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Abstract 16 

Transports of people and goods contribute to the ongoing 6th mass extinction of species. They impact 17 

species viability by reducing the availability of suitable habitat, by limiting connectivity between 18 

suitable patches, and by increasing direct mortality due to collisions with vehicles. Not only does it 19 

represent a threat for some species conservation capabilities, but animal vehicle collisions (AVC) is also 20 

a threat for human safety and security in transport and has a massive cost for transport infrastructure 21 

(TI) managers and users. Using the opportunities offered by the increasing number of sensors 22 

embedded into TI and the development of their digital twins, we developed a framework aiming at 23 

managing AVC by mapping the collision risk between trains and ungulates (roe deer and wild boar) 24 

thanks to the deployment of a camera trap network. The proposed framework uses population 25 

dynamic simulations to identify collision hotspots and assist with the design of sensors deployment. 26 

Once sensors are deployed, the data collected, here photos, are processed through deep learning to 27 

detect and identify species at the TI vicinity. Then, the processed data are fed to an abundance model 28 

able to map species relative abundance of species around the TI as a proxy of the collision risk. We 29 

implement the framework on an actual section of railway in south-western France benefiting from a 30 

mitigation and monitoring strategy. The implementation thus highlighted the technical and 31 

fundamental requirements to effectively mainstream biodiversity concerns in the TI digital twins. This 32 

would contribute to the AVC management in autonomous vehicles thanks to connected TI. 33 

 34 

Keywords: Abundance Modelling, Animal Vehicle Collision, Autonomous vehicle, Camera Traps, 35 

Computer Vision, Connected Transport Infrastructure, Deep Learning, Digital Twin, Risk Management, 36 

Ungulates. 37 
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Introduction 39 

Transports of people and goods contribute to the ongoing 6th mass extinction of species (Forman and 40 

Alexander 1998, Holderegger and Di Giulio 2010, Haddad et al. 2015, IPBES 2019, Grilo et al. 2021). 41 

They impact species viability by three main processes (Teixeira et al. 2020). Transport infrastructure 42 

(TI) can have an impact on species: 1) by reducing the availability of suitable habitat for species 43 

(Ouédraogo et al. 2020, Kroeger et al. 2021, Fischer et al. 2022, Remon et al. 2022), 2) by limiting the 44 

functional connectivity between patches of suitable habitat (Ujvári et al. 2004, Balkenhol and Waits 45 

2009, Safner et al. 2011, Remon et al. 2018, 2022), and 3) by increasing direct animal mortality due to 46 

collisions with vehicles (Ceia-Hasse et al. 2018, Testud and Miaud 2018, Lehtonen et al. 2021, Moore 47 

et al. 2023). 48 

Not only does it represent a threat for some species conservation capabilities, animal vehicle collisions 49 

(AVC) is also a threat for human safety and security in transport when large species are involved. 50 

Animal vehicle collisions events also represent a massive cost for TI managers and users due to 51 

infrastructure and vehicle repair or compensations for damages (Huijser et al. 2009). For instance, bird 52 

strikes represent a 1.2 billion US$ cost annually to the aerial transport sector (Allan 2000) and caused 53 

more than 700 human death since 1905 (Avisure 2019, Metz et al. 2020). Moose road-kills along a 61 54 

km railway in central Norway cost 250 000 US$ annually (Jaren et al. 1991). 55 

In Europe, terrestrial AVC often involve large mammals (Grilo et al. 2021) such as moose (Alces alces), 56 

roe deer (Capreolus capreolus), or wild boar (Sus scrofa). Animal vehicle collisions also impede 57 

conservation programs across the EU particularly concerning large carnivores like grey wolve (Canis 58 

lupus), brown bear (Ursus arctos), or Eurasian lynx (Lynx lynx) (Bauduin et al. 2021, Grilo et al. 2021). 59 

In addition, large mammal populations tend to increase across the EU. For instance, Ledger et al. (2022) 60 

highlighted respectively a 331% and 287% increase of the red deer and roe deer population in the EU. 61 
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Thus, solution to ensure traffic safety without enclosing the transport network should be found to limit 62 

the barrier effect of transport infrastructure on large mammals without increasing, and rather 63 

ultimately reducing, the number of AVC (Grilo et al. 2021, Seiler et al. 2022). 64 

