
Project Report

Author-formatted document posted on 12/10/2023

Published in a RIO article collection by decision of the collection editors.

DOI: https://doi.org/10.3897/arphapreprints.e114048

Establishment of a data visualization interface for the
Digital Botanical Gardens Initiative

 Maëlle Wannier

https://doi.org/10.3897/arphapreprints.e114048
https://orcid.org/0009-0008-3757-9999

UNIVERSITY OF FRIBOURG

MASTER THESIS

Establishment of a data visualization
interface for the Digital Botanical Gardens

Initiative

Author:
Maëlle WANNIER

Supervisor:
Pierre-Marie ALLARD

A thesis submitted in fulfillment of the requirements

for the degree of MSc in Computational Biology and Bioinformatics

in the

COMMONS Lab
Department of Biology

October 9, 2023

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://www.unifr.ch/home/en/
http://www.johnsmith.com/
http://www.johnsmith.com/
http://www.jamessmith.com/
http://www.jamessmith.com/
http://researchgroup.university.com/
http://department.university.com/

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

i

UNIVERSITY OF FRIBOURG

Abstract
Faculty of Sciences and Medicine

Department of Biology

MSc in Computational Biology and Bioinformatics

Establishment of a data visualization interface for the Digital Botanical Gardens
Initiative

by Maëlle WANNIER

The Digital Botanical Gardens Initiative (DBGI) embarks on an innovative journey to cu-
rate, manage, and disseminate digital data from living botanical collections, with an em-
phasis on mass spectrometric evaluations of chemodiversity. Using semantic web tech-
nology, this data is linked with relevant metadata, propelling ecosystem research and
guiding biodiversity conservation efforts. Central to the success of DBGI is the creation
of an interactive platform for both humans and machines to assimilate this knowledge.
This report outlines our efforts to design the prototype of a data visualization portal in-
tended to evolve into the DBGI dashboard. Starting with a Plotly Dash application, the
project transitioned to a Node.js application leveraging Javascript, HTML, and CSS for
enhanced customization. This provides a basis for future improvements, some of which
are proposed in the report.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://www.unifr.ch/HOME/EN/
http://faculty.university.com/
http://department.university.com/

ii

Contents

Abstract i

Acknowledgements v

1 Introduction 1
1.1 Background and motivation for the project 1
1.2 Brief overview of the research problem and objectives 2

2 Literature Review 4
2.1 Discussion of existing research on creating data dashboards and using

SPARQL queries for data visualization . 4
2.1.1 GNPS dashboard . 4
2.1.2 LOTUS resources . 5

Wikidata . 5
Natural Products Online . 5
Nprod.net . 6

3 Methodology 8
3.1 Description of the data sources and how they were collected and processed 8
3.2 Discussion of the software tools and programming languages used to build

the dashboard and interface with the knowledge graph and LCMS profiles 9

4 Results 13
4.1 Presentation of the dashboard interface and its various features and com-

ponents .. 13
4.1.1 Home (B.1) ... 13
4.1.2 Explore whole dataset (B.2) ... 13
4.1.3 Explore Molecules (B.8) .. 16
4.1.4 Molecule Page (B.9) ... 16
4.1.5 Explore Organism (B.10) .. 16
4.1.6 Organism page (B.11) ... 17
4.1.7 Download (B.12) ... 17
4.1.8 Informations ... 17

4.2 Perspectives ... 17
4.2.1 Error handling .. 17
4.2.2 Visualisation options ... 18
4.2.3 SQL search .. 18
4.2.4 Sample page .. 18
4.2.5 Download page .. 19
4.2.6 Functionalities for DBGI data ... 19
4.2.7 Cross-Browser and Device Compatibility Testing 19

4.3 Examples of SPARQL queries .. 19

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

iii

5 Discussion & Conclusion 21
5.1 Discussion of how the code was optimized for efficiency and speed.................. 21

5.1.1 Javascript optimization .. 21
5.1.2 HTML optimization ... 23
5.1.3 Further optimization .. 24

5.2 Challenges of the study and potential avenues for future research 26
5.2.1 Challenges caused by a dual data sources ... 26
5.2.2 Choice of Software and Programming Language 26

5.3 Conclusion ... 28

A Softwares & libraries version 29
A.1 Nodejs .. 29
A.2 Python .. 29
A.3 PostgreSQL .. 29

B Dashboard pages 30

Bibliography 42

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

iv

List of Tables

4.1 Examples of SPARQL queries ... 20

List of Figures

1.1 Main goals of the Digital Botanical Gardens Initiative 2

2.1 Subject-predicate-object structure . 5

3.1 Data types and fluxes in the DBGI. 9

4.1 Example of a treemap representation . 14

5.1 Data Structure of both data sources . 27

B.1 Home page . 30
B.2 Explore page . 31
B.3 Explore page in text-based search mode . 32
B.4 Explore page in structure-based exact match search mode 33
B.5 Explore page in structure-based substructure search mode 34
B.6 Explore page in structure-based similarity search mode 35
B.7 Explore page in SPARQL-based search mode 36
B.8 Compound list page . 37
B.9 Molecule page example . 38
B.10 Organisms list page . 39
B.11 Organism page example . 40
B.12 Download page . 41

List of Code Snippet

5.1 getTableData function .. 22
5.2 Handling of HTTP Requests on the home page: Example of Caching 22
5.3 HTTP GET Request for the explore page .. 23
5.4 example of prefetching on a script ... 24
5.5 Handling of HTTP Requests on the structure-based explore page: 25

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

v

Acknowledgements

I’d like to express my profound gratitude to my advisor, Pierre-Marie Allard, and the
rest of the lab team, Emmanuel Defossez, Edouard Brülhart, and Audrey Le Cabec. Their
encouragement, tolerance, and indispensable aid throughout my MSc thesis have been
truly beneficial. Additionally, my heartfelt thanks to the DBGI team for their warm re-
ception and support.

I would also like to thank all my library companions - bioinformatician, psychologist
and biologist - for all the breaks, coffees and happy hours that restored energy and helped
keep motivation.
Special recognition must be given to Axel Giottonini and Marco Visani, whose guidance
and assistance with my code were of great help, to Alissa Girard for being my unpaid
therapist whenever motivation was lacking and to Yves Steiner for supplying free coffees
that sustained focus and energy.

Additional gratitude is extended to my friends: Audrey Rossier, Maël Ravaz, Elia Betschen,
and Lucas Orsini. Their companionship, manifested through shared drinks and insight-
ful late-night discussions, has been both a source of enjoyment and intellectual enrich-
ment.

My gratitude is further extended to my work colleagues for their vested interest and
support in my thesis, with particular acknowledgment to Florian Progin.

Lastly, I wish to convey my heartfelt thanks to my family: Patrizia, Thierry, Thai and
especially my sister, Petra. Their constant support, encouragement, and belief has served
as the backbone of this journey. The success of this undertaking would not have been
possible without such unwavering assistance.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

vi

List of Abbreviations

DBGI Digital Botanical Garden Initiative
DOM Document Object Model
EMI Earth Metabolome Initiative
InChI International Chemical Identifier
JBN Jardin Botanique de Neuchâtel
JBUF Jardin Botanique de l’Université de Fribourg
JS JavaScript
KG Knowledge Graph
RDF Resource Description Frameworks
SMILES Simplified Molecular-Input Line-Entry System
UNIFR University of Fribourg

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

1

Chapter 1

Introduction

1.1 Background and motivation for the project

The health and stability of ecosystems heavily rely on biodiversity. Numerous studies
indicates that ecosystems with a broader range of biodiversity are more resilient and effi-
cient, performing better in areas such as carbon storage, crucial for human well-being. [1]

However, our planet is currently confronting a serious threat to biodiversity. Smith et
al. [2] already stated in 1993 that since about 1600, 486 animal species had been recorded
extinct. In the same period, 600 plant species are known to have disappeared, which rep-
resents about 0.25% of the total.
A study conducted by Bakkenes et al. [3] estimates that by 2050, more than 16% of the
European landmass will experience local species losses surpassing 50%. [4] Hence, the
immediate need for conservation efforts cannot be overstated.
For these efforts to be meaningful and effective, characterizing and documenting the full
scope of biodiversity is a key preliminary step. [1]

With this on mind, the Earth Metabolome Initiative (EMI) aims to record the full spec-
trum of metabolites found in all living organism, also referred to as the metabolome. [5]
As a pilot to the project, the Digital Botanical Garden Initiative (DBGI) specifically focus
on botanical collections, using masspectrometry techniques. [1] The choice of plants as a
pilot subject is driven by multiple advantages. First, botanical gardens host a remarkable
diversity of plant species within a compact area, thus providing a rich sample set for the
initiatives. As an example, the Caribbean islands, regarded as a biodiversity hotspot [6],
sustain a native flora of approximately 11,000 species spread across a land area of around

229,550 km2 [7], leading to a biodiversity density of approximately 0.0479 species/km2.

Conversely, the JBUF contains about 5,000 species within a 0.018 km2 area [8], resulting

in a biodiversity density of approximately 277,778 species/km2. This value is roughly
5.8 × 106 times greater, emphasizing the impressive diversity.

Furthermore, botanical assemblages might not possess the exhaustive diversity observed
in natural ecosystems but they present a significant advantage due to their accessibility.
These botanical collections are meticulously cataloged, labeled, and organized, allowing
for an efficient sampling process. The environmental conditions within these collections
can be controlled and monitored more readily compared to wild ecosystems, albeit not
to the extent of those within laboratory settings. Importantly, these botanical gardens
retain a level of diversity substantially greater than that found among laboratory-grown
specimens, thus positioning themselves as a valuable intermediary for botanical study.[1]

This pilot has 8 main goals:

1. Establishing chemical extracts libraries of Swiss botanical gardens.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

http://www.earthmetabolome.org/
https://www.dbgi.org/

Chapter 1. Introduction 2

2. Digitize, through mass spectrometry, the chemodiversity of Swiss botanical gar-
dens.

3. Gather chemical information and relevant samples metadata in a tailored knowl-
edge graph.

4. Connect to existing ontologies (bio, chemo) and biodiversity digitization projects.

5. Establish web and programmatic interfaces for the query of the acquired knowl-
edge.

6. Illustrate the feasibility and advantages of an end-to-end Open Science project.

7. Establish robust and scalable workflows for the digitization of wild ecosystems bio-
diversity. This point is of particular importance for the future Earth Metabolome
Initiative.

