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Abstract 14 

Biodiversity is declining at alarming rates worldwide and large-scale monitoring is urgently 15 

needed to understand changes and their drivers. While classical taxonomic identification 16 

of species is time and labor intensive, the combination with DNA-based methods could 17 

upscale monitoring activities to achieve larger spatial coverage and increased sampling 18 

effort. However, challenges remain for DNA-based methods when species counts and/or 19 

biomass estimates are required. Several methodological advancements exist to improve 20 

the potential of DNA metabarcoding for abundance analysis, which however need further 21 

evaluation. Here, we discuss laboratory, as well as some bioinformatic adjustments to 22 

DNA metabarcoding workflows regarding their potential to achieve species abundance 23 

estimation from arthropod community samples. Our review includes pre-laboratory 24 

processing methods such as specimen photography, laboratory methods such as the use 25 

of spike-in DNA as an internal standard and bioinformatic advancements like correction 26 

factors. We conclude that specimen photography coupled with DNA metabarcoding 27 

currently promises the greatest potential to achieve species counts and biomass 28 

estimates, but that approaches such as spike-ins and correction factors are promising 29 

methods to pursue further.  30 

  31 
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Introduction 33 

Biodiversity is declining at alarming rates worldwide (Díaz et al. 2020). The startling 34 

observation of a 75% decline in flying insect biomass in German nature reserves over 25 35 

years (Hallmann et al. 2017) triggered an earthquake in society and politics and raised 36 

awareness for arthropod declines, which have since been further documented (Lister and 37 

Garcia 2018; Seibold et al. 2019; Simmons et al. 2019; van Klink et al. 2020). 38 

Subsequently, numerous initiatives have been launched or reinforced on global to 39 

European and regional scales to assess arthropod diversity and also define guidelines 40 

for applied, large-scale biodiversity monitoring schemes (Seibold et al. 2019; Ronquist et 41 

al. 2020; Potts et al. 2021). Monitoring programs are frequently limited in spatial coverage 42 

and sampling effort due to the morpho-taxonomical analysis of specimens, which is costly 43 

and time-consuming (Yu et al. 2012) and further limited by taxonomic impediment 44 

(Fernandes et al. 2019; Watts et al. 2019; Darby et al. 2020). Thus, in order to meet the 45 

increased demand for arthropod diversity assessments, traditional morpho-taxonomy 46 

approaches need to be combined with other methods (Pawlowski et al. 2018; Compson 47 

et al. 2020). 48 

DNA-based approaches are promising to overcome the above mentioned shortcomings 49 

in arthropod diversity surveys and monitoring (Porter and Hajibabaei (2018); Zinger et al. 50 

(2020); Box 1: Glossary; Supplementary file 1: Background information), where DNA 51 

metabarcoding in particular enables high sample throughput (Elbrecht and Steinke 2018; 52 

de Kerdrel et al. 2020), automation of laboratory and bioinformatic processes 53 

(Krehenwinkel et al. 2017a; Buchner et al. 2021; Buchner et al. 2023) and is widely 54 

accepted as a time- and cost-effective approach for large-scale biodiversity assessments 55 
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(Piper et al. 2019; Watts et al. 2019). Molecular methods further have the potential to 56 

resolve cryptic species (Sow et al. 2019) and intraspecific genetic diversity (Elbrecht et 57 

al. 2018) and open up the possibility to include degraded and non-invasively collected 58 

material, e.g. feces  (Andriollo et al. 2019), or plant material in biodiversity surveys, which 59 

yields high potential for trophic interaction and food web analysis.  60 

However, implementation in policy-mandated monitoring programs is still hampered 61 

(Altermatt 2021; Meissner 2021). Reasons for the limited application include general 62 

skepticism among taxonomists, missing expertise and infrastructure within state 63 

monitoring agencies, a lack of standardized molecular protocols (Dickie et al. 2018; 64 

Pawlowski et al. 2018; Zinger et al. 2019; Compson et al. 2020; Creedy et al. 2021), as 65 

well as incomplete reference databases (Watts et al. 2019; van der Heyde et al. 2020; 66 

Zenker et al. 2020) and the destruction of specimens for DNA extraction (Zizka et al. 67 

2019), although non-destructive approaches are gaining ground (Castalanelli et al. 2010; 68 

Carew et al. 2018; Zenker et al. 2020; Batovska et al. 2021; Kirse et al. 2023). The most 69 

important criticism concerns the limitation to assess species counts and biomass (here 70 

summarized into abundance; see Box 1: Glossary), which is essential in standardized 71 

monitoring and ecological analysis, but still remains one of the greatest challenges for 72 

high-throughput DNA-based approaches (Compson et al. 2020).  73 

Several factors within the metabarcoding workflow affect extraction of abundance data 74 

(Pawlowski et al. 2018; Zinger et al. 2019). Firstly, sample properties such as complexity 75 

seem to affect abundance information (Piñol et al. 2019), including e.g. variation in 76 

sample biomass as well as across and within species (Elbrecht and Leese 2015; Elbrecht 77 

et al. 2017; Braukmann et al. 2019). Read numbers are further affected by variations in 78 
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marker gene copy numbers (Krehenwinkel et al. 2017b). Secondly, methodological 79 

biases skew abundance estimations. During DNA extraction, a protocol-dependent 80 

taxonomic bias can be introduced due to variations in species size and morphology, 81 

causing differences in isolated DNA yields (Krehenwinkel et al. 2017a; Pornon et al. 2017; 82 

Matos-Maraví et al. 2019; Iwaszkiewicz-Eggebrecht et al. 2022). Several subsampling 83 

steps in the metabarcoding laboratory workflow can introduce stochastic processes 84 

affecting read counts (Leray and Knowlton 2017; Shirazi et al. 2021; Zizka et al. 2022). 85 

Arguably, the strongest bias is caused by taxon-specific differences in primer binding 86 

efficiency (Piñol et al. 2015; Krehenwinkel et al. 2017a; Krehenwinkel et al. 2017b; 87 