The transport system is in a deep digital transformation with the development and deployment of 65 

data-driven TI management (ITF 2021). Thus, an increasing number and diversity of sensors is 66 

embedded into TI providing time-continuous information to TI managers ultimately through the TI’s 67 

digital twin (DT) which is the digital representation of the physical TI (Grieves 2016, Batty 2018, Singh 68 

et al. 2021). Indeed, future roads are expected to become able to produce their own energy, be self-69 

monitored thanks to multiple embedded sensors, be carbon neutral and ensure biodiversity gain. Such 70 

an autonomous system is expected to also produce multiple services thanks to its digital copy 71 

collecting and analysing the sensors’ data (Hautière et al. 2012, in press, ITF 2023). To date, collected 72 

data are mainly used for TI maintenance or user safety (Moulherat et al. 2022). In addition to the TI 73 

management, connected TI are expected to provide information to the vehicle which, in turn, would 74 

become more and more autonomous in the near future (Seiler et al. 2022, ITF 2023). In this 75 

perspective, sensors embedded in the TI are providing the infrastructure digital model with data 76 

collected and analysed for providing relevant information that can feed the TI users including vehicles 77 

and therefore drivers (ITF 2021, 2023). 78 

Unfortunately, biodiversity concerns are not yet part of this TI digital environment which nevertheless 79 

offers a suitable place for biodiversity-based risk management such as AVC (van Eldik et al. 2020, ITF 80 

2021, 2023, Djema 2022, Moulherat et al. 2022). Indeed, sensor-based animal recognition ability, 81 

thanks to artificial intelligence and particularly deep learning, is growing very fast (Tuia et al. 2022) 82 

making it possible to automatically detect and recognize the main species involved in AVC in the EU 83 

(Aodha et al. 2018, Demertzis et al. 2018, Rigoudy et al. 2022). From a TI management perspective 84 

aiming at reducing AVCs, the main current applications are, to date, based only on large mammal 85 
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detection and aimed at informing drivers of the presence of a big animal. The animal detection can be 86 

used to animate dynamic panels or to threaten individuals approaching the TI with a combination of 87 

light and sounds with sometimes limited efficiency (Seiler and Olsson 2017). Collecting and analysing 88 

species detections (and non-detections) provided by sensors in the TI DT would contribute to improve 89 

the AVC management. Indeed, once identified, a collision risk map may be produced by models able 90 

to approximate the passage rate of the species involved in AVC around the TI. In this perspective, 91 

occupancy or abundance modelling can produce spatial estimates of presence probability or 92 

abundance, respectively (Burton et al. 2015, Gilbert et al. 2020, Gimenez et al. 2022, Tuia et al. 2022). 93 

Such maps would therefore provide drivers and connected vehicles with relevant context information 94 

about the actual risk of species involved in AVC presence. 95 

With the OCAPI initiative, the goal is to enhance the integration of biodiversity-oriented digital facilities 96 

into the DT of TI (Moulherat et al. 2021). In this paper, we develop a framework aiming to provide large 97 

mammal’s presence risk in the TI vicinity based on sensor-based monitoring system. The framework is 98 

applied on an actual AVC hotspot between ungulates (roe deer and wild boar) and trains in south-99 

western France benefiting from a mitigation measures program. In this context and based on the 100 

monitoring program planned as well as simulation of spatially explicit ungulate’s population dynamics 101 

implemented in 2021, we simulated ungulates detection stories, mapped their presence risk close to 102 

the TI, and tested the model performances to predict the theoretical AVC risk. Then, in 2022-2023, 103 

after monitoring for a single year, we applied the theoretical framework to the real situation to test 104 

the system for further improvements. 105 

Methods 106 

The methodological framework developed and implemented in this study is composed of 5 major steps 107 