8. Provide "molecular arguments" for biodiversity conversation policies and initia-
tives. [1]

FIGURE 1.1: Main goals of the Digital Botanical Gardens Initiative. [1]

1.2 Brief overview of the research problem and objectives

This thesis aims to participate to the 5Th goal of the Digital Botanical Garden Initiative:
Establish web and programmatic interfaces for the query of the acquired knowledge. More pre-
cisely, the project aimed to construct a dashboard designed to facilitate user searches for
organisms or molecules using either textual or structural input. This platform is intended
to display pertinent sample information, such as LCMS features, and provide a direct in-
terface for querying the DBGI Knowledge Graph.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 1. Introduction 3

Several challenges needed to be addressed in this project. A primary hurdle was the
data source. At the beginning of the project, the Knowledge Graph was not entirely con-
structed and populated. To bypass this, the decision was made to initiate the project using
static data derived from the LOTUS initiative. This initiative aimed to catalog structure-
organism pairs, essentially documenting the relationships between unique molecular
structures and the organisms from which they were identified, on an open platform. [9]
Indeed, the data listed on the LOTUS platform shared similarities with the DBGI data,
making it an excellent starting point. Furthermore, LOTUS had already implemented a
dashboard for data visualization, offering valuable assistance for our project, as detailed
in Chapter 2.1.2.

As the project progressed, the decision was made to retain the LOTUS data on the plat-
form, granting users the flexibility to select their desired data source for queries. There-
fore the dashboard has SQL and SPARQL based queries depending on the selected source.

As a last objective, the Digital Botanical Garden Initiative is committed to embodying
the principles of Open Science in an end-to-end manner. As such, the project’s daily
progress is chronicled in an open-notebook, which is publicly accessible for those inter-
ested in tracking its development. Additionally, all relevant code is freely accessible via
the Github DBGI page.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

http://www.dbgi.org/dendron-dbgi/
https://github.com/digital-botanical-gardens-initiative

4

Chapter 2

Literature Review

2.1 Discussion of existing research on creating data dashboards

and using SPARQL queries for data visualization

Numerous dashboards are currently available for the visualization of molecular data.
Some offer direct access to the visualization of LCMS data, while others focus on facili-
tating the search of molecules within a database. Our project strives to amalgamate these
two functionalities.
The focus within this section is on dashboards that had a substantial influence on the
project, yet many other valuable resources exist and could potentially provide value.
Among these, dashboards developed by the Zakodium team could hold potential bene-
fits for similar objectives as their company is dedicated to the development of tools for
storing, processing, visualizing and exploiting scientific data, with a particular empha-
sis on the processing of NMR spectra, mass spectra, metabolomics data and statistical
analysis.[10]

2.1.1 GNPS dashboard

The GNPS Dashboard, accessible at https://gnps-lcms.ucsd.edu [11], is a comprehensive
online resource that enables the visualization, inspection, sharing, collaborative analy-
sis, and pedagogical exploration of liquid and gas chromatography-mass spectrometry
(LC-MS and GC-MS) data. It supports both private and publicly accessible MS data,
including files stored in prominent MS data repositories such as GNPS/MassIVE [12],
MetaboLights [13],ProteomeXchange [14], and Metabolomics Workbench [15]. [11]

The Dashboard is a plotly dash [16] app. Therefore it brought ideas and help in the
primitive part of the project as the project was initialized with a plotly dashboard (see
Chapter 3.2).

Furthermore, the GNPS Dashboard holds significant relevance for our project due to its
capabilities in LCMS data visualization. It encompasses a broad range of features, many
of which align with our initial expectations for our own dashboard and in some cases,
even surpass them. Consequently, instead of duplicating these functionalities within our
interface, we opted to directly provide access to the GNPS Dashboard for each sample,
a feasible solution as the Knowledge Graph already contains the requisite links. To fully
implement this, a Sample Page still needs to be developed, which would serve as the plat-
form to display these links.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://www.zakodium.com/open-source
https://gnps-lcms.ucsd.edu/

Chapter 2. Literature Review 5

2.1.2 LOTUS resources

LOTUS represents one of the largest and most well-annotated freely available resources
for Natural Products (NPs) occurrences (further details on the database will be provided
in Chapter 3.1). LOTUS can be accessed via multiple platforms such as Wikidata and the
Natural Products Online platform. The following sections aims to describe some of this
resources.

Wikidata

Wikidata is a free, collaborative, multilingual, secondary database that collects structured
data, providing support for wikis of the Wikimedia ecosystem and serving as a valuable
resource for anyone globally.[17] The data in Wikidata is stored in the Resource Descrip-
tion Framework (RDF) datamodel, which is composed of triple statements (Figure 2.1),
just as in a knowledge graph (later defined in chapter 3.2). [18]

FIGURE 2.1: Subject-predicate-object structure with an example:
An entity (subject) is associated to a simple value (an object) through some

property (a predicate).

The relevance of this webpage for this project stems from the fact that data from LO-
TUS can be found within this database. Additionally, significant portions of the data
are linked to the Wikidata database. For instance, all organism and molecular structure
Wikidata IDs can be traced within our data. This linkage has facilitated the addition of
references to Wikidata from the dashboard.
A noteworthy feature of Wikidata is its query service, which offers a SPARQL endpoint.
The design and functionality of this service served as a valuable example for the project,
providing insights into how an interface for direct database querying could be imple-
mented in the project’s own database.

While Wikidata presents a range of compelling features, its interface is not particularly
user-friendly, emphasizing the necessity for a dashboard.

Natural Products Online

Natural Products Online is an open-source, open-data repository for natural products,
which is developed and maintained by the Steinbeck group at the University Friedrich-
Schiller in Jena, Germany. They offer a range of dashboards for molecular data, as the
Sugar Removal Service [19]. This service allows for the computational elimination of
sugar structures from the user-provided molecules, enhancing the efficiency of under-
standing the primary biological activities of the molecule, since these highly repetitive
structures can potentially hinder this process.
Another of their significant resource is the COCONUT (COlleCtion of Open Natural

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://sugar.naturalproducts.net/
https://coconut.naturalproducts.net/

Chapter 2. Literature Review 6

ProdUcTs) [20], which aggregates data from over 50 open natural product resources and
offers unrestricted and free access. Each record corresponds to a flat natural product
structure and, where available, links it to its known stereochemical forms, literature, pro-
ducing organisms, natural geographical presence, and various precomputed molecular
properties. It is resumed in a database containing 407,270 unique natural products.
The COCONUT dashboard bears a strong resemblance to the LOTUS dashboard, which
is another of Steinbeck group’s dashboards and is built on the LOTUS resource, making
it of considerable relevance to this project.
The dashboard developed for this thesis borrowed several concepts from the latter. Pre-
dominantly, the structure-based search in our project offers nearly identical options. How-
ever, our current dashboard lacks an Advanced Search function, a notable feature in the
LOTUS dashboard. It allows for more precise structure searches, incorporating struc-
tural properties. For instance, users can search for a molecule based on a specified weight
range, or look for molecules that do or do not contain sugars, or specify a particular num-
ber of oxygen atoms, etc. The feature also supports the inclusion of Molecular descrip-
tors such as a natural product-likeness score [21]. This level of specificity significantly
enhances the search precision, and therefore this kind of functions will be incorporated
into the DBGI dashboard in the future.
Moreover, the download feature within the LOTUS interface exhibits a more advanced
functionality compared to the corresponding page created for this project. Its refined
capability enables users to selectively retrieve specific data, a contrast to the DBGI’s plat-
form which currently permits only the complete dataset download. Therefore, potential
enhancements to the DBGI download feature could be guided by the exemplary model
of the LOTUS interface.

However, it is important to note the disparity in technical implementation. The LO-
TUS dashboard utilizes Javascript, Java, and Kotlin, while our project relies solely on
Javascript for backend development.
Kotlin, despite being a relatively new language (having been launched in 2016), boasts
full compatibility with Java and operates across various platforms. The language is
concise, easy to learn, and is predominantly used for mobile application development,
though it’s also seen application in web development, server-side applications, data sci-
ence, among others. [22] Nevertheless, owing to its youth, Kotlin does not have as large
a user community as Javascript does. [23]
Accordingly while the ideas may be inspired by the LOTUS dashboard, the codebase is
distinct and tailor-made to fit our project’s requirements.
Considering the time constraints of our project (6 months), and given our late consider-
ation of Kotlin, we decided to stick with Javascript as our primary backend language.
This decision was primarily to leverage the vast resources and community support avail-
able for Javascript, ensuring we could maximize our productivity and output within the
project’s timeline.

Nprod.net

Another web interface, LOTUS [24] utilizing the LOTUS database was developed with

Streamlit1 - a less feature-rich tool, but one that simplifies the creation and sharing of cus-
tom web apps for machine learning and data science. [25]
This dashboard includes a particularly interesting attribute allowing users to contribute
their own compounds if they are missing from the database. This feature enables com-
munity contributions to enhance the data quality of LOTUS, although it depends on the

1Since the writing of this thesis, they transitioned to a Plotly Dash application.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://kotlinlang.org/

Chapter 2. Literature Review 7

user’s integrity to verify that the data is not already present and the molecule is accu-
rately represented.
While no features from this dashboard were directly incorporated into the DBGI dash-
board as it was released in the late state of the project, it could potentially offer valuable
ideas for further refinement of the DBGI platform.
Despite this, Node.js appears to remain a better fit for the project scope, offering broader
possibilities than Streamlit. Nonetheless, future exploration of features inspired by this
second dashboard could be beneficial.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

8

Chapter 3

Methodology

3.1 Description of the data sources and how they were collected

and processed

As mentioned before, the LOTUS database was used as a first source of data as it had the
advantages of being static and already populated with a lot of data. In the subsequent
phase of the project, the code was modified to query the continuously evolving data of
the Digital Botanical Garden Initiative organized as a Knowledge graph.