Pawlowski et al. 2018). The magnitude of primer bias depends on the number of 88 

mismatches between primer and target sequence, especially towards the 3‘-end of the 89 

primer (Piñol et al. 2019). Apart from primer choice, additional PCR bias can be caused 90 

by variable GC content in the target genetic marker (Nichols et al. 2018), amplicon length 91 

(Krehenwinkel et al. 2017b) or the occurrence of pseudogenes (Andujar et al. 2021). 92 

Thirdly, post-laboratory steps in the bioinformatic processing of sequencing data can 93 

skew final read distribution (Frøslev et al. 2017; Alberdi et al. 2018; Matos-Maraví et al. 94 

2019; Darby et al. 2020; Creedy et al. 2021). 95 

A meta-analysis targeting 22 DNA metabarcoding studies revealed a weak relationship 96 

between biomass and generated read counts, with a large degree of uncertainty (Lamb 97 

et al. 2019). The studies included in Lamb et al. (2019) used different protocols and a 98 

wide range of target organisms and sample types, which somewhat hampers overall 99 

comparability, but does emphasize that raw read counts are not suitable to infer 100 

abundance estimates.   101 
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A variety of different approaches have emerged recently, that can help improve 102 

abundance estimates from metabarcoding data, including correction factors, spike-ins, 103 

primer optimization or multi-locus metabarcoding (e.g. Richardson et al. (2015); 104 

Krehenwinkel et al. (2017b); Richardson et al. (2019); Darby et al. (2020); Luo et al. 105 

(2022); also see Box 1: Glossary; Supplementary file 1: Background information). 106 

However, these advances have so far not been compared systematically for complex 107 

arthropod samples.  108 

Here, we review potential methods that can improve abundance estimation in arthropod 109 

whole organism community (woc) samples. Considering the variety of approaches and 110 

applications, we aim to formulate general recommendations for DNA metabarcoding 111 

workflows in arthropod monitoring. In addition, we explore approaches from 112 

metabarcoding studies targeting e.g. aquatic samples and have so far not been applied 113 

to terrestrial arthropods and their trophic interactions. 114 

 115 

Methods 116 

Collection of relevant literature and assessment of methodological approaches  117 

We collected relevant literature in two steps: First, we performed an online literature 118 

search in Google Scholar and EBSCO Discovery Service on 20 April 2020, which was 119 

repeated on 17 January 2022. We used the keywords [(quant*) AND (insect) AND 120 

(metabarcod*) AND (DNA)] and included only peer reviewed publications in English. 121 

Although the search term specifically targeted insects, we use the more general term 122 

‘terrestrial arthropods’ throughout the text. Secondly, some publications were added to 123 

the list based on the authors’ expertise. 124 

Author-formatted, not peer-reviewed document posted on 18/07/2023. DOI:  https://doi.org/10.3897/arphapreprints.e109709



7 

We included studies that applied DNA metabarcoding to terrestrial arthropods as target 125 

organisms and/or in relation to their tropic interactions within ecosystems (e.g. pollination 126 

and food web studies), as these topics are strongly connected and play an important role 127 

in monitoring schemes (e.g. ecosystem services of pollination or natural pest control). 128 

With these criteria, woc and tissue samples were included covering also pollen, gut 129 

contents and feces as well eDNA metabarcoding approaches, such as extraction from 130 

soil and sample fixative. We excluded studies that applied individual-based DNA 131 

barcoding and NGS barcoding, PCR-free approaches as well as long-read sequencing 132 

methodologies, as we wanted to focus on metabarcoding specifically. PCR-free 133 

approaches are, however, briefly discussed in an outlook section.  134 

Based on 113 publications matching our search criteria (Supplementary file 2: Literature 135 

review), we extracted information on article type, study type, sample type, species group, 136 

methods and parameters (Table 1; Supplementary file 3: Categories assessed in the 137 

literature review). We examined these methods regarding their applicability to study types 138 

(species richness assessments, pollen analysis, food web studies) and to sample types 139 

(woc samples, pollen, eDNA and gut contents/feces). The overall suitability was assessed 140 

based on whether certain abundance metrics (species counts, relative abundance, 141 

biomass) were achievable, whilst also considering the extent of additional equipment, 142 

cost and labor (Supplementary file 4: Evaluation of methodological approaches). These 143 

considerations are based on the available literature.  144 
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 145 

Results 146 

Description and assessment of methods 147 

Reviewing the literature, we identified three main methods to estimate species abundance 148 

with metabarcoding (Table 1): (i) semi-quantitative metrics (Fig. 1), (ii) approaches that 149 

can potentially reduce read abundance biases (Fig. 2), and (iii) the combination of DNA 150 

(meta-)barcoding with other methodological approaches (Fig. 3), which we present in 151 

more detail in the following sections (also see Supplementary file 1: Background 152 

information). This review focuses on studies including developments associated with the 153 

laboratory workflow. For a critical assessment of missing standards in bioinformatics we 154 

refer to (Creedy et al. 2021). Since many metabarcoding studies refer to relative 155 

abundances, whilst monitoring aims to determine species counts, we make a clear 156 

distinction of these terms throughout this manuscript by referring to ‘species counts‘ 157 

(absolute number of individuals belonging to the same species), ’relative abundance‘ 158 

(proportion of a species within a sample) and ’biomass‘ (weight of individuals belonging 159 

to the same species), respectively. We use the more general term ’abundance‘ as a 160 

summary term for the three (see Box 1: Glossary). 161 

 162 

1) Semi-quantitative metrics 163 

DNA metabarcoding is comprehensively used to assess presence/absence from complex 164 

sample mixtures. While some ecological questions, including biodiversity measures, can 165 

be answered with presence/absence data (e.g. alpha diversity), abundance information 166 

is needed for complex network analysis as e.g. food web structures or plant-pollinator 167 
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interactions. There are different approaches to conduct semi-quantitative analysis of DNA 168 

metabarcoding data (Fig. 1A). In diet analyses, frequency or percentage of occurrence 169 

(FOO/POO; Fig. 1B) are often applied (Deagle et al. (2019), but see Cuff et al. (2022)). 170 

In bipartite networks, link strength (Fig. 1C) is a meaningful quantitative metric for plant-171 

pollinator or prey-predator networks (Thomsen and Sigsgaard 2019; Cuff et al. 2022). 172 