(Figure 1). This framework begins with a sensor-based monitoring design phase (step 1 to 3) based on 108 
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population dynamic simulations of focal species (step 1). The framework then tests the monitoring 109 

design expected efficiency in an iterative process (steps 2 and 3). Step 4 of the framework is dedicated 110 

to sensor-based data processing, thanks to deep learning, which, in turn, feed abundance models, 111 

providing a proxy of the AVC (step 5). 112 

 113 
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Figure 1: Framework to deploy sensors along a transport infrastructure to map the animal abundance 114 

in the transport infrastructure vicinity in order to manage the animal vehicle collision risk. 115 

Study Site 116 

The study site is a 19.7 km section of the railway joining Toulouse to Agen in south-western France 117 

(Figure 2). This section supports about 24 trains daily and was identified by the TI managers for its 118 

frequent collisions with large wild mammals (mainly roe deer and wild boar). This site is part of a 119 

regional AVC reduction program launched by the French railway network management company (SNCF 120 

Réseau) in 2018. The program concerns 5 strategic sites with a high number of AVC, where a statistical 121 

analysis of collisions conditions has been performed (Gaillard 2013, Saint-Andrieux et al. 2020) and 122 

combined with spatially explicit population dynamic simulations of ungulates to identify the most 123 

sensitive places to AVC (Boreau de Roincé et al. 2018). Then, scenarios of mitigation measures have 124 

been proposed and their cost-efficiency evaluated based on the expected population functioning after 125 

scenarios implementation thanks to new simulations (Zurell et al. 2021, Moulherat et al. 2023). At the 126 

same time, a regional camera trap monitoring program following a Before After Control Impact (BACI) 127 

design (Smith 2002) was designed to evaluate the mitigation measures efficiency. The main mitigation 128 

measures planed on the study site are the upgrading of two existing bridges by reshaping the bridges’ 129 

embankment (sectors 1 and 2, Figure 2) and the fencing of 4 sections of the railway to drive animals 130 

to existing or upgraded passages or safer crossing places (sectors 1, 2, 3 and 4, Figure 2). The work 131 

concerning the bridges upgrading is planned for 2025. 132 

The study site benefits from a land use map produced by combining data from Corine Land Cover 133 

(Büttner et al. 2017), BD TOPO® (IGN 2021), ROUTE 500® (IGN 2020), dedicated fieldwork, and 134 

photointerpretation within a 5-km buffer zone around the 19.7 km of the studied railway section. 135 

Habitats have been characterised into 26 classes based on the standard EUNIS typology. 136 
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 137 

Figure 2: Study site in south-western France focused on 19.7 km of railway where numerous AVC 138 

occurred the last 10 years. The land cover is represented using the 5 main habitat typologies as used 139 

for the statistical analysis. Camera traps deployed on the field are identified by a letter from A to L. 140 

Ungulate Population Dynamic Simulation 141 

As a part of the AVC hotspot identification, we used SimOïko to perform spatially explicit population 142 

dynamic simulation of ungulates on the study site. SimOïko is an individual-based spatially explicit 143 

model developed to perform population viability analysis based on the MetaConnect model 144 

(Moulherat, 2014). In the model, each individual of the simulated population is a unique agent whose 145 

virtual life is driven by stochastic processes. For example, survival of an individual depends on the result 146 

of a Bernoulli event with probability p corresponding to the average survival of the individual age class. 147 
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The model assumes that individuals live in panmictic patches of suitable habitat. In this study, roe deer 148 

and wild boar, the AVC target species, are not explicitly modelled. Instead for the sake of simplicity, 149 

we used a virtual species representative of a mixture of roe deer and wild boar life history traits (Caro 150 

and O’Doherty 1999, Caro et al. 2005, Baguette et al. 2013) hereafter called ungulate. Suitable patches 151 

for ungulate in this landscape are expected to be forests and shrublands. 152 

We modelled the dispersal behaviour of ungulate moving between suitable habitat patch using the 153 