LOTUS

The LOTUS database is made of 750,000+ referenced structure-organism pairs. [9]
The data was extracted from thirty-eight electronic Natural Products resources, enumer-
ated in Rutz et al. [9]. The project did therefore not directly collect the samples; instead,
only the metadata was gathered from the LOTUS team.
Given the substantial variability in the format and contents across each Natural Products
resource, a process of standardization was necessitated. This standardization was pri-
marily achieved through scripts adept at harmonizing and categorizing knowledge from
each respective source. [9]

DBGI

Data collection for the Digital Botanical Garden Initiative (DBGI) is currently underway
at the Botanical Gardens of Fribourg (JBUF) and Neuchâtel (JBN). These two gardens
serve as pilot sites before expanding the project to other Swiss and international botan-
ical gardens. They were selected for pragmatic reasons and also due to their unique
features, as they each specialize in different types of plants. [1]

Two categories of objects are considered: physical and digital (Figure 3.1). Physical
objects are sampled from the botanical garden and then subjected to Ultra High Per-
formance Liquid Chromatography coupled with High Resolution Mass Spectrometry
(UHPLC-HRMS) to derive fragmentation data. Subsequent annotation utilizes standards,
experimental libraries, and ISDB - a database of in-silico predicted MS/MS spectra of
Natural Products. All procedures involving physical objects, such as sampling, conser-
vation, and extraction, generate metadata which are meticulously collected and stored in
various locations. The majority of the sampling data - pictures, species, geolocation, etc.
- is stored using the iNaturalist platform. In addition, a PostgreSQL database manages
all species, specimens, and experimental metadata and can be accessed via a no-code
database (Directus [26] - Only accessible when connected to the UNIFR network for now
-). Lastly, the mass-spectrometry data is made accessible through the GNPS-dashboard
for visualization and further exploration. [1, 27, 28]

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://www.unifr.ch/jardin-botanique/fr/
https://www.jbneuchatel.ch/
http://directus.dbgi.org/

Chapter 3. Methodology 9

FIGURE 3.1: Data types and fluxes in the DBGI. [1]

3.2 Discussion of the software tools and programming languages

used to build the dashboard and interface with the knowl-

edge graph and LCMS profiles

The project was initialized with a Python Plotly dashboard. This choice was initially
appealing due to Python’s simplicity and the wealth of libraries offering built-in visual-
izations. However, given that both the Plotly dash library and several molecular tools
were based on Javascript, sticking to Python could lead to various constraints. Thus, the
strategy pivoted towards converting the Plotly dashboard into a Node.js application.
The Python code is still accessible on the GitHub repository, but it’s no longer being up-
dated.

As said before, considerable emphasis was placed on the use of open-source programs.
Despite certain drawbacks, such as occasionally incomplete documentation, open-source

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://github.com/digital-botanical-gardens-initiative/dashboard/tree/main/dash

Chapter 3. Methodology 10

softwares offers a supportive community ready to assist, complementing the software it-
self. [29] They also provides usage flexibility, potentially enhanced security and permits
reusability.

JAVASCRIPT / NODE.JS

Node.js is an open-source server environment utilizing JavaScript. Its architecture pro-
vides several advantages [30, 31]:

1. Single-threaded: Node.js operates primarily on a single thread using the V8 JavaScript

engine. It means there’s only one main thread to execute all your JavaScript code.
This reduce the complexity and allow easier programming and debugging.

2. Non-Blocking & Asynchronous programming: Node.js uses an event-driven ar-

chitecture. When an operation could take a while (like reading from a database),
rather than waiting for it to complete, Node.js registers a callback and then contin-
ues with processing other tasks. This way, it doesn’t block the main thread. The
callback is then executed after the operation concludes, allowing for simultaneous
processing of other tasks.

In summary, while Node.js is single-threaded, its non-blocking and asynchronous na-
ture ensures that this single thread can handle many tasks efficiently without waiting for
one to complete before moving to the next. This allows to be memory-savvy and time-
efficient, which is beneficial when managing large datasets, just as in this project.

The project utilized the Express module, a robust web application framework layered
atop Node.js, which significantly streamlines the management of servers and routes. Ex-
press notably reduces coding time, yet allows for the development of efficient applica-
tions. One of its key advantages is the ability to handle requests using Middleware, a
request handler with access to the application’s request-response cycle. Furthermore,
Express facilitates swift integration with databases and supports templating engines to
generate dynamic web page content by crafting HTML templates on the server. [32] This
feature enables a Model-View-Controller architecture, partitioning extensive applications
into distinct sections, each serving a unique purpose, thereby enhancing code readability
and maintainability. [33]

The analysis of molecular structures was conducted utilizing the JSME [34] library, an
open-source molecular editor written in JavaScript. It is the direct successor to the JME
Molecule Editor applet which was used on the dashboard for presenting the molecular
structure as an image on the user interface. This tool offers comprehensive support for
the drawing and modification of molecules and reactions, enhancing the efficiency and
speed of molecule creation, even for complex and sizable molecules. This is achieved
through an integrated substituent menu and several keyboard shortcuts that grant rapid
access to the most frequently used editing functions. Notably, the JSME library allows for
the export of molecules as SMILES. Moreover, the utility of the applet extends to its func-
tion as a query input tool for molecular database searches, as it assists in the construction
of complex substructure queries.

The plotly [16] library constituted one last significant JS tool employed in this project.
It is a sophisticated, declarative charting library, constructed on the foundations of d3.js
[35] and stack.gl [36]. It encompasses a broad repertoire of over 40 distinct chart types,
inclusive of 3D charts, statistical diagrams, and SVG maps. It is free and open source and
was used in the app to create interactive charts such as treemaps.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://expressjs.com/
https://jsme-editor.github.io/
https://plotly.com/javascript/
https://d3js.org/
https://github.com/stackgl

Chapter 3. Methodology 11

HTML

HTML, or Hypertext Markup Language serves as the basis for views in Node.js. It is the
foundational language used for creating webpages. It is responsible for structuring the
content on the web, providing a means to describe the semantics of document text and
embedded resources such as images and scripts. [37]

CSS

Cascading Style Sheets (CSS) govern the visual presentation of HTML elements across
different media types. It significantly streamlines web design by uniformly controlling
the layout of multiple web pages at once, thereby ensuring consistency and efficiency in
the visual representation of the website content. [38]

POSTGRESQL / SQL

LOTUS data storage was managed via a PostgreSQL relational database, with data re-
trieval within the Node.js application facilitated by the pg library. [39] As an open-
source, community-driven system, PostgreSQL offers compatibility with a multitude of
programming languages and platforms, a feature that optimizes its integration with vari-
ous tools. This versatility significantly simplifies the process of migrating the database to
alternative operating systems or integrating it with specific tools, a substantial advantage,
especially for pilot projects that may require iterative adjustments and scalability. [40]
SQL, a fundamental programming language for accessing and manipulating databases
[41], was used to execute queries on the PostgreSQL database.

GRAPHDB

GraphDB is a powerful, scalable RDF database solution that facilitates the efficient load-
ing and utilization of linked data cloud datasets and personal resources. It operates in
alignment with the RDF4J framework interfaces, the W3C SPARQL Protocol specifica-
tion, and supports all RDF serialization formats. [42]

One of GraphDB’s distinctive capabilities is its ability to conduct semantic inferencing
at scale, enabling users to generate new semantic insights from pre-existing facts. It han-
dles large loads, queries, and inferencing in real-time, working over a persistent storage
layer. Consequently, GraphDB can process tasks rapidly, even when dealing with large
ontologies and knowledge bases. [42]

GraphDB is capable of managing billions of explicit statements on standard desktop
hardware and tens of billions on commodity server hardware. [42]

SPARQL

Data within the Digital Botanical Garden Initiative (DBGI) was stored within a Knowl-
edge Graph hosted on GraphDB and accessed via SPARQL queries.
Knowledge Graphs are a type of graph database that efficiently encapsulates structured
data via interconnected subject (e.g. Arabidopsis Thaliana) - predicate (e.g. has_wikidata_id)
- object (e.g. Q158695) triplets. This model surpasses conventional alternatives by struc-
turing data more effectively than text formats, eliminating redundancy of tabular data,
and easing the querying of complex data, typically challenging in relational databases.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 3. Methodology 12

[43] Knowledge Graphs focuses on the relationships between entities, which enables in-
ference from existing data and it also excels in handling massive datasets. [44]
SPARQL, the standard query language for Linked Open Data and RDF databases, is de-
signed to navigate a wide array of data types, proficiently extracting information con-
cealed in heterogeneous data formats and sources. Offering functionalities comparable
to SQL for NoSQL graph databases like Ontotext’s GraphDB, SPARQL surpasses SQL
by permitting queries to extend beyond a singular database. This capability to execute
federated queries enables access to multiple data stores, also known as endpoints. [45]
In this project, the significance of SPARQL querying becomes evident, as both Wikidata,
and therefore LOTUS resource utilize it. Federated queries facilitate the interlinking of
these resources which will be of interest in the project’s continuation.

PYTHON

Python libraries like RDKit [46] simplified the process of handling molecular data. Con-
sequently, Python scripts were employed as the back-end for computations or transfor-
mations, such as converting SMILES into InChi and InChiKey, on the data.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

13

Chapter 4

Results

4.1 Presentation of the dashboard interface and its various fea-

tures and components

The dashboard is organized as a multi-page application, enabling users to explore both
databases via various search methods. It can be accessed on http://dashboard.dbgi.org/
when connected on the UNIFR network. Furthermore, screenshots of the pages can be
found in the appendix B.

