberia (Portugal) and an acceleration after the 80s. According to these studies, the 495 

additional introductions across Iberia might have jointly fostered higher dispersion 496 

rates to new areas, suggesting that the dispersal capacity of the common waxbill in 497 

Iberia is a combination of both habitat suitability and propagule pressure. However, 498 

our results suggest that this is likely to be a consequence of insufficient data to capture 499 

the species’ environmental requirements during the first decades, as they projected a 500 

potential of expansion lower than the real one.  501 

 502 

Conclusions 503 

Accurately anticipating the expansion of IAS is key to ensuring the successful 504 

implementation of preventive and mitigative actions. Forecasting invasions by means 505 

of different quantitative methods and modelling strategies have been used in the last 506 

three decades, and new approaches are constantly emerging (Peterson 2003; Reino 507 

et al. 2009; Jiménez-Valverde et al. 2011). However, predictions may be severely 508 

compromised by different methodological options and their specific limitations. ENMs 509 

are powerful tools to predict the spread of IAS and guide management. Although ENM 510 

enables predicting and evaluating biological invasions, it is often compromised by the 511 

amount (time-series length), quality (spatial and temporal resolution) and availability 512 

(data access) of distribution data in both native and invaded ranges. In this study, we 513 
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demonstrate that invaded range-only data may be used to accurately project the 514 

expansion of alien species in novel regions if enough time (at least three decades) is 515 

given to allow the species to expand and occupy the most suitable conditions. Our 516 

study evaluates the capacity of ENMs based on spatiotemporal data of invaded 517 

ranges-only to forecast the potential distribution of IAS, while it clarifies the amount of 518 

data required in terms of length of the time series of the species distribution data since 519 

establishment, contributing to a better understanding of climatic niche changes during 520 

the expansion process of alien species, and offering a solution to managers and 521 

scientists dealing with the scarcity and asymmetry of distribution data available for 522 

alien species worldwide, in their native and invaded ranges. This helps solve a much-523 

discussed conundrum, and offers a practical solution to better guide management 524 

actions and significantly improve stakeholders’ ability to halt biological invasions. 525 

 526 
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