SimOïko embedded Stochastic Movement Simulator (SMS) algorithm (Palmer et al. , 2011). The SMS 154 

algorithm assumes that individuals can perceive their environment to a certain distance and tend to 155 

use the “easiest” path within this perceptual range. Thus, the model needs a rugosity map reflecting 156 

the ability of individuals to cross the different types of land cover existing within the study site 157 

landscape matrix. Thus, for each of the 26 natural habitat types of the study site, a rugosity coefficient 158 

is assigned based on expert opinion on ungulate moving abilities (Dutta et al. 2022) (see supplementary 159 

material for the comprehensive parameterisation of SimOïko). SimOïko’s input maps are rasterized 160 

using a 5x5 m pixel resolution. 161 

Simulation were initialised with 118 individuals assuming that all the potential suitable patches are 162 

occupied at their maximum carrying capacity. The simulation runs for 100 years which is sufficient to 163 

ensure the metapopulation dynamic stabilisation for at least the last 50 years (see supplementary 164 

material). Therefore, only the results from the last 50 years were used. Simulations were repeated 50 165 

times. 166 

As a result, the model provides the expected number of individuals living in the studied landscape and 167 

a map of the cumulative number of animal passage per map pixel during the simulation time 168 

(Moulherat 2014). 169 
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Monitoring Strategy 170 

To map the abundance of ungulate in the TI vicinity using the camera traps deployed for another 171 

purpose (e.g. evaluate the mitigation measures efficiency), we mimic the expected monitoring process 172 

and analysis to evaluate its effectiveness in an iterative four step process: 173 

1. Propose a location of camera traps scenario.  174 

2. Use the camera trap location scenario and the movement simulation results to simulate 175 

detection stories. 176 

3. Analyze the simulated monitoring results with abundance modelling. 177 

4. Compare the movement simulation and the abundance model results in order to control the 178 

monitoring program ability to be used for mapping the abundance of ungulates. If not, come 179 

back to step 1 if some adaptations are possible, else, the ability to actually map the ungulate’s 180 

abundance is not expected. 181 

Monitoring Program 182 

On the study site, we designed a monitoring program to evaluate the efficiency of 2 bridges upgrades 183 

(including fencing) (sectors 1 and 2 Figure 2) and the fencing only of 2 additional sections (sectors 3 184 

and 4 Figure 2) in reducing AVC. Each section benefiting from a mitigation measure is expected to be 185 

monitored by a network of minimum 6 cameras. A couple of cameras are recording each side of the 186 

railway (entrances of bridges or observed animal’s tracks on the field for the fencing projects) to 187 

monitor crossing events. Two other cameras are deployed in forests, between 177 and 651 m from the 188 

railway, as controls of the ungulate activity in the surrounding suitable habitats (Figure 2). Another 189 

pair of cameras are placed to survey crossing events in sections not benefiting from mitigation 190 

measures as a control of the crossing activity. Additional cameras are added to monitor crossing events 191 

in section not benefiting from mitigation measures, but with suspected high crossing frequency or for 192 
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which simulations results show a possible crossing location deferment. Thus, the total program 193 

comprises 38 cameras each deployed for 5 years minimum and hereafter called Optimal scenario (𝑆𝐶𝑜). 194 

The monitoring began in August 2022. However, due to TI manager investment abilities, the 195 

monitoring could only start for the two bridges upgrading reducing the study site section to 11.7 km 196 

long for the framework showcasing (sectors 1 and 2 Figure 2). The continuous deployment of 12 197 

camera traps (Bolyguard, MG984G-36MP 4G) required to monitor these two sections, will be 198 

maintained for at least 5 years by the local hunter association and is defined as the actual scenario 199 

(𝑆𝐶𝑎). 200 

Both scenarios of camera trap deployment (𝑆𝐶𝑜 and 𝑆𝐶𝑎) were evaluated for their expected ability to 201 

provide relevant mapping of ungulate abundance close to the TI. 202 

Virtual and Actual Camera-Trap Data Processing 203 

Frequentation Story Simulation of the Virtual Camera Traps 204 

We used the simulated frequentation map to mimic a camera trap survey leading to a frequentation 205 

history of 30 recording occasions. Thus, for each sampling occasion, the number of detections in a pixel 206 

containing a camera trap is simulated as a random event following a Poisson distribution. The average 207 

value of this distribution corresponds to the average number of passages of ungulates within the pixel 208 

during a single time-step of the population dynamics simulation. In this respect, we divided the average 209 

number of passages of dispersing individuals by the proportion of dispersing individuals. 210 