The top of each page features a navigation bar, ensuring accessibility to each section
from any page within the app. The navigation bar contains the title, which when clicked,
redirects the user to the home page. Two buttons are present, one also directing the user
to the home page and the other to the download page.
Furthermore, there are two dropdown menus. The first, titled Explore, allows users to
navigate the databases in different ways, such as Explore Whole Dataset, Explore Molecular
Diversity, and Explore Organisms Diversity.
The second dropdown menu, Information, provides access to essential documentation and
background information about the DBGI. It also houses a link to the DBGI organization’s
GitHub page, enabling direct access to the project’s codebase and updates.

4.1.1 Home (B.1)

The Home page serves as an introductory interface for the user, from where they can
navigate to various sections of the application.
Additionally, it provides insightful project statistics, such as the proportion of various
taxonomic categories - including phylum, class, and species - that have already been
profiled within the project. This feature offers users a snapshot view of the current state
of the project’s data collection and profiling progress.
The values for the total number of taxon known were taken from the Catalogue of Life
website [47, 48].

4.1.2 Explore whole dataset (B.2)

This section gives the user the ability to access and navigate through the LOTUS and
DBGI databases using a variety of methods. The primary methods include a text-based
search where the user can hunt for specific words within the databases, a structural search
that allows the user to sketch a molecule’s structure and look for it, and direct SPARQL
queries. It should be noted, however, that direct SPARQL queries can currently only be
used with the DBGI data as the LOTUS database is housed in a relational database that
relies on SQL.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

http://dashboard.dbgi.org/

Chapter 4. Results 14

FIGURE 4.1: Example of a treemap representation obtained by doing a
structure-based search on LOTUS. Each rectangle represents a taxon, with

nested rectangles representing subtaxon, in which the search had a hit. The
size of the rectangles are an indication of quantity of hits in this taxon. The
interactivity of plotly allows to navigate through the taxons by clicking on

the rectangle of interest.

The user can choose which dataset to browse by selecting the datasource in both text-
and structure-based search. When browsing the DBGI data, the back-end queries are
SPARQL queries and when browsing the LOTUS data, the back-end queries are SQL
queries.

The results from both search methods can be visualized in two distinct formats based on
user preference: tabular form or treemap representation (Figure 4.1). The treemaps are
generated using the Plotly [16] library for JavaScript. The organization of the treemaps
mirrors the phylogeny of the organisms where the molecule or substructure can be iden-
tified. A colorblind-accessible color scheme is employed for this visualization. Owing
to Plotly’s interactive features, users can engage with the graph, zooming in on sections
that pique their interest and export the plot as a png if wanted.

The output of the search operation is constrained to a user-defined quantity of rows.

The next sections go through the specificity of each search method.

TEXT-BASED (B.3)

The text-based search operation conducts a case-insensitive scan for the text input within
a user-selected column. The resulting output is contingent on the specified row limit and
the chosen display format.

STRUCTURE-BASED

In the structure-based search page, the user can draw a molecule and then search for hits
using different methods. The JSME object provides a variety of shortcuts to facilitate user
interactions when drawing molecules. Detailed instructions for these can be accessed on
the JSME help page.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://jsme-editor.github.io/help.html

Chapter 4. Results 15

One of these shortcuts allows users to insert the SMILES notation of the molecule they
want to represent, eliminating the need for manual drawing.

Exact Match (B.4)
The search for an exact match can be accomplished using either the InChI or SMILES
representation of the drawn molecule, each offering distinct advantages:
SMILES strings are relatively concise and easily interpretable. They permit various rep-
resentations for the same molecule (canonical and non-canonical SMILES), which intro-
duces the potential for search inconsistencies but also allows for greater flexibility. Ad-
ditionally, SMILES notation includes useful features such as isotopic specification, chiral
centers, and aromaticity. [49, 50]
InChI strings, on the other hand, provide a unique and consistent descriptor for each
compound, ensuring precise searches across databases. They are particularly adept at
handling larger molecules more efficiently. InChI also incorporates tautomeric and iso-
topic information and can specify absolute stereochemistry. However, the trade-off is that
InChI strings tend to be longer and more intricate than SMILES strings, possibly making
them less user-friendly. [49, 50]
In summary, for optimal searching accuracy, InChI is preferable as it minimizes the chance
of ambiguity during searches. Conversely, if a more human-readable and adaptable sys-
tem is required, SMILES might be more suitable.

Based on the selected representation, the dashboard will query the designated database
to retrieve all relevant matches where the InChI or the SMILES align with the depicted
structure.

Substructure Search (B.5)
The structure-based search feature empowers users to query for molecules that contain a
specific drawn substructure.
In practice, the user drafts a unique structural design, which the application then uses as
a query to search the database for molecules incorporating this substructure.
The backbone of this search process is likely a variant of the Ullmann subgraph isomor-
phism algorithm, one of the most frequently employed algorithms for subgraph isomor-
phism search, as pointed out in the Ehrlich and Rarey [51] paper. Although the rdkit
[46] (used for LOTUS substructure search) and sachem [52] (used for DBGI substructure
search) libraries’ documentations do not explicitly mention the algorithm implemented
in their respective functions (Chem.HasSubstructMatch() for rdkit and sachem:substructureSearch
for sachem), indications from the source code, at least for Rdkit, lend support to this sup-
position.
This algorithm basically helps determine whether a given pattern graph is isomorphic to
any subgraph of a larger target graph. It provides an efficient solution to the subgraph
isomorphism problem by utilizing backtracking and pruning techniques. It works by
building a binary matrix that represents possible matches (edges) between nodes in the
two graphs, and then gradually refines this matrix by removing edges that are not consis-
tent with a one-to-one mapping. The remaining matrix then represents a valid subgraph
isomorphism if such exists. [53]

Similarity Search (B.6)
The Jaccard-Tanimoto coefficient is utilized in conducting the similarity search, a decision
influenced by its widespread application and notable performance, as highlighted in the
Todeschini et al. [54]. This coefficient remains among the most commonly used metrics
in the field, hence its selection for this project.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 4. Results 16

b The Tanimoto coefficient, denoted as a+
c
−c [55], represents the ratio of shared features

between two compounds to their combined features. Here, c denotes features common
to both compounds, whereas a and b correspond to features unique to each individual
compound, respectively. The coefficient ranges between 0 and 1, with values closer to 1
suggesting higher similarity. [56] However, it’s crucial to note that a Tanimoto coefficient
of 1 doesn’t imply identical compounds, but rather that their structural descriptors or
on-bits in a binary fingerprint match. [57] There might be other aspects of the molecules
not captured by the specific fingerprinting method used that differentiate them.
For example, two molecules could have the same functional groups in the same locations
(resulting in the same "on-bits"), but they might differ in 3D conformation or stereochem-
istry, which can significantly affect their biological activity or other properties.

SPARQL (B.7)

The concluding segment of the Explore Whole Dataset division involves the SPARQL search.
This section empowers users to directly interface with the DBGI Knowledge Graph by
crafting and executing their own SPARQL queries.
However, it is important to note that this search functionality currently presents some
security vulnerabilities, as elaborated in Chapter 4.2, which require remediation.

4.1.3 Explore Molecules (B.8)

This segment of the application allows users to query the LOTUS dataset for specific
molecules via their names. Additionally, it showcases the ten most frequently encoun-
tered molecules within the LOTUS database, thus highlighting key molecules of interest.
The molecules name displayed are links to a page that display informations about the
molecule.

4.1.4 Molecule Page (B.9)

Upon choosing a molecule from either the Explore Molecules page or the Explore table
results, the user is redirected to a page offering detailed information about the molecule.
Adjacent to the name of the molecule, the Wikidata ID is displayed, which serves as
a direct link to the Wikidata entity of the respective molecule. Following this, the 2D
and 3D structures of the molecule are presented. Next, the chemical taxonomy of the
molecule is listed. LOTUS employs two distinct chemical classifiers: NPclassifier [58],
which categorizes based on the producing organism’s taxonomy, biosynthetic pathway,
biological properties, and presence of chemical substructures, and Classyfire [59], which
is structure-based. The Classyfire taxonomy was chosen arbitrarily between both to be
displayed on this page.
Lastly, the page provides a list of organisms in which this molecule has been identified
in the LOTUS database. Furthermore, the names of these organisms serve as links to
respective organism pages, offering an in-depth view into each organism.

4.1.5 Explore Organism (B.10)

Similar to the Explore Molecules section, this segment provides the user the ability to
search for a specific organism within the LOTUS database.
In order to aid the user and provide a starting point, a list of the top 10 most prevalent
organisms is also displayed.
Importantly, each result acts as a direct link to a dedicated page for the specific organism,
offering a deeper exploration of each individual organism.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 4. Results 17

4.1.6 Organism page (B.11)

This page presents information pertaining to organisms catalogued in the LOTUS database,
with each page dedicated to a specific organism. Access to these pages can be achieved
through either the Explore Organism page or the Explore table results.
Alongside the organism’s name, its Wikidata ID is displayed, which serves as a direct
link to the corresponding Wikidata entity page.
Furthermore, the Wikidata image of the organism is displayed below, accompanied by
its phylogenetic information.
Lastly, a list of all molecules identified within this organism, as recorded in the LOTUS
database, is displayed. Notably, each molecule name serves as a hyperlink to a dedicated
page for that specific molecule, thereby facilitating further exploration.

4.1.7 Download (B.12)

This segment provides users with the capability to download the LOTUS dataset in either
CSV or JSON format. Up to now, the user can only download the entire dataset but
further enhancement will allow to download only a subset (see Chapter 4.2.5).