Alternatively, relative read abundance (RRA) summarized over biological replicates is 173 

often used (Fig. 1D), especially for pollen samples (Kratschmer et al. 2019; Wilson et al. 174 

2021). Read counts, RRA as well as derived metrics, such as log- or rank-transformed or 175 

rarefied read abundance are applied to obtain community composition for different 176 

sample types (pollen, feces, gut and woc samples; Hope et al. (2014); Hawkins et al. 177 

(2015); Richardson et al. (2015); Krehenwinkel et al. (2018); Macías-Hernández et al. 178 

(2018); Marquina et al. (2019)). The use of any of the above-mentioned metrics to assess 179 

abundances is easy to achieve from metabarcoding data, but species counts or biomass 180 

cannot be assessed.  181 

 182 

2) Approaches that reduce read bias 183 

Correction factors. Mock community experiments have shown a positive correlation of 184 

read counts per species with genomic template DNA concentration in pollen and woc 185 

samples (Gueuning et al. 2019; Baksay et al. 2020), while other studies revealed a PCR 186 

bias introduced through taxon- and marker-specific primer efficiency (Krehenwinkel et al. 187 

2017b; Bell et al. 2019; Braukmann et al. 2019; Darby et al. 2020). Since these biases 188 

are strongly affected by primer binding efficiencies (Piñol et al. 2019), they are assumed 189 

to be predictable (Krehenwinkel et al. 2017b). Thus, correcting read counts using species-190 
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specific correction factors can improve metabarcoding-derived abundance estimates 191 

(Krehenwinkel et al. (2017b); Darby et al. (2020); Fig. 2A and 2B). Such correction factors 192 

can be obtained using mock communities (Krehenwinkel et al. (2017b), Fig. 2A) or 193 

iterative algorithms (Darby et al. (2013); Darby et al. (2020), Table 1, Fig. 2B, 194 

Supplementary file 1: Background information). In order to derive correction factors using 195 

mock communities, artificial community samples of defined composition are processed 196 

alongside unknown samples. However, the derived correction factors can only be applied 197 

to species that are present both in environmental and artificial community samples, which 198 

is a strong limitation for hyperdiverse woc arthropod samples such as Malaise trap 199 

catches that contain many unknown taxa. Phylogenetic inference methods, as described 200 

for microbial analyses (Goberna and Verdu 2016; McLaren et al. 2019), are a possibility 201 

to extend correction factors to closely-related taxa, but this remains to be tested for 202 

arthropods, pollen and gut/fecal samples. To obtain correction factors, mock communities 203 

have so far only been used in combination with woc arthropod samples (Krehenwinkel et 204 

al. 2017b), but this approach could also be transferred to pollen samples, as processing 205 

mock communities alongside such samples is common (Bell et al. 2019; Baksay et al. 206 

2020; Swenson and Gemeinholzer 2021). Species-specific correction factors obtained 207 

from mock community samples are helpful to reduce read abundance biases, however, 208 

some sources of bias still exist, e.g. related to the evenness of a community sample (Piñol 209 

et al. 2019), copy number variations of the target gene (Krehenwinkel et al. 2017b) or 210 

differences in DNA quality between specimens used for mock community samples versus 211 

field collected samples (Krehenwinkel et al. 2018). 212 

Author-formatted, not peer-reviewed document posted on 18/07/2023. DOI:  https://doi.org/10.3897/arphapreprints.e109709



11 

Correction factors can also be calculated using an iterative algorithm which mitigates data 213 

skews due to copy number variations of the target gene (Darby et al. (2013; 2020); Fig. 214 

2B, Supplementary file 1: Background information). It uses randomly generated correction 215 

factors for each species and compares predicted specimen counts with counts obtained 216 

from morphological identifications. The correction factors are then iteratively adjusted until 217 

predicted and actual counts converge (Darby et al. 2013). 218 

The algorithm can only be applied to samples with high concordance between 219 

morphological and DNA-based taxonomies, but it is a promising approach, as the 220 

predicted species counts were highly correlated with actual count data (Darby et al. 2013; 221 

Darby et al. 2020). It requires high-quality material and specimens to be identified 222 

morphologically (Darby et al. 2013; Darby et al. 2020) and thus can only be used for woc 223 

and tissue samples (see Supplementary file 1: Background information for more 224 

limitations). Time and cost of the overall analysis increases, as a reference set of 225 

morphologically identified species is required, but this could be worth it in the case of 226 

repeat monitoring of sites with known species composition, or for the monitoring of known 227 

arthropod pests. 228 

 229 

Spike-ins. Spike-ins (Fig. 2C) may also be referred to as internal standards (ISDs; 230 

Harrison et al. (2021)). Here, a defined amount of reference material DNA is added to 231 

each sample, which allows read count correction and thereby improves abundance 232 

estimation (Luo et al. 2022). The reference DNA can be added as tissue (Darby et al. 233 

2020), genomic DNA, pre-amplified DNA (Ji et al. 2020), plasmids (Luo et al. 2022) or 234 

synthetic DNA (Palmer et al. 2018). Synthetic DNA fragments should include primer 235 
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binding sites and need to be added to the reference database (Tkacz et al. 2018; Luo et 236 

al. 2022). Spike-ins are added to the samples in a standardized manner, e.g. a defined 237 

mass of reference DNA (ng) per defined volume of lysis buffer (µl; Ji et al. (2020); Luo et 238 

al. (2022)). It is recommended to add the spike-in prior to DNA extraction, so that it is co-239 

extracted, co-amplified and co-sequenced along with the sample DNA and therefore 240 

underlies the same methodological biases. Since all samples receive the same amount 241 

of spike-in, they should theoretically return the same spike-in read counts. However, 242 

sample complexity affects read numbers (Piñol et al. 2019) and thus different samples 243 

will return different read numbers for the spike-in (Luo et al. 2022). Read correction can 244 

be achieved by dividing the number of reads assigned to amplicon sequence variants 245 

(ASVs) by the number of reads assigned to the spike-in, resulting in significant 246 

improvement in within-species abundance across samples (Ji et al. 2020; Luo et al. 247 