Deep Learning Algorithm Training for Wild Boar and Roe Deer Automatic Detection. 211 

To recognize the main species (here roe deer and wild boar) involved in AVC on the images produced 212 

by the monitoring program, we used a deep neural network call YoloV8 (Jocher et al. 2023). This model 213 

is known to be fast and accurate for detecting and classifying objects in images. The model finds objects 214 

of interest in a picture and creates a bounding box around them. Then the model assigns a category to 215 
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the bounding box such as a species name in this work. In this perspective, we fine-tuned a YoloV8 pre-216 

trained on the COCO data set (Jocher et al. 2023) with the project data set (Weiss et al. 2016). 217 

The project data set is composed of 40 358 images provided by 41 data providers across France and 218 

annotated by 51 experts thanks to the project’s collaborative annotation platform 219 

(www.ocapi.terroiko.fr). This data set was completed by the images of the COCO data set containing 220 

animals or vehicles. Annotations consist in bounding boxes drawn on the pictures and labelled with 221 

the name provided by the French national taxonomic referential (Gargominy et al. 2021). The dataset 222 

was split randomly into a train (80%) and validation (20%) data set. The train data set contained 262113 223 

boxes from 26 labels including 1307 boxes of wild boar (Sus scrofa) and 418 boxes of roe deer 224 

(Capreolus capreolus). Approximately 5.5% of the images were empty (no animals, nor human or 225 

vehicle). Other frequently observed labels included humans, vehicles, foxes, badgers, dogs, cats, 226 

horses, chamois, lynx and leporidae, among others. We used an independent data set as test. The test 227 

data set is composed of 1174 images containing 212 boxes of roe deer and 24 of wild boar. Thirteen 228 

other species with an average of 72.8 boxes (ranging from 1 to 188) per species are present in the test 229 

data set. 230 

Frequentation Story of the Deployed Camera Traps 231 

Here we used the photos taken from 29 August 2022 to 16 April 2023 (33 weeks) for 11 sites, and from 232 

24 October 2022 to 16 April 2023 (25 weeks) for the site E to test the framework in real conditions. 233 

The local hunter association made simple annotations by identifying the species seen on the pictures 234 

(no bounding boxes) using 3 classes labelling system: ungulate (roe deer and wild boar), human/vehicle 235 

and other, including any other species and the empty pictures. The data set thus produced is then 236 

called the showcase data set. When observations were closer than three minutes apart, only the first 237 

observation was kept as the camera-trap was likely triggered several times by the same individual 238 

(Rovero and Zimmermann 2016). The observations were discretised into weekly intervals to generate 239 
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the detection history, which records the number of ungulate detections per week and camera trap 240 

site. 241 

Abundance Modelling 242 

In this paper, we do not aim to estimate the absolute ungulate abundance within the study site, but 243 

rather spatially estimate their relative abundance to identify the places with higher collision risks. To 244 

do so, we used the N-mixture model proposed by Royle (2004). In this respect, the study area was split 245 

into hexagonal cells of 200 m large, leading to 3.5 ha cell’s area. The analysis was performed in R 246 

version 4.3.0 (R Core Team 2023) using the pcount function from the unmarked package (Fiske and 247 

Chandler 2011, Kellner et al. 2023). 248 

To test the monitoring design efficiency, we compared the normalised simulated spatial pattern of 249 

ungulate movements with the normalised abundance predicted by two models using different 250 

covariates. The first model (Mod1) is built with a single site covariate: the sum of the movements in 251 

the cell during all time-steps of all repetitions. The number of sensors per cell is also used as detection 252 

covariate in Mod1. The second model (Mod2) is based on ecological covariate rather than population 253 

dynamic simulation output. Mod2 used several spatial covariates extracted from the land use map: 254 