4.1.8 Informations

The Information dropdown menu presents users with three distinct options: About DBGI,
Documentation, and a GitHub link. The About DBGI page provides users with an overview
of the project along with a hyperlink to the official webpage. The Documentation page
encompasses comprehensive instructions and guidance for utilizing the dashboard. The
final option is a direct link to the Digital Botanical Garden Initiative Organisation’s GitHub
page, allowing users easy access to the source code and project updates.

4.2 Perspectives

As expected, 6 months wasn’t enough to get all the features wanted. This section enumer-
ates some necessary improvements, some of which are more urgent than others. It should
be noted, however, that additional enhancements are undoubtedly needed beyond those
listed here. Several potential enhancements were already suggested in Chapter 2.1.

4.2.1 Error handling

A crucial enhancement required for the application involves improving the error han-
dling of the code. Errors can stem from several sources, such as coding mistakes by the
programmer, incorrect user input, or other unpredictable circumstances.

Some progress has already been made in this area, primarily through the implementa-
tion of basic try-catch blocks but a lot still needs to be done.
The most important being the need to incorporate input validation functions. At present,
the querying management (for both SPARQL and SQL) is inadequate and poses a signif-
icant risk to the data. For instance, it would be possible for a user to initiate a database
query that could modify or even delete the data. Therefore, incorporating robust input
validation measures is imperative to ensure data integrity and protection.

Another critical perspective for enhancing error handling involves the adoption of unit

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 4. Results 18

testing. As of now, the application lacks a comprehensive unit testing framework. Incor-
porating such a framework would enable the development team to test individual pieces
of code in isolation, making it easier to identify and handle errors at an early stage. This
would not only improve code quality but also make the application more maintainable
and easier to update in the future.

Finally, although conventional testing methods can catch many issues, they often rely
on predetermined scenarios which might not cover all edge cases. Fuzzing, a testing
technique that involves feeding a program with random data to identify vulnerabilities
and crashes, could be incorporated to enhance error handling. By adopting fuzz testing,
the application would be better equipped to handle unexpected inputs or scenarios, in-
creasing its resilience and reliability.

These additional measures will significantly bolster the application’s error-handling ca-
pabilities, ensuring a more stable and secure user experience.

4.2.2 Visualisation options

Several enhancements could be made to the current visualization methodologies.
To begin, the data representations on the homepage could be refined for a more engaging
user experience. Additional visual elements could also be introduced to provide a more
comprehensive overview of the data immediately upon page entry.
A treemap could be integrated into the organism identity page (Chapter 4.1.6). This vi-
sual tool would facilitate an immediate understanding of the types of molecules associ-
ated with a given organism.
Furthermore, displaying the Tanimoto coefficient for each hit in a similarity search could
significantly augment the user experience. By indicating the degree of similarity between
molecules, users would gain a clearer understanding of their search results.

Lastly, it should be noted that the aesthetic design of the pages received limited empha-
sis during development. By embracing enhancement opportunities, such as integrating
the Bootstrap CSS library [60] and exploring other potential avenues, the user experience
can significantly be improved. A well-designed interface not only offers visual appeal
but also facilitates ease of navigation and interaction, ultimately enhancing the overall
usability and effectiveness of the dashboard for its users.

4.2.3 SQL search

Similar to the provision of a dedicated page for direct SPARQL querying, incorporating a
page for direct SQL querying on the LOTUS database could serve as a valuable addition,
enhancing the overall functionality of the application.

4.2.4 Sample page

To mirror the application’s current structure where individual pages are allocated to each
molecule and organism, it would be advantageous to also create a unique page for each
sample, accessible directly from the explore results.
This bespoke page could display comprehensive information about a particular sample,
including its species, the period and season of its collection, the part of the plant that was
harvested, among other specifics.
Furthermore, a meaningful addition to this page could be the inclusion of LCMS features,

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 4. Results 19

complete with a link for users to examine their mass spectrum on the GNPS dashboard.
Such an enhancement would directly address one of the dashboard’s primary objectives:
creating a seamless link between the visualization of taxonomic data and LCMS data,
thereby facilitating a comprehensive understanding of the sample data.

4.2.5 Download page

At the moment, the download page presents some issues that need to be addressed.
A probable cause appears to be the excessive data download attempted by the page, ne-
cessitating an optimization process to streamline the data retrieval operation.
Moreover, the introduction of functionality to download more granular, specific data, in-
stead of the entire dataset, would greatly enhance user convenience. This can potentially
be achieved via implementation of dropdown menus and customized queries.
Additionally, a viable strategy could involve incorporating a download button directly
within the Explore results section. This would enable users to download solely the results
corresponding to their specific search, enhancing both user experience and data manage-
ment efficiency.

4.2.6 Functionalities for DBGI data

Certain functionalities available for the LOTUS database have not yet been integrated for
the DBGI data.
In particular, the Explore Organisms and Explore Molecules pages are currently configured
to utilize only the LOTUS data, thus, restricting searches to the LOTUS resource. Like-
wise, the text-based explore page shares this limitation, as it only yields results from the
LOTUS resource, not the DBGI database.
Moreover, the current search functionality within the DBGI data set is limited to display-
ing results in a table format, with the capability to produce graphical output yet to be
implemented.

4.2.7 Cross-Browser and Device Compatibility Testing

Ensuring the compatibility of web applications across different browsers and devices is
paramount to providing a universally accessible user experience. Up to this point, the
dashboard has been primarily tested on Mozilla Firefox versions 110 to 116, utilizing a
laptop.
However, the digital landscape is diverse. Users access applications via a multitude of
browsers—like Chrome, Safari, and Edge—and on a plethora of devices ranging from
smartphones to tablets to desktop computers. The variance in rendering engines, screen
sizes, and device capabilities can introduce unforeseen issues or challenges, which may
compromise the dashboard’s functionality or appearance.
Given this, there is a recognized need for extensive testing across various browsers and
devices. Such comprehensive testing will identify potential issues and ensure that the
dashboard remains consistent and fully functional, irrespective of how users choose to
access it.

4.3 Examples of SPARQL queries

The subsequent section presents a table featuring a variety of SPARQL query examples
that users can execute within the knowledge graph on the SPARQL explore page.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 4. Results 20

TABLE 4.1: Examples of SPARQL queries

Query description Returns Link
1 What are the ENPKG classes? The list of ENPKG classes: LCMS-

Feature, ChemicalEntity, InChiKey,
...

SPARQL

2 Which species served as the source for the
sample?

3 How many peaks are detected within the
mass spectrum of each respective sam-
ple?

4 What quantity of samples exhibit a par-
ticular peak? The analysis should be
constrained to only those instances with
more than five samples.

5 What is the count of unique kingdoms,

orders, families, genera, and species rep-
resented within the DBGI Knowledge
Graph? This question necessitates a fed-
erated query that integrates data from
ENPKG and Wikidata to generate the re-
sults.

135 pairs of sample name and asso-
ciated taxon
132 pairs of sample name and num-
ber of peaks found.

10’113 peaks with the number of
samples that exhibit that peak. The
maximum count of samples corre-
lated with a single peak reaches up
to 132.
The DBGI Knowledge Graph com-
prises one kingdom, 32 orders, 48
families, 76 genera, and 86 unique
species. This query is designed to
extract the data that is then em-
ployed in the graph displayed on
the home page.