2022). 248 

The use of spike-ins is not restricted by sample type, but comes with a low increase in 249 

effort and costs, because the spiking of samples is an additional, albeit minimal, step in 250 

the laboratory workflow, which has to then be integrated in the bioinformatic workflow. It 251 

should be noted that spike-in correction does not correct for biases across species within 252 

samples. It has been proposed that species-specific correction factors obtained from 253 

mock communities (see previous section) or unique molecular identifiers (UMIs, see 254 

outlook section) can be used to correct for within-sample across species biases (Ji et al. 255 

2020; Luo et al. 2022). Spike-in correction is a straightforward and powerful approach 256 

with high potential to improve abundance estimations via DNA metabarcoding. 257 

 258 
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Primer optimization. A variety of studies have shown that primer design is an essential 259 

part determining the success of DNA metabarcoding studies, both in terms of taxon 260 

recovery and read abundance biases (Esnaola et al. 2018; Jusino et al. 2018; Lafage et 261 

al. 2019; Pedro et al. 2020). Primers used in DNA metabarcoding need to be universal 262 

and the fragment length needs to be suitable for the sequencing platform of choice, whilst 263 

allowing for species-level identification (Meusnier et al. 2008). Over and under 264 

amplification of different lineages of arthropods (Krehenwinkel et al. 2017b; Darby et al. 265 

2020) as well as certain plant species dominating pollen samples (Bell et al. 2019; Baksay 266 

et al. 2020) have been reported and should be minimized as much as possible. Thus, 267 

primer design, including validation and evaluation, is a labor and time consuming and 268 

ongoing task (Elbrecht et al. 2019). 269 

 270 

Multi-locus metabarcoding. Different genetic markers suffer from different taxonomic 271 

biases and thus some studies employ several different loci for the same organismal 272 

group, which is referred to as multi-marker (Adamowicz et al. 2019) or multi-locus 273 

metabarcoding (Batovska et al. 2021). Multi-locus metabarcoding has been applied to 274 

woc and tissue samples (Marquina et al. 2019; Giebner et al. 2020), pollen (Richardson 275 

et al. 2015; Bell et al. 2019; Richardson et al. 2019), fecal samples and gut contents (Swift 276 

et al. 2018; Krehenwinkel et al. 2019; Gil et al. 2020) as well as soil and even eDNA 277 

samples (Ritter et al. 2019; Thomsen and Sigsgaard 2019).  278 

Locus-specific biases can be mitigated by using rank order abundance or median-based 279 

proportional abundance summarized over all loci, as has been demonstrated in pollen 280 

DNA metabarcoding (Richardson et al. 2015; Richardson et al. 2019). The locus-specific 281 
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PCRs are often performed separately (Richardson et al. 2015; Swift et al. 2018; 282 

Richardson et al. 2019; Baksay et al. 2020; Darby et al. 2020), which increases time and 283 

cost for sample processing. Multi-locus metabarcoding can be performed in multiplexed 284 

reactions (de Kerdrel et al. 2020; Batovska et al. 2021) to improve time and cost 285 

efficiency. However, this may introduce additional read abundance skews, possibly due 286 

to PCR competition between loci (Batovska et al. 2021). During analysis, data from 287 

different markers need to be analyzed separately (Thomsen and Sigsgaard 2019), which 288 

increases time for analysis. It should be emphasized that different markers usually yield 289 

discordant taxon lists (Alberdi et al. 2018; da Silva et al. 2019), e.g. because of incomplete 290 

reference databases for markers other than COI (Andujar et al. 2018). Such discordant 291 

taxa lists allow a broader taxon coverage, but it also means that data from different 292 

markers are complementary (Kirse et al. 2021), complicating data analysis. For pollen 293 

samples, some evidence exists that chloroplast markers (e.g. trnL) are more suitable for 294 

assessing relative abundances than ribosomal markers (e.g. ITS2; Richardson et al. 295 

(2019); Baksay et al. (2020)), and these differences need to be carefully considered. In 296 

the case of discordant taxa lists, abundance estimates (e.g. rank-based) can only be 297 

determined for taxa identified by more than one marker (Richardson et al. 2015; 298 

Richardson et al. 2019).  299 

 300 

3) Combining DNA metabarcoding with other methods 301 

Some studies combine DNA metabarcoding with other methodologies (Fig. 3). One 302 

example is morphological analysis of gut content remains, pollen grains or arthropod 303 

specimens (Keller et al. 2015; Darby et al. 2020; Gil et al. 2020), others are weighing bulk 304 
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samples (Hausmann et al. 2020), using flow cytometry of pollen (Baksay et al. 2020) or 305 

other forms of PCR (Schneider et al. 2016; Tedersoo et al. 2019). In such cases, DNA 306 

metabarcoding may be used to obtain a comprehensive species list of the detected taxa, 307 

whilst abundance estimates (e.g. species counts, biomass, DNA copy number) are 308 

obtained with the other methodology. The choice of additional methodology determines 309 

the sample types that can be used, for example, combining metabarcoding with 310 

quantitative PCR (qPCR; Schneider et al. (2016)) or digital droplet PCR (ddPCR; 311 

Tedersoo et al. (2019)) can be performed on all sample types. For other methodologies, 312 

for example weighing, woc samples are required (Hausmann et al. 2020). 313 

 314 

One noteworthy approach of method combination is the photographic documentation of 315 

specimens from woc samples before analyzing them with DNA metabarcoding. This 316 

combined approach enables individual counts, body size measurements and thereby 317 

biomass estimation (Gueuning et al. 2019). As specimens are handled individually (Wührl 318 

et al. 2022), the use of body parts for DNA extraction, instead of full specimens, is 319 

furthermore facilitated (Gueuning et al. 2019; Darby et al. 2020), keeping voucher 320 

specimens mostly intact. Specimen photography further allows documentation of 321 

specimens for future reference as well as incorporating a pre-sorting strategy (Elbrecht 322 

et al. 2020). Whilst handling of individual specimens is exceptionally time- and labor-323 

intensive, automated solutions can improve time-efficiency (Ärje et al. 2020; Wührl et al. 324 