• The percentage of agriculture, forest, urban and water in each cell. 255 

• The distance between the camera traps and the closest agriculture, forest, railway, road, urban 256 

area, water (for model parameters optimisation). 257 

• The distance between the cell centroid and the closest agriculture, forest, railway, road, urban 258 

area, water (for prediction over all the map). 259 

We performed a PCA with the areas of agriculture, forest, urban, water per cell to reduce the number 260 

of variables explaining landscape variability in the area while managing the correlation between 261 
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variables (Gimenez and Barbraud 2017). The two first principal component were kept, representing 262 

respectively 84,4% and 12,9% of the variance. The first principal component mainly represents the 263 

gradient between forests and urban areas, whereas the second represents the gradient between 264 

agricultural areas and the other habitats. We therefore used the cell coordinates on these two axes as 265 

synthetic uncorrelated descriptors of the cell habitats characteristics. In the spirit of principal 266 

component regression (Graham 2003), the model's covariates were selected on the basis of their 267 

predictive capacity, according to the Akaike information criterion (AIC) (Akaike 1974, Burnham et al. 268 

2002), and their ability to represent the variability of the habitats in the study area. For abundance 269 

covariates, the distance to each habitat and the two synthetic variables were tested. For detection 270 

covariates, the average weekly temperature and the weekly rainfall were tested. We selected the 271 

model covariates based on the actual frequentation story. The final model is built of three covariates, 272 

the two synthetic covariates from the PCA and the distance to the railway. Only Mod2, was used to 273 

map the actual abundance of ungulates. 274 

Results 275 

Testing the Sampling Design  276 

The simulation process aiming at mimicking the camera trap survey under the 𝑆𝐶0 scenario is 277 

composed of 27 sites with 1 to 3 camera per site. The average detection per sampling occasion is of 278 

21.2 occurrences (ranging from 0 to 90 occurrences. 279 

Considering the 𝑆𝐶𝑎 scenario, based on 12 sites with a single camera, the average detection per 280 

sampling occasion is 11.5 occurrences (ranging from 0 to 29 occurrences). With both scenarios, all sites 281 

benefit from at least one detection. 282 
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Modelling the Simulated Abundance of Ungulate with Simulated Frequentation Stories 283 

The sampling effectively catches most of the overall simulated movement patterns, both with the 284 

expected (𝑆𝐶0) and actual (𝑆𝐶𝑎) sampling (Figure 3). Both protocols identify the same potential 285 

collision hotspots due to higher ungulate abundance (Figure 3). The Mod1 model prediction is similar 286 

to the population dynamic simulation results under 𝑆𝐶0. However, under 𝑆𝐶𝑎, the global pattern also 287 

corresponds to the initially simulated pattern but the lack of cameras in cells mainly composed of forest 288 

habitats with very high simulated frequentation over concentrates the abundance prediction in a 289 

limited number of cells. With Mod2, the global pattern leads to similar most frequented places in the 290 

landscape as Mod1 and the population dynamic results for 𝑆𝐶0 and 𝑆𝐶𝑎. While Mod1 over 291 

concentrates the abundance in a limited number of cells compared to the simulation results, Mod2 292 

tends to retrieve a similar abundance general pattern but to over spread the abundance around the 293 

high abundance cores. 294 

 295 
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Figure 3: Normalized relative abundance of ungulates per 3.5 ha cell simulated by the population 296 

dynamic model (panels A and B), the Mod1 abundance model (panels C and D) and the Mod2 model 297 

(panels E and F) for 𝑆𝐶0 (panels A, C and E) and 𝑆𝐶𝑎 (panels B, D and F). For comparison purposes, the 298 

normalisation was performed by normalising each cell of a map by the 97.5 percentile value. 299 

Regardless of the abundance modelling scenario, the sampling scenarios are expected to be able to 300 

identify relatively the riskiest sectors. 301 

Estimating the Actual Abundance of Ungulates 302 

Automatic Species Recognition 303 

On the OCAPI data set, the mAP@0.5 metric (mean average precision when the intersection over union 304 

(IoU) (Padilla et al. 2020), is at least 0.5) of the classification model is 0.78 (Everingham et al. 2010). 305 

The confusion matrix is built using the default parameters from YoloV8 (confidence threshold = 0.25, 306 