SPARQL

SPARQL

SPARQL

SPARQL

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://dbgikg.commons-lab.org/sparql?name=get%20enpkg%20classes&infer=true&sameAs=true&query=PREFIX%20rdfs%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3E%0Aselect%20distinct%20%3Fx%20where%20%7B%20%0A%09%3Fs%20a%20%3Fx%20.%0A%20%20%20%20filter(strstarts(str(%3Fx)%2C%20%22https%3A%2F%2Fenpkg%22))%0A%7D%20limit%20100%20%0A
https://dbgikg.commons-lab.org/sparql?name=dbgi_plants&infer=true&sameAs=true&query=PREFIX%20enpkg%3A%20%3Chttps%3A%2F%2Fenpkg.commons-lab.org%2Fkg%2F%3E%0Aselect%20%3Fdbgi_sample%20%3Fsubmitted_taxon%20where%20%7B%20%0A%09%3Fextract%20enpkg%3Ahas_lab_process%20%3Fdbgi_sample%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20enpkg%3Asubmitted_taxon%20%3Fsubmitted_taxon%20.%0A%7D%0A
https://dbgikg.commons-lab.org/sparql?name=peak_count_per_sample&infer=true&sameAs=true&query=PREFIX%20enpkg%3A%20%3Chttps%3A%2F%2Fenpkg.commons-lab.org%2Fkg%2F%3E%0APREFIX%20rdf%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-ns%23%3E%0A%0ASELECT%20%3Fdbgi_sample%20%3FnumPeaks%0AWHERE%20%7B%0A%20%20%7B%0A%20%20%20%20SELECT%20%3Fdbgi_sample%20(COUNT(%3Fpeak)%20AS%20%3FnumPeaks)%0A%20%20%20%20WHERE%20%7B%0A%20%20%20%20%3Fdbgi_sample%20enpkg%3Ahas_LCMS%20%3FLCMS_analysis%20.%0A%20%20%20%20%3FLCMS_analysis%20enpkg%3Ahas_lcms_feature_list%20%3FLCMSFeatureList%20.%20%0A%20%20%20%20%3FLCMSFeatureList%20enpkg%3Ahas_lcms_feature%20%3FLCMSFeature%20.%0A%20%20%20%20%3FLCMSFeature%20enpkg%3Ahas_spec2vec_doc%20%3Fspec2vec_doc%20.%0A%20%20%20%20%3Fspec2vec_doc%20enpkg%3Ahas_spec2vec_peak%20%3Fpeak.%0A%20%20%20%20%7D%0A%20%20%20%20GROUP%20BY%20%3Fdbgi_sample%0A%20%20%7D%0A%7D%0AGROUP%20BY%20%3Fdbgi_sample%20%3FnumPeaks
https://dbgikg.commons-lab.org/sparql?name=sample_count_per_peak&infer=true&sameAs=true&query=PREFIX%20enpkg%3A%20%3Chttps%3A%2F%2Fenpkg.commons-lab.org%2Fkg%2F%3E%0APREFIX%20rdf%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-ns%23%3E%0A%0ASELECT%20%3Fpeak%20(COUNT(DISTINCT%20%3Fdbgi_sample)%20AS%20%3FnumSamples)%0AWHERE%20%7B%0A%20%20%3Fdbgi_sample%20enpkg%3Ahas_LCMS%20%3FLCMS_analysis%20.%0A%20%20%3FLCMS_analysis%20enpkg%3Ahas_lcms_feature_list%20%3FLCMSFeatureList%20.%20%0A%20%20%3FLCMSFeatureList%20enpkg%3Ahas_lcms_feature%20%3FLCMSFeature%20.%0A%20%20%3FLCMSFeature%20enpkg%3Ahas_spec2vec_doc%20%3Fspec2vec_doc%20.%0A%20%20%3Fspec2vec_doc%20enpkg%3Ahas_spec2vec_peak%20%3Fpeak.%0A%7D%0AGROUP%20BY%20%3Fpeak%0AHAVING%20(COUNT(DISTINCT%20%3Fdbgi_sample)%20%3E%205)%0AORDER%20BY%20DESC(%3FnumSamples)%0A
https://dbgikg.commons-lab.org/sparql?name=count_features_by_sample_annotated_by_canopus_as_aspidosperma&infer=true&sameAs=true&query=PREFIX%20enpkg%3A%20%3Chttps%3A%2F%2Fenpkg.commons-lab.org%2Fkg%2F%3E%0APREFIX%20enpkgmodule%3A%20%3Chttps%3A%2F%2Fenpkg.commons-lab.org%2Fmodule%2F%3E%0APREFIX%20rdf%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-ns%23%3E%0APREFIX%20wdt%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3E%0APREFIX%20wd%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3E%0A%0ASELECT%20%0A(COUNT(DISTINCT%20%3Fspecies_name)%20AS%20%3Fcount_of_species)%0A(COUNT(DISTINCT%20%3Fgenus_name)%20AS%20%3Fcount_of_genus)%0A(COUNT(DISTINCT%20%3Ffamily_name)%20AS%20%3Fcount_of_families)%0A(COUNT(DISTINCT%20%3Forder_name)%20AS%20%3Fcount_of_orders)%0A(COUNT(DISTINCT%20%3Fkingdom_name)%20AS%20%3Fcount_of_kingdoms)%0AWHERE%0A%7B%20%20%0A%20%20%20%20%3Fmaterial%20enpkg%3Ahas_lab_process%20%3Fextract%20.%0A%20%20%20%20%3Fmaterial%20enpkg%3Ahas_wd_id%20%3Fwd_sp%20.%0A%20%20%20%20OPTIONAL%0A%20%20%20%20%7B%0A%20%20%20%20%20%20%20%20%20%20%20%20SERVICE%20%3Chttps%3A%2F%2Fquery.wikidata.org%2Fsparql%3E%20%7B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Fwd_sp%20wdt%3AP225%20%3Fspecies_name%20.%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Ffamily%20wdt%3AP31%20wd%3AQ16521%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20wdt%3AP105%20wd%3AQ35409%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20wdt%3AP225%20%3Ffamily_name%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Ewdt%3AP171%2A%20%3Fwd_sp%20.%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Fgenus%20wdt%3AP31%20wd%3AQ16521%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20wdt%3AP105%20wd%3AQ34740%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20wdt%3AP225%20%3Fgenus_name%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Ewdt%3AP171%2A%20%3Fwd_sp%20%20.%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Fkingdom%20wdt%3AP31%20wd%3AQ16521%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20wdt%3AP105%20wd%3AQ36732%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20

21

Chapter 5

Discussion & Conclusion

5.1 Discussion of how the code was optimized for efficiency and

speed

The optimization of code constitutes a significant component in the development of an
application, conferring multiple advantages. Initially, optimization augments code read-
ability, aiding any developers who might need to work with the code subsequently. Ad-
ditionally, optimization facilitates a more rapid execution of the code, an aspect critical
for enhancing user experience. Finally, effective error handling necessitates improved
testability, which is another vital benefit of optimization.

5.1.1 Javascript optimization

Regrettably, the potential for negative performance impact is higher in JavaScript. This
language can substantially affect download times, rendering performance, and CPU and
battery usage. [61] Consequently, specific strategies were employed to optimize the code
to the greatest extent feasible. Some of these strategies are summarized in the following
section.

The initial strategy involved a global approach to separating routes into multiple files.
Several advantages are associated with this method: it enhances maintainability by al-
lowing each file to concentrate on a distinct part of the application, simplifying the pro-
cess of locating and modifying specific routes without the need to navigate a large file.
[61] This separation not only facilitates debugging but also aids in comprehending the
code and encourages reusability. In some cases, splitting routes can contribute to perfor-
mance optimization through the lazy loading of particular segments of the application.
This lazy loading ensures that only the requisite code is loaded when necessary, poten-
tially reducing the initial load time. Finally, this approach often results in a more orga-
nized and cleaner code structure.

At the level of a JavaScript file, the initial phase of optimization involves the removal
of superfluous code. Indeed, the most performant and least blocking JavaScript code is
the code that remains unused, emphasizing the need to utilize as little JavaScript as pos-
sible. [61]
Several methods exist to accomplish this reduction. Initially, the usage of modules can
significantly minimize the volume of code. Subsequently, the establishment of variables
and functions where redundancy occurs can also markedly enhance code efficiency. This
was mostly the case in the explore framework (Code Snippet 5.1). For instance, the SQL
queries of the structure-based search are nearly identical. As a result, the query was ini-
tialized as a basic query (line 5) that every search required, and portions were appended

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 5. Discussion & Conclusion 22

to this fundamental query depending on the search criteria, such as whether the search
was filtered by taxon or not (line 10). The queries were also parameterized, permitting
the use of the same query with varying values (line 2), e.g. the max return value.

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24
25

CODE SNIPPET 5.1: getTableData function
This function is employed within the explore routes to facilitate the
extraction of result tables from the LOTUS database. It is systematically

applied to all search methods associated with the LOTUS data source.

Functions were designed to accommodate various scenarios, such as rendering tables or
graphs and managing disparate data sources. These tailored functions enhance the code’s
flexibility and adaptability, contributing to a more robust and responsive application.

The loading of data also challenged the optimization of the application. For example,
the graphs displayed on the home page (Figure B.1) necessitated computationally inten-
sive queries to ascertain the number of species sampled. Given that this number seldom
changes, continuous re-querying upon each page load is redundant. This issue was ad-

dressed using caching, which creates a temporary copy of the data. If the cache contains

the required data, the browser will prioritize it to load the page; otherwise, it will default
to re-querying the data (Code Snippet 5.2).

1
2
3
4

5
6

// Function to fetch data for table display
async function getTable Data (column , structure , group , max) {

try {
// SQL query to select data where column value is in the provided

structure
let query = ‘ SELECT * FROM data WHERE ${ column } = ANY ($1) ‘;
let params = [structure];

// If group is provided , append to SQL query
if (group) {

query += ‘ AND $2 = ANY (array [${ taxonomy Columns . join (’, ’)}]) ‘;
p ara m s. push (group);

}

// Limit the query results
query += ’ LIMIT $’ + (p ara m s. length + 1);
p ara m s. push (max);

// Execute the query
const result = await db. query (query , params);
return { result };

} catch (error) {
console . error(‘ Error in getTable Data function with column ${ column },

structure ${ structure }, group ${ group } and max ${ max }:‘, error);
throw error; // Re - throw the error if you want to handle it further up
the call stack

}
}

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 5. Discussion & Conclusion 23

7
8
9

10
11
12
13
14
15
16

CODE SNIPPET 5.2: Handling of HTTP Requests on the home page:
Example of Caching

Moreover, the incorporation of consistent error handling within try-catch blocks (Code
Snippet 5.3) establishes a robust mechanism to gracefully address unexpected situations.
This approach safeguards the application’s stability and user experience by providing
controlled responses to potential failures or errors.

1

2
3
4
5
6
7
8
9

10

CODE SNIPPET 5.3: HTTP GET Request for the explore page
This code demonstrates a try-catch block, where the try block executes if

no errors occur, and the catch block executes if an error is encountered.

Finally, the integration of promise constructs and async/await functions (Code Snippet
5.1:line 19, Code Snippet 5.3:line 4) plays a crucial role. These asynchronous program-
ming techniques enable the immediate loading of critical assets while deferring the ex-
ecution of non-critical JavaScript code. By prioritizing essential elements, this method
improves the application’s loading efficiency and responsiveness, ensuring a smoother
interaction for end-users. [61]

5.1.2 HTML optimization

A vital component of the optimization process is HTML optimization, which encom-
passes various strategies to enhance both efficiency and readability.

Firstly, akin to JavaScript code, the HTML code must be clean and concise. This not only
promotes more readable code but also lessens the amount of data to be loaded, thereby
enhancing the application’s efficiency.

To achieve conciseness, inline styles were eschewed. Instead, links to stylesheets were in-
corporated into the document’s <head> section. Similarly, inline scripts were avoided as
much as possible, with sources to the scripts appended to the <script> tags (Code Snippet
5.4). This alignment with best practices contributes to a more modular and maintainable
code structure. [62]

// Router for ’/ explore ’ endpoint , renders the explore page with table
columns

router. get(’/ explore ’, async (req , res) => {
try {

const columns = await getTable Columns ();
res. render(’ explore ’, { columns });

} catch (err) {
console . error(err);
res. send (’ Error while fetching columns names ’);

}
});

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 5. Discussion & Conclusion 24

The sequence in which files are loaded plays a crucial role in web performance. When a
browser encounters a <script> tag, its default behavior is to halt the parsing of HTML and
proceed to download, parse, and execute the script. If the CSS <link> tag has not been
processed by that point, the browser is unable to download the file until the JavaScript
has been processed. [62] This can lead to delays in rendering and adversely impact user
experience. As a result, to optimize loading efficiency, it is generally advisable to place
CSS file links before script tags in the HTML document. This ordering ensures that styling
information is available early in the page rendering process, allowing for a smoother and
more visually coherent loading sequence.