2022). In combination with machine learning approaches, the automated screening of 325 

high-resolution pictures of arthropod woc samples for abundance estimation is emerging 326 

and would facilitate large-scale assessments, e.g. for monitoring schemes (Høye et al. 327 
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2021). While these approaches are still in development, the vision of completely 328 

automated protocols, incorporating image recognition before molecular sample 329 

processing, exists (Høye et al. 2021; Besson et al. 2022; van Klink et al. 2022; Wührl et 330 

al. 2022).  331 

 332 

Discussion 333 

General conclusions and recommendations for arthropod monitoring and related 334 

questions 335 

The available literature has revealed that the majority of (terrestrial) arthropod DNA 336 

metabarcoding studies do not sufficiently address the potential to infer species counts 337 

and/or biomass estimates (Supplemental file 2). In terms of pollen analysis, research 338 

exists that discusses abundance estimation via DNA metabarcoding, but with inconsistent 339 

results (Keller et al. 2015; Kraaijeveld et al. 2015; Richardson et al. 2015; Bell et al. 2019; 340 

Richardson et al. 2019; Baksay et al. 2020). In contrast to this, DNA metabarcoding has 341 

received considerably more attention in the aquatic sector in recent years (Elbrecht and 342 

Leese 2015; Elbrecht et al. 2017; Beentjes et al. 2019; Hoshino et al. 2021). Existing 343 

policies, like the EU Water Framework Directive (Directive 2000/60/EC) and the Marine 344 

Strategy Framework Directive (MSFD; Directive 2008/56/EC), legally require routine 345 

monitoring of aquatic environments. As a consequence, standards for sampling, 346 

processing and reporting already exist (Haase et al. (2004), but see Birk et al. (2012)), as 347 

well as DNA-based indicators (Aylagas et al. 2014). Especially the DNAqua-Net COST 348 

Action (Leese et al. 2016; Leese et al. 2018) has published many advancements 349 

regarding the suitability and integration of (e)DNA metabarcoding in biomonitoring 350 
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(Pawlowski et al. 2018; Buchner et al. 2019), as well as resources to facilitate 351 

standardization and quality control for DNA-based monitoring (Bruce et al. (2021); Bruce 352 

and Keskin (2021); Vasselon et al. (2021), DNAqua-Hub; accessed 24 May 2022). This 353 

work has a high potential to be transferred into terrestrial arthropod monitoring. However, 354 

this transfer could be hampered by the lack of data on diversity and distributions of 355 

hyperdiverse arthropods. 356 

Additionally, the collected literature focused on approaches that apply to the sample 357 

processing stage of metabarcoding workflows. The effect of bioinformatics and data 358 

analysis strategies on abundance and biomass estimations is strongly underrepresented 359 

(Supplemental File 2: Literature collection). Although a variety of non-harmonized 360 

bioinformatic tools and pipelines exists (Creedy et al. 2021), a more detailed discussion 361 

on the bioinformatics and data analysis side of this topic, however, is outside the scope 362 

of this review, but future research needs to address this.  363 

As expected, there is a variety of adjustments attempting to improve abundance 364 

estimation via DNA metabarcoding (Supplemental file 2: Literature collection). It remains, 365 

however, difficult to find a ‘one-size-fits-all’ approach to assessing individual counts and 366 

biomass from DNA metabarcoding, partly because different approaches are applicable 367 

only to certain sample types or because recent advancements still do not translate to 368 

individual counts and/or biomass estimates.  369 

 370 

Overall suitability of DNA metabarcoding approaches for species counts and biomass 371 

estimation for terrestrial arthropod monitoring 372 
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Currently, the most promising approach is to combine DNA metabarcoding with specimen 373 

photography, which would ideally be automated (Ärje et al. 2020; Wührl et al. 2022). In 374 

addition, promising avenues such as correction factors and spike-ins should be further 375 

developed (Darby et al. 2013; Krehenwinkel et al. 2017b; Darby et al. 2020; Ji et al. 2020; 376 

Luo et al. 2022). Specimen photography coupled with automatic image recognition 377 

facilitates body size measurements to achieve biomass estimates as well as species 378 

counts. Combining the approaches of Darby et al. (2020), Gueuning et al. (2019) and de 379 

Kerdrel et al. (2020) seems especially promising, as recombining specimens to ‘pseudo-380 

community’ samples allows cost-efficient mixed-species DNA (meta-)barcoding. We 381 

would like to point out that this strategy is not the same as NGS barcoding (see Box 1; 382 

Wang et al. (2018); Srivathsan et al. (2021)), since individual specimens or parts of them 383 

are combined to mixed-species samples (Gueuning et al. 2019; de Kerdrel et al. 2020). 384 

Thus, samples are processed following a metabarcoding workflow, but obtained barcodes 385 

can be traced back to specimens (de Kerdrel et al. 2020). We argue that despite the 386 

increase in processing time and associated costs, (automated) specimen photography is 387 

a simple and effective way to achieve considerable improvement in taxon recovery, 388 

species counts and biomass estimates (Fig. 4). This approach is limited to woc samples, 389 

although a similar approach may potentially be applied to pollen samples, for example by 390 

flow cytometry (Baksay et al. 2020; Dunker et al. 2020). Theoretically, these approaches 391 

could be combined to achieve count and biomass data, although the above-mentioned 392 

studies did not comment on this potential.  393 

 394 
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Regardless of application or sample type, general recommendations for every 395 

metabarcoding workflow are to use appropriate positive controls, i.e. mock communities 396 

(Ji et al. 2020), as well as negative controls, biological and technical replicates (Alberdi 397 

et al. 2018; Elbrecht and Steinke 2018; Liu et al. 2019; Zinger et al. 2019; Yang et al. 398 

2020) and consider multi-locus metabarcoding. Each of these steps can improve taxon 399 

detection and the correlation between relative read abundances and input DNA mass 400 

(Richardson et al. 2019; Ritter et al. 2019; Thomsen and Sigsgaard 2019; Ji et al. 2020). 401 

Associated increases in costs and labor are justified by the improvement in the generated 402 

data, although budget limitations may deem technical replicates unfeasible. With 403 

optimized metabarcoding and bioinformatic workflows, more robust relative abundance 404 

and biomass estimates are thus potentially achievable in the foreseeable future. 405 