IoU threshold = 0.45). With precisions (Padilla et al. 2020) higher than 90% and recall (Padilla et al. 307 

2020) ranging from about 80% to 97%, the model properly recognizes the targeted species (roe deer 308 

and wild boar) (Table 1). Using the model on the test data set, performances to recognize roe deer and 309 

wild boar fall down, highlighting the model’s lack of generalization ability (see supplementary 310 

material). 311 

 312 

Table 1: Classification model performance. The precision reflects the model ability to limit the false 313 

positives prediction while the recall corresponds to its capability to avoid false negatives. 314 

 Validation data set Test data set 

 
Number of 

annotations 
Precision 

(%) 
Recall (%) 

Number of 
annotations 

Precision 
(%) 

Recall (%) 

Roe deer 93  92.47 79.63 212 74.06 83.51 

Wild 
boar 

352 93.18 90.11 24 79.17 19.39 

 315 
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Considering the showcase data set, with 80.8% of good classification when an ungulate is actually 316 

present on the pictures (Figure 5), the model provides useful information to map the AVC risk. For 317 

15.7% of the ungulate observation prediction, the picture is actually empty or contains another species 318 

(mainly badger confused with wild boar, see supplementary material). Figure 5 also points out the 319 

model’s ability to identify humans and vehicles as well as other animals and empty pictures. 320 

 321 

Figure 5: Comparison between prediction made by the model and the actual annotations performed 322 

by the local hunter association on the showcase data set. Pictures containing roe deer or wild boar are 323 

grouped as ungulates. Similarly, the predicted “Other” class merges boxes with other animals and 324 

empty pictures. Thus, the model predictions are presented under a form comparable to the one used 325 

by the hunter association. Details of the showcase data set processing results are developed in 326 

supplementary material. 327 
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Mapping the Actual Abundance of Ungulates 328 

Mod2, implemented on the data issuing from the available 33 weeks monitoring program, results in 329 

ungulates concentrated along the two rivers crossed by the railway and in the Bouconne forest in the 330 

western part of the site (Figure 6). 331 

 332 

Figure 6: Normalized relative abundance of ungulates per 3.5 ha cell estimated by the Mod2 model. 333 

Ungulates abundance is used as an AVC risk proxy along the railway section. The higher the abundance, 334 

the higher the AVC risk. 335 

Discussion 336 

In this paper, we associated methods from ecology, data science and engineering to develop a 5-steps 337 

framework for AVC management on a linear transport infrastructure (Figure 1). Our showcase was 338 

developed on a railway section but the framework fits to any type of transport infrastructure. 339 

Developing and actually implementing this framework on the field demonstrates that managing the 340 

AVC risk thanks to appropriate sensor deployment and data analysis is possible but that many technical 341 

as well as fundamental improvements are required before deployment may be possible in future 342 

transport infrastructures. 343 
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Embedding Biodiversity Relevant Sensors into the Infrastructure 344 

We implemented the framework for an existing TI benefiting from a specific monitoring program. 345 

Because biodiversity monitoring is not the central job of TI managers, we can hardly expect that they 346 

would deploy a sensor network specific for that purpose. Thus, our framework was developed to be 347 

conveniently part of existing network dedicated to other goals (here evaluating the mitigation 348 

measures efficiency). However, steps 1 to 3 (the sensor-based the monitoring design phase) may be 349 

part of the TI conception phases and particularly contribute to environmental impact assessment. 350 

Indeed, population modelling are increasingly used for decision making including environmental 351 

impact assessment (Tarabon et al. 2021, Zurell et al. 2021, Boileau et al. 2022, Moulherat et al. 2023) 352 

and monitoring programs are expected to be part of the environmental impact assessment in order to 353 

control that the mitigation measures are efficient enough to ensure the “no net loss” of biodiversity 354 