Additionally, the reduction of blank lines, spaces, and unnecessary indentation was pur-
sued. While this may impair readability to some extent, the resultant increase in effi-
ciency was deemed a higher priority, striking a balance that serves the application’s over-
all performance goals.

An attempt was also made to minimize external HTTP requests, excluding any features
that did not enhance the user experience. This reduction in requests can lead to quicker
load times, providing a more seamless interface for users.

Lastly, the implementation of prefetching further elevated the browsing experience (Code
Snippet 5.4). By fetching necessary resources and related data in advance of need, prefetch-
ing ensures that users can navigate between pages with minimal loading times. This pre-
dictive strategy thus contributes to a more responsive and engaging user experience. [63]

1

CODE SNIPPET 5.4: example of prefetching on a script

5.1.3 Further optimization

As outlined in the preceding section, efforts were undertaken to optimize the code. Yet,
additional measures could potentially be implemented to further enhance the speed and
efficiency of the application. This section attempt to give some ideas for further optimiza-
tion.

Certain functions, such as the POST handler for the structure-based explore search (Code
Snippet 5.5), remain relatively large and address multiple concerns. Consequently, these
could be subdivided into smaller components to enhance both readability and testability.
More input validation could also be added to improve security and robustness. This con-
cept is connected to the error-handling issues discussed in section 4.2.1 and could lead to
increased responsiveness and prevention of application failure in the event of errors.

Finally, minimizing DOM1 manipulation can be beneficial, as frequent access and up-
dates to the DOM are computationally intensive. Adopting this strategy could enhance
the application’s overall performance.

1A programming interface that represents an HTML document’s structure as a tree of nodes, enabling

developers to interact with and modify the content, structure, and style of web pages using languages such
as JavaScript [64]

<script rel=" prefetch " src=" js/ home Charts. js" ></ script >

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 5. Discussion & Conclusion 25

1 // Define a router for the ’/ explore / structure ’ path which handles all

types of HTTP requests
2 router. all(’/ explore / structure ’, async (req , res) => {
3 try {
4 // Get the table columns
5 const columns = await getTable Columns ();
6 let display = ’ table ’;
7 let datasource = ’ lotus ’;
8
9 // Check if the HTTP request is a POST request

10 if (req . method === ’ POST ’) {
11 // Extract information from the request body
12 const smiles = req . body . smiles;
13 display = req . body . display ;
14 const max = req . body . maxNum ;
15 const group = req . body . taxo ;
16 const active Tab = req . body . active Tab ;
17 const radio = req . body . radio ;
18 const tanimoto = req . body . tanimoto / 100 ;
19 datasource = req . body . data_source ;
20
21 let tab Handler
22
23 if (datasource === ’ lotus ’){
24 // Get the appropriate handler function for the active tab
25 tab Handler = tab Handlers[active Tab][0];
26 } else if (datasource === ’ dbgi ’){
27 tab Handler = tab Handlers[active Tab][1];
28 } else {
29 res. send (’ Unknown source of Data ’);
30 }
31
32 if (tab Handler) {
33 // If the handler function exists , call it and get the results
34 const results = await tab Handler(radio , display , smiles , group , max

, tanimoto) ;
35
36 // Based on the ’ display ’ value , render the response
37 if (display === ’ table ’){
38 if (datasource === ’ lotus ’){
39 res. render(’ explore Structure ’, { columns , results: results.

result. rows , hits: results. result. rows. length , display : display ,
source : datasource });

40 } else if (datasource === ’ dbgi ’) {
41 res. render(’ explore Structure ’, { results: results. results ,

headers: results. headers , hits: 0 , display : display , source : datasource
});

42 }
43 } else if (display === ’ graph ’){
44 hits = results. totalCount;
45 res. render(’ explore Structure ’, { columns , results: results. result

, hits: hits , display : display , source : datasource });
46 }
47 } else {
48 // If the handler function does not exist , send an error message
49 res. send (’ Unknown tab ’);
50 }
51 } else {
52 // If the request is not a POST request , render the default ’

explore Structure ’ page
53 res. render(’ explore Structure ’, { columns , hits: 0 , display : display ,

source : datasource });

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 5. Discussion & Conclusion 26

54
55
56
57
58
59
60

CODE SNIPPET 5.5: Handling of HTTP Requests on the structure-based
explore page:

A multi-faceted function that could benefit from further subdivision for
code optimization.

5.2 Challenges of the study and potential avenues for future re-

search

Reflecting on the past six months, this study faced certain limitations that slowed down
certain stages of the project. The limitations mainly revolved around the handling of both
LOTUS and DBGI data sources and selection of programming languages.

5.2.1 Challenges caused by a dual data sources

Beginning with the LOTUS data offered an insightful and easier foundation into data
management thanks to its static nature. However, there is a consideration to be made
that starting with a specific subset of the DBGI data might have streamlined the process
-keeping in mind that the first goal was to implement a DBGI dashboard- . Both the
LOTUS and DBGI datasets, although broadly similar, exhibited differences in their struc-
tures, particularly in column names(Figure 5.1). These structural disparities added com-
plexity when transitioning between the two data sources, resulting in a more resource-
intensive procedure.

Furthermore, storage differences between the LOTUS and DBGI data added difficulties.
With LOTUS stored in a relational database and DBGI in a Knowledge graph (Figure 5.1),
variations emerged in query languages and the modules needed for data extraction and
manipulation. This disparity increased the intricacies of transitioning between the two
sources.

Due to the combined structural and procedural differences and the existing time con-
straints, there was a limitation in seamlessly integrating all LOTUS functionalities into
the DBGI system. However, it is noteworthy that possessing implementations for both
data sources and query types presents considerable advantages and opportunities. Rather
than viewing this as a mere consumption of time and energy, it should be seen as a strate-
gic advantage, expanding the potential for diverse data management and extraction tech-
niques.

5.2.2 Choice of Software and Programming Language

Selecting the appropriate software and programming language for a project can dictate
its efficiency and outcome. A significant challenge faced during this study was the tran-
sition from Python to JavaScript. However, while the initial decision to adopt JavaScript
appeared justified, not all options were considered and other software and programming
languages might present distinct benefits.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 5. Discussion & Conclusion 27

FIGURE 5.1: Data Structure of both data sources:
The LOTUS database uses a tabular format, with each row symbolizing a

sample. On the other hand, the DBGI data is arranged in a Knowledge
Graph, where entities (arrow starts) connect to their values (arrow ends)
via specific attributes (arrows). It can also be seen that column names
vary between sources; ’structure_inchi’ in LOTUS becomes ’InchiKey2D’

in DBGI.

For instance, during the course of the project, the Nprod.net’s LOTUS dashboard[24] was
unveiled. It was developed using Streamlit, a library that could have potentially stream-
lined the development process, enabling a feature-rich dashboard in a shorter time span.

Future researchers or developers entrusted with this project should critically evaluate
the choice of node.js/JS. They may decide to retain it or transition to another platform
or language that could provide superior advantages or align better with evolving project
requirements.

To conclude, a potentially more effective approach may have been to initially aim for
a more modest scope, focusing on a single-page dashboard with fewer but fully imple-
mented features. In fact, the resulting dashboard was marked by the presence of numer-
ous features, many of which still require improvement, and some that do not fully work.
A more focused strategy that emphasized complete implementation of one feature at a
time, using both data sources, before moving on to another feature, might have alleviated
these issues. Instead of pivoting to a new feature at the first sign of difficulty, persisting
with each feature until it was fully operational could have led to a dashboard with a more
polished and finished appearance.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Chapter 5. Discussion & Conclusion 28

5.3 Conclusion

The primary objective of designing a dashboard for the Digital Botanical Gardens Initia-
tive was to provide a clear visualization of the project’s progression and to effectively
display data from both LOTUS and DGBI. The development journey, however, encoun-
tered challenges, especially given the contrasting data structures and content between
these two sources. The envisaged dashboard was meant to span multiple pages, but
its execution does yet not entirely reflect the depth and potential of the data from both
datasets. For example, it still lacks the link to the LCMS data.

Retrospectively, a more thorough preliminary planning phase might have better steered
the development trajectory, ensuring a comprehensive overview and a clearer roadmap.
Instead of immersing directly into the project, a structured planning process would have
facilitated smoother transitions and greater alignment of data sources and dashboard
functionalities.

However, it is essential to acknowledge that the effort and knowledge invested in this
project have laid the foundation for ongoing improvements and advancements. Even
though the continuation and expansion of this work may pose challenges during transi-
tion, especially given its complexity, it offers a fertile ground for exploration and innova-
tion.