However, species counts cannot be obtained, as other sources of bias still exist. We 406 

therefore recommend considering additional approaches discussed further down. 407 

 408 

For eDNA, obtaining count data is extremely difficult. Since eDNA dynamics (Barnes and 409 

Turner 2016; Compson et al. 2020) are affected by various uncontrollable factors prior to 410 

sampling, analysis of abundance information is further impeded. Thus, presence/absence 411 

and derived FOO/POO data from replicates currently seem to be the best option, although 412 

promising approaches exist that will move towards more informative data obtainable from 413 

eDNA. For example, combining species detections with information about the cellular and 414 

molecular state of eDNA (e.g. intra- versus extra-cellular eDNA, genetic region, fragment 415 

size) is expected to improve the abundance estimation, as demonstrated in water 416 

samples (Jo et al. 2021). Other options for eDNA-based monitoring are: an overall 417 
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experimental design and sampling strategy that allows indirect counts, developing and 418 

applying novel metrics (e.g. the ‘eDNA index’; Kelly et al. (2019)) or coupling 419 

presence/absence data with site-occupancy models (van Strien et al. 2010; van Strien et 420 

al. 2013). We argue that eDNA approaches are worth considering for arthropod 421 

monitoring, as they are non-invasive (Andriollo et al. 2019; Thomsen and Sigsgaard 2019; 422 

Pumkaeo et al. 2021; Roger et al. 2022), which is especially important for protected and 423 

endangered species.  424 

Additionally, (e)DNA-based analyses open up new avenues that move away from 425 

traditional species counts or biomass estimates. On such avenue to pursue further is 426 

more sensitive detection rates of parasitism and invasive species (Sow et al. 2019; Young 427 

et al. 2021). Furthermore, genetic tools facilitate the analysis of intraspecific diversity 428 

(Elbrecht et al. 2018; Arribas et al. 2021; Shum and Palumbi 2021; Weitemier et al. 2021), 429 

which is greatly underappreciated in arthropod monitoring schemes. Thus, (e)DNA 430 

metabarcoding deserves to be incorporated in such schemes at least as a complementary 431 

approach to morpho-taxonomy.  432 

 433 

Outlook: Further molecular approaches for the estimation of species abundances  434 

In the following, we explore selected approaches from the wider literature that were not 435 

within the scope of the present review. However, there is high potential for the 436 

implementation in monitoring programs in the future. Novel data analysis pipelines are 437 

constantly being developed and some focus on integrating uncertainties associated with 438 

the dynamics of DNA in the environment (Barnes and Turner 2016; Compson et al. 2020). 439 

One such example, a tracer model, has successfully been applied to estimate the 440 
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abundance of target fish species (Fukaya et al. 2020). Another example, an ‘eDNA index’, 441 

which is a double-transformation of read-counts, holds potential to assess abundance 442 

trends across time and space (Kelly et al. 2019). Additionally, species occupancy models 443 

can detect false negatives (Compson et al. 2020) and Bayesian hierarchical models can 444 

integrate primer choice and other parameters of the metabarcoding workflow (Doi et al. 445 

2019; Compson et al. 2020), which would allow correcting read count-derived abundance 446 

estimates. Lastly, the application of half-life corrections has successfully been applied to 447 

infer relative frequencies of prey items based on metabarcoding data (Uiterwaal and 448 

DeLong 2020). 449 

 450 

When grouping sequencing reads as ASVs instead of molecular operational taxonomic 451 

units, DNA metabarcoding can potentially deliver conservative species counts in the 452 

sense of ‘minimum census estimates’, similar to those obtained from non-invasive 453 

sampling of hair and feces (Frantz et al. 2004; Miotto et al. 2007). In this case, the 454 

evolutionary rate of the chosen marker would have to be considered (Wang et al. 2016), 455 

as it may affect the recovery of ASVs per species and consequently the obtained 456 

minimum census estimates. Furthermore, the potential to recover signals of intraspecific 457 

diversity via ASVs has recently been demonstrated (Elbrecht et al. 2018; Shum and 458 

Palumbi 2021; Weitemier et al. 2021).  459 

Another promising approach is to further refine the qSeq protocol (Hoshino and Inagaki 460 

2017; Hoshino et al. 2021) and similar workflows employing unique molecular identifiers 461 

(UMIs; Luo et al. (2022)). Here, a single-primer extension is included in the workflow 462 

before performing PCR. During this step, each DNA fragment is labelled with a random 463 
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tag and the number of random tags per ASV can be used to accurately infer starting copy 464 

numbers of each recovered sequence in the original sample. This allows simultaneous 465 

species identification and inference of relative abundances from eDNA and woc samples 466 

(Hoshino and Inagaki 2017; Hoshino et al. 2021; Luo et al. 2022). Unique molecular 467 

identifiers have also been applied in detecting rare allele variants and mutations and have 468 

been reported as being especially useful for read error corrections (Jabara et al. 2011; 469 

Kinde et al. 2011; Kivioja et al. 2012; Fields et al. 2020). 470 

 471 

There is an urgent need to shift away from a purely morpho-taxonomic approach and 472 

related indicators for long-term arthropod monitoring, towards an integrative framework, 473 

in which morphological and molecular biological methodologies are applied in parallel. 474 

This requires the development and implementation of novel proxies and indicators to 475 

indirectly assess species abundance based on genetic data. One possible approach is to 476 

apply Hill numbers to DNA-based and morpho-taxonomic assessments alike, as this 477 

improves comparability and they can even be applied to (phylo-)genetic data (Alberdi and 478 

Gilbert 2019). Since, biomass and DNA mass of a taxon are correlated (Elbrecht et al. 479 

2017), the amount of genomic DNA per taxon could serve as a proxy for abundance. This 480 

could be assessed by combining metabarcoding with qPCR or ddPCR, although these 481 

usually focus on specific target species (Schneider et al. 2016; Tedersoo et al. 2019), but 482 

also via the use UMIs (see above).  483 

 484 

PCR-free methods represent a further alternative (Garrido-Sanz et al. 2020; Ji et al. 2020; 485 