(European Parliament 2014). Such a framework paves the way for the integration of biodiversity-355 

oriented monitoring systems into the TI and its vicinity in line with proposals done for hydraulic 356 

management (Wang et al. 2022) or user safety (Proto et al. 2010). 357 

If using existing cameras around the TI or embedding ones dedicated to biodiversity monitoring may 358 

contribute to map the AVC risk, their deployment must be optimised to ensure the system cost 359 

efficiency as well as its sustainability (Hautière et al. 2012, in press). In this respect, literature issuing 360 

from sensor-based biodiversity monitoring systems provides recommendations (e.g. distance between 361 

devices, recording frequencies, etc) (Evans et al. 2019, Kays et al. 2020, Nawaz et al. 2021). 362 

Unfortunately, these recommendations are often hardly applicable to the survey of linear structures 363 

such as roads, railways or channels. However, based on the three first steps of the proposed 364 

framework, scenarios of sensors network deployment can be tested and ultimately optimized by 365 

automatically removing or adding devices in the sensor network. 366 
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Developing Performant Artificial Intelligence to Recognize Species Involved in AVCs 367 

The recognition algorithm fine-tuned in this work is not general enough to properly perform in 368 

operative conditions. The moderate performances of the model are due to multiple factors such as the 369 

number of annotated data used to train the model and particularly the lack of pictures taken in 370 

operative-like conditions. To improve these performances, we successfully used DeepFaune which was 371 

trained on larger data set to recognize our focal species among other French common ones (Rigoudy 372 

et al. 2022). Albeit the marginal performance improvement on the data from the showcase, its use in 373 

other places of the general monitoring program shows very poor performances for instance when 374 

cameras are elevated and animals for which only the back can be seen. To address these current 375 

limitations, further recognition algorithms developed to ultimately map AVC should focus on a limited 376 

number of relevant species and on the deployment conditions (e.g. sensor orientation, image quality, 377 

etc.). In addition, the use of deep learning to recognize species leads to changes in the form of the 378 

abundance model inputs (false positives, uncertainty in the recognition, etc.). Further research in the 379 

domain of statistical analysis of ecological data may adapt to this new form of input data (Chambert et 380 

al. 2018, Tabak et al. 2020) and may help in overcoming the current limited performance of recognition 381 

algorithms to ultimately produce an AVC risk map. 382 

From a Static Map of AVC Risk to Real Time Driver Information 383 

As sensors collect data continuously, our framework could possibly be improved by using abundance 384 

or occupancy models in continuous-time (Guillera-Arroita et al. 2012, 2012). Continuous-time data 385 

discretised do not respect the mathematical hypothesis of classical discrete-time models, as sampling 386 

occasions are not temporally independent (Barbour et al. 2013). A continuous-time model would make 387 

our framework more objective and reproducible, as the discretisation period is chosen arbitrarily (Rov-388 

ero and Zimmermann 2016, Schofield et al. 2017, Rushing 2023), as well as the time interval in which 389 
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images are removed because they are likely to be the same individual, and would avoid losing infor-390 

mation (Kellner et al. 2022). Continuous-time models have recently been developed for unmarked 391 

populations (for example Guillera-Arroita et al. (2011) for occupancy, Guillera-Arroita et al. (2012) for 392 

abundance, and even Kellner et al (2022) for co-occurrence), which could be useful for collisions-in-393 

volved species whose distribution is strongly linked to other species (Hebblewhite 2007, Rioux et al. 394 

2022). This framework would also improve with the development of incremental learning (Zhu et al. 395 

2022), to produce dynamic adaptive maps that could be ultimately sent to connected vehicles.  396 

Mainstreaming Biodiversity in the Digital Twins of Transport Infrastructure 397 

Digital twins are developing regardless of the TI type (e.g. road, railway, airport, etc) and the 398 

framework we proposed can be applied to any type of TI with for instance some adaptation for bird 399 

detection in a 3D explicit digital environment to manage collisions with planes (Dziak et al. 2022). 400 

Similar approaches are also being designed for the development of smart cities and territories 401 

(Catalano et al. 2021). Generalizing biodiversity monitoring integration in the interconnected digital 402 

twins of the built environment offers a great opportunity to contribute to the survey of biodiversity 403 

global trends as a co-benefit of the ongoing digitalisation of landscape management (ANZLIC 2019, 404 

Singh et al. 2021, Moulherat et al. 2022). 405 

  406 
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