Cordier et al. 2021).  The advantage of these approaches is that no amplification step is 486 
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conducted and therefore, the complete mitochondrial or nuclear DNA is sequenced and 487 

analyzed. As PCR amplification is omitted, mito- and metagenomic approaches are 488 

associated with more reliable abundance estimations. However, both approaches depend 489 

on the accessibility of whole mitochondrial or nuclear genomes of target taxa in order to 490 

assign generated reads to the species of origin (Schmidt et al. 2022). So far, whole-491 

genome reference databases exist only for a limited number of species (Formenti et al. 492 

2022; Lewin et al. 2022). In addition, sequencing effort for mito- or metagenomic 493 

approaches is much higher than in metabarcoding studies, limiting the current application 494 

of those approaches in large-scale arthropod monitoring through higher costs, computing 495 

power and data storage requirements. Further, bias introduced through extraction and 496 

variable gene copy number still exist in those approaches.  497 

 498 

Concluding remarks 499 

Even though there are many details to consider when applying DNA metabarcoding to 500 

arthropod monitoring, pollen and food web analyses, we were able to make some general 501 

recommendations. Generally, DNA metabarcoding should always be optimized for 502 

maximum taxon recovery and minimal amplification biases. The processing of adequate 503 

positive and negative controls is essential. Incorporating appropriate biological and 504 

technical replicates reduces the impact of certain methodological biases.  505 

Methodologies employed need to be time and cost efficient and ensure as little 506 

disturbance to ecosystems as possible despite regular sampling. However, current 507 

arthropod monitoring efforts rely on morpho-taxonomy, which is time-consuming and 508 

requires adequate taxonomic expertise. As a result, monitoring schemes are patchy and 509 
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largely limited. DNA metabarcoding as a rapid tool to obtain species occurrences is a very 510 

promising method for large-scale monitoring activities, especially when species counts 511 

are not required. When combining DNA metabarcoding with specimen photography and 512 

body size measurements, species counts and biomass can also be assessed.  513 

Going forward, creating new DNA-based metrics to report (relative) abundances based 514 

on genetic units rather than processing individual specimens offers new innovations 515 

addressing the most central questions in arthropod monitoring, as these rarely require 516 

absolute measures of abundance. Detecting and assessing trends in monitoring relates 517 

more to within- and between-sample comparisons taken across spatial and temporal 518 

scales. This has already successfully been done with metabarcoding (Hope et al. 2014; 519 

Danner et al. 2017; Baroja et al. 2019; Moran et al. 2019; Steinke et al. 2022). Additionally, 520 

DNA metabarcoding facilitates the assessment of ecosystem services in a time- and cost-521 

efficient manner, via processing pollen and food web analyses. 522 

There are still many challenges to face until metabarcoding data can deliver robust 523 

abundance estimations. Currently, sorting and individual handling of specimens from woc 524 

samples is unavoidable to obtain such data. However, it is important to apply both 525 

classical morpho-taxonomy and molecular biological approaches in parallel, which will 526 

allow the management and analysis of the large amounts of data generated by monitoring 527 

programs in a timely and cost-effective manner. Thus, despite its limitations, DNA 528 

metabarcoding can and should be incorporated as an additional tool in routine arthropod 529 

monitoring to increase sample sizes and cover a broader range of taxonomic groups.  530 
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Figures and tables 1131 

Figure 1: Semi-quantitative metrics. (A) ASV table as the outcome of a DNA 1132 

metabarcoding experiment, rows are samples, columns are ASVs, numbers are raw read 1133 

counts. From the ASV table, semi-quantitative metrics can be derived, e.g. frequency and 1134 

percentage of occurrence, bipartite networks and relative read abundance; (B) Frequency 1135 

and percentage of occurrence derived from ASV table, frequency of occurrence simplifies 1136 

the ASV table into presence/absence data, indicated by presence or absence of a 1137 

rectangle, when summarising this over all samples, percentage of occurrence can be an 1138 

informative metric for abundance in a system (right); (C) Bipartite networks derived from 1139 

the ASV table, samples and ASVs are nodes, edges indicate presence/absence of the 1140 

ASVs per sample (left), when summarising this over all samples, link strength can be an 1141 

informative metric for abundance in a system (right); (D) Relative read abundance derived 1142 

from ASV table, relative read abundance for individual samples is determined by dividing 1143 

raw read counts of individual ASVs by total read count per sample (left), when 1144 

summarising this over all samples, mean relative read abundance can be an informative 1145 

metric for abundance in a system (right); abbreviations: S – Sample, ASV – Amplicon 1146 

sequence variant, RRA – relative read abundance; ASVs are colour coded and refer to 1147 

ASVs from (A), artwork: Alice Scherges. 1148 

 1149 

Figure 2: Reducing read abundance biases. (A) Processing mock communities (bottle) 1150 

with defined composition allows determining taxon-specific correction factors, that can be 1151 

applied to correct relative read abundance of samples with unknown composition, 1152 

indicated by a red line. Correction factors can only be determined for taxa included in the 1153 
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mock community; (B) Correction factors can be determined using iterative algorithms and 1154 

a guess-and-test approach based on a morphological reference data set (not shown). 1155 

The correction factors can be applied to correct relative read abundance of samples with 1156 

unknown composition, indicated by a red line. Correction factors can only be determined 1157 

for samples, that show a good agreement in terms of taxa detected between the reference 1158 

and the DNA metabarcoding data set; (C) Adding spike-ins, e.g. a defined amount of 1159 

genomic DNA, to all samples and co-amplifying and co-sequencing the reference material 1160 

allows correcting raw read counts by simply dividing read counts assigned to taxa (blue 1161 

and brown bars) by read counts assigned to the spike-in (red bars); abbreviations: RRA 1162 

– relative read abundance, S – sample, artwork: Alice Scherges. 1163 

 1164 

Figure 3: Combination of methods. Samples or sample subsets (bottle) can be 1165 

processed and analysed by a variety of methodological approaches in parallel to achieve 1166 

complementary datasets, examples are, starting from the top and moving clock-wise, 1167 

specimen photography (camera icon), sample weighing or body size measurements for 1168 

biomass estimation (scales icon), quantitative PCR (amplification curves), DNA 1169 

metabarcoding (ASV table), digital droplet PCR (event number ~ amplitude graph), 1170 

morphological analyses (binocular icon), abbreviations: qPCR – quantitative PCR, ASV – 1171 

amplicon sequence variant, ddPCR – digital droplet PCR, artwork: Alice Scherges. 1172 

 1173 

Figure 4: Recommended workflow for biodiversity assessments with bulk samples 1174 

and DNA metabarcoding that obtains count and biomass data with species level 1175 

taxonomic identifications. (A) Specimens from a bulk sample (bottle) are first 1176 
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processed individually. (B) Processing includes specimen photography (camera), 1177 

specimen counts (abacus), body size measurements (caliper) and biomass estimation 1178 

(scales). Ideally, this is done automatically (green robot icon) and involves automatic 1179 

image recognition to achieve preliminary taxa identifications on broad taxonomic scales. 1180 

(C) Specimens are then re-combined to a community sample, a spike-in is added and 1181 

DNA is extracted (microcentrifuge tube). (D) DNA metabarcoding delivers species level 1182 

identifications and raw read counts (ASV table), which are corrected via the spike-in. (E) 1183 

Image data is combined to a taxon list containing count, size and biomass data (taxon 1184 

list). (F) Image data and DNA metabarcoding data are combined using machine learning 1185 

approaches (data assembly, orange robot icon) to obtain a data set that contains 1186 

information on species level identities, along with count data and biomass estimates (taxa 1187 

bubbles), abbreviations: ASV – amplicon sequence variant, artwork: Alice Scherges. 1188 

 1189 

Table 1: Overview of methodological approaches discussed in this publication.  1190 

 1191 

Box 1: Glossary 1192 

  1193 
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Figure 1: Semi-quantitative metrics. 1194 

 1195 
  1196 
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Figure 2: Reducing read abundance biases. 1197 

 1198 
  1199 
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Figure 3: Combination of methods.  1200 

  1201 

Author-formatted, not peer-reviewed document posted on 18/07/2023. DOI:  https://doi.org/10.3897/arphapreprints.e109709



45 

Figure 4: Recommended workflow for biodiversity assessments with bulk samples and 1202 

DNA metabarcoding that obtains count and biomass data with species level taxonomic 1203 

identifications. 1204 

  1205 
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Table 1: Overview of methodological approaches discussed in this publication.  1206 

Category Approach Sample types Quantitative? 

Semi-quantitative 

metrics 

FOO/POO 

 

all semi-quantitative 

 

 RRA all semi-quantitative 

 rarefaction all semi-quantitative 

 transformation all semi-quantitative  

Reducing read 

abundance biases 

correction factors via 

algorithm 

woc samples 

 

yes; virtual 

species counts 

 correction factors via 

mock communities 

all 

 

yes 

 spike-ins all yes; relative 

abundance 

 primer optimisation all no 

 multi-locus 

metabarcoding 

all yes  

Combination of 

methods 

general 

 

all; depending 

on approach 

yes; depending 

on approach  

 photography and 

body measurements 

of single specimens 

woc samples 

 

yes; species 

counts, biomass 

  1207 

Author-formatted, not peer-reviewed document posted on 18/07/2023. DOI:  https://doi.org/10.3897/arphapreprints.e109709



47 

Box1: Glossary, only terms that have not been defined in (Porter and Hajibabaei 2018) 1208 

are explained in more detail 1209 

Abundance in this review: general term to refer to different measures of 

species abundance, including species counts, relative 

abundance, biomass 

Biomass weight of individuals belonging to the same species 

Correction factors taxon-specific correction of read numbers assigned to that 

taxon; obtained via mock community sequencing or iterative 

algorithms (e.g. Darby et al. 2020; Darby et al. 2013; 

Krehenwinkel et al. 2017b) 

DNA metabarcoding performing DNA barcoding on mixed-species samples within 

one single PCR and coupled with high throughput sequencing 

('mixed template PCR' in (Porter and Hajibabaei 2018)) 

eDNA see (Porter and Hajibabaei 2018); environmental DNA 

ASV see (Porter and Hajibabaei 2018); amplicon sequence 

variant; alternative terms: exact sequence variant (ESV), 

zOTU (zero-radius OTU; Callahan et al. 2017; Edgar 2016) 

FOO / POO frequency of occurrence/percent of occurrence: taxon 

occurrences are combined across a number of individual 

samples (biological replicates) for a population-wide estimate; 

FOO – number of samples; POO – percentage of samples 

reported (Deagle et al. 2019) 

Species counts absolute number of individuals belonging to the same species  
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Metagenomics, 

mitogenomics / 

mito-metagenomics 

see (Porter and Hajibabaei 2018) 

Mock community artificial communities of known species composition / DNA 

concentration or similar; often used as a positive control (e.g. 

Ji et al. 2020; Krehenwinkel et al. 2017b) 

Multi-locus 

metabarcoding 

DNA metabarcoding based on the (separate) amplification 

and sequencing of different genetic markers for the same 

organismal group 

NGS / HTS next-generation sequencing, modern sequencing platforms 

that generate millions of DNA sequences in a single run (e.g. 

Illumina desktop sequencers), alternative term: high-

throughput sequencing 

NGS barcoding performing DNA barcoding on individual specimens, but 

exploiting the time- and cost-effectiveness of high-throughput 

sequencing platforms, rather than relying on traditional 

Sanger sequencing (e.g. Wang et al. 2018) 

Rarefaction sample-wise random sub-sampling of reads to even 

sequencing depth across all samples 

Relative abundance Proportion of a species within a sample 

RRA relative read abundance; taxon-wise number of reads per 

sample divided by total number of reads per sample 

Spike-ins / internal fixed amount of reference material added to each separate 
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standards sample (e.g. Ji et al. 2020; Saitoh et al. 2016) 

Transformation application of (mathematical) function to sequence reads, e.g. 

log-based transformations or rank-based transformations 

woc samples whole organism community samples, mixed species samples, 

obtained from mass-sampling traps, e.g. Malaise trap 
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