Future endeavors might require revisiting foundational decisions. It might be of interest
for subsequent teams or individuals to critically assess the software and programming
languages utilized in this project. They might find merit in opting for an entirely fresh
approach, leveraging alternative tools and methodologies that best serve the evolving
needs of the Digital Botanical Gardens Initiative.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

29

Appendix A

Softwares & libraries version

A.1 Nodejs

Version 20.5.0 [65]

• @innotrade/enapso-graphdb-client
v1.9.0 [66]

• axios v1.4.0 [67]

• d3 v7.8.4 [35]

• dotenv v16.0.3 [68]

• ejs v3.1.9 [69]

• express v4.18.2 [32]

• favicon v0.0.2 [70]

• graphdb v3.0.0 [71]

• jsme-editor v2022.9.26 [34]

• json2csv v6.0.0-alpha.2 [72]

• jsonfile v6.1.0 [73]

• node-cache v5.1.2 [74]

• node-fetch v2.6.12 [75]

• nodemon v2.0.22 [76]

• pg v8.10.0 [39]

• svg v0.1.0 [77]

A.2 Python

Version 3.10.9

• RDKit v2023.03.1 [46]

• sys v3.10.9

A.3 PostgreSQL

Version 12.15

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

30

Appendix B

Dashboard pages

FIGURE B.1: Home page

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 31

FIGURE B.2: Explore page

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 32

FIGURE B.3: Explore page in text-based search mode

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 33

FIGURE B.4: Explore page in structure-based exact match search mode

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 34

FIGURE B.5: Explore page in structure-based substructure search mode

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 35

FIGURE B.6: Explore page in structure-based similarity search mode

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 36

FIGURE B.7: Explore page in SPARQL-based search mode

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 37

FIGURE B.8: Compound list page

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 38

FIGURE B.9: Molecule page example

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 39

FIGURE B.10: Organisms list page

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 40

FIGURE B.11: Organism page example

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

Appendix B. Dashboard pages 41

FIGURE B.12: Download page

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

42

Bibliography

[1] The Digital Botanical Gardens Initiative Consortium. The Digital Botanical Gardens

Initiative. en-US. Tech. rep. Publication Title: Manubot. Manubot, Dec. 2022. URL:
https:/ / digital- botanical- gardens - initiative.github .io/ dbgi - green -
paper/ (visited on 07/03/2023).

[2] Fraser D. M. Smith et al. “How much do we know about the current extinction
rate?” In: Trends in Ecology & Evolution 8.10 (Oct. 1993), pp. 375–378. ISSN: 0169-
5347. DOI: 10.1016/0169-5347(93)90223-C. URL: https://www.sciencedirect.
com/science/article/pii/016953479390223C (visited on 08/31/2023).

[3] M. Bakkenes et al. “Assessing effects of forecasted climate change on the diver-
sity and distribution of European higher plants for 2050”. en. In: Global Change Bi-
ology 8.4 (2002). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1354-
1013.2001.00467.x, pp. 390–407. ISSN: 1365-2486. DOI: 10.1046/j.1354-1013.2001.
00467.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1354-
1013.2001.00467.x (visited on 08/05/2023).

[4] Céline Bellard et al. “Impacts of climate change on the future of biodiversity”. en.
In: Ecology Letters 15.4 (2012). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-
0248.2011.01736.x, pp. 365–377. ISSN: 1461-0248. DOI: 10.1111/j.1461-0248.2011.
01736.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-
0248.2011.01736.x (visited on 08/05/2023).

[5] Metabolome. en. Page Version ID: 1160225240. June 2023. URL: https://en.wikipedia.
org/w/index.php?title=Metabolome&oldid=1160225240 (visited on 08/02/2023).

[6] Christian Marchese. “Biodiversity hotspots: A shortcut for a more complicated con-
cept”. en. In: Global Ecology and Conservation 3 (Jan. 2015), pp. 297–309. ISSN: 2351-
9894. DOI: 10.1016/j.gecco.2014.12.008. URL: https://www.sciencedirect.
com/science/article/pii/S235198941400095X (visited on 08/09/2023).

[7] Mike Maunder et al. “Plant Conservation in the Caribbean Island Biodiversity
Hotspot”. en. In: The Botanical Review 74.1 (Mar. 2008), pp. 197–207. ISSN: 1874-9372.
DOI: 10.1007/s12229-008-9007-7. URL: https://doi.org/10.1007/s12229-008-
9007-7 (visited on 08/09/2023).

[8] A propos | Jardin botanique de l’Université de Fribourg |. URL: https://www.unifr.
ch/jardin-botanique/fr/about/ (visited on 08/09/2023).

[9] Adriano Rutz et al. “The LOTUS initiative for open knowledge management in
natural products research”. In: eLife 11 (May 2022). Ed. by David A Donoso, Anna
Akhmanova, and Charles Tapley Hoyt. Publisher: eLife Sciences Publications, Ltd,
e70780. ISSN: 2050-084X. DOI: 10.7554/eLife.70780. URL: https://doi.org/10.
7554/eLife.70780 (visited on 08/03/2023).

[10] Zakodium. URL: https://www.zakodium.com/zakodium (visited on 08/24/2023).

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://digital-botanical-gardens-initiative.github.io/dbgi-green-paper/
https://digital-botanical-gardens-initiative.github.io/dbgi-green-paper/
https://doi.org/10.1016/0169-5347(93)90223-C
https://www.sciencedirect.com/science/article/pii/016953479390223C
https://www.sciencedirect.com/science/article/pii/016953479390223C
https://doi.org/10.1046/j.1354-1013.2001.00467.x
https://doi.org/10.1046/j.1354-1013.2001.00467.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1354-1013.2001.00467.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1354-1013.2001.00467.x
https://doi.org/10.1111/j.1461-0248.2011.01736.x
https://doi.org/10.1111/j.1461-0248.2011.01736.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2011.01736.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2011.01736.x
https://en.wikipedia.org/w/index.php?title=Metabolome&oldid=1160225240
https://en.wikipedia.org/w/index.php?title=Metabolome&oldid=1160225240
https://doi.org/10.1016/j.gecco.2014.12.008
https://www.sciencedirect.com/science/article/pii/S235198941400095X
https://www.sciencedirect.com/science/article/pii/S235198941400095X
https://doi.org/10.1007/s12229-008-9007-7
https://doi.org/10.1007/s12229-008-9007-7
https://doi.org/10.1007/s12229-008-9007-7
https://www.unifr.ch/jardin-botanique/fr/about/
https://www.unifr.ch/jardin-botanique/fr/about/
https://doi.org/10.7554/eLife.70780
https://doi.org/10.7554/eLife.70780
https://doi.org/10.7554/eLife.70780
https://www.zakodium.com/zakodium

Bibliography 43

[11] Daniel Petras et al. “GNPS Dashboard: collaborative exploration of mass spectrom-
etry data in the web browser”. en. In: Nature Methods 19.2 (Feb. 2022). Number: 2
Publisher: Nature Publishing Group, pp. 134–136. ISSN: 1548-7105. DOI: 10.1038/
s41592- 021- 01339- 5. URL: https://www.nature.com/articles/s41592- 021-
01339-5 (visited on 07/25/2023).

[12] Hannes L. Röst et al. “OpenMS: a flexible open-source software platform for mass
spectrometry data analysis”. eng. In: Nature Methods 13.9 (Aug. 2016), pp. 741–748.
ISSN: 1548-7105. DOI: 10.1038/nmeth.3959.

[13] Kenneth Haug et al. “MetaboLights: a resource evolving in response to the needs of
its scientific community”. eng. In: Nucleic Acids Research 48.D1 (Jan. 2020), pp. D440–
D444. ISSN: 1362-4962. DOI: 10.1093/nar/gkz1019.

[14] Juan A. Vizcaíno et al. “ProteomeXchange provides globally coordinated proteomics
data submission and dissemination”. eng. In: Nature Biotechnology 32.3 (Mar. 2014),
pp. 223–226. ISSN: 1546-1696. DOI: 10.1038/nbt.2839.

[15] Manish Sud et al. “Metabolomics Workbench: An international repository for metabolomics
data and metadata, metabolite standards, protocols, tutorials and training, and
analysis tools”. eng. In: Nucleic Acids Research 44.D1 (Jan. 2016), pp. D463–470. ISSN:
1362-4962. DOI: 10.1093/nar/gkv1042.

[16] Plotly Technologies Inc. Collaborative data science. Place: Montreal, QC Publisher:
Plotly Technologies Inc. 2015. URL: https://plot.ly.

[17] Wikidata:Introduction - Wikidata. URL: https://www.wikidata.org/wiki/Wikidata:
Introduction (visited on 08/02/2023).

[18] Resource Description Framework. en. Page Version ID: 1161223823. June 2023. URL:
https : / / en . wikipedia . org / w / index . php ? title = Resource _ Description _
Framework&oldid=1161223823 (visited on 08/02/2023).

[19] Sugar Removal Service. URL: https ://sugar . naturalproducts . net/ (visited on
08/01/2023).

[20] COCONUT: Natural Products Online. URL: https :// coconut . naturalproducts .
net/ (visited on 08/01/2023).

[21] Peter Ertl, Silvio Roggo, and Ansgar Schuffenhauer. “Natural Product-likeness Score
and Its Application for Prioritization of Compound Libraries”. In: Journal of Chemi-
cal Information and Modeling 48.1 (Jan. 2008). Publisher: American Chemical Society,
pp. 68–74. ISSN: 1549-9596. DOI: 10.1021/ci700286x. URL: https://doi.org/10.
1021/ci700286x (visited on 08/24/2023).

[22] Kotlin Introduction. en-US. URL: https:/ /www .w3schools.com / kotlin/ kotlin_
intro.php (visited on 08/02/2023).

[23] Programming languages: Kotlin rises fastest but JavaScript lures millions more devel-
opers. en. URL: https : / / www . zdnet . com / article / programming - languages -
javascript - now - used - by - 12 - million - developers - but - kotlin - rises -
fastest/ (visited on 08/02/2023).

[24] LOTUS. URL: https://search.nprod.net/ (visited on 08/03/2023).

[25] Streamlit Docs. URL: https://docs.streamlit.io/ (visited on 08/03/2023).

[26] Directus: The Modern Data Stack, Democratized. en. URL: https :/ / directus . io/
(visited on 08/03/2023).

[27] methodology. Feb. 2022. URL: https://digital-botanical-gardens-initiative.
github.io/dendron-dbgi/notes/mpboa8wpvhpygf5fw4o9v11/ (visited on 08/03/2023).

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://doi.org/10.1038/s41592-021-01339-5
https://doi.org/10.1038/s41592-021-01339-5
https://www.nature.com/articles/s41592-021-01339-5
https://www.nature.com/articles/s41592-021-01339-5
https://doi.org/10.1038/nmeth.3959
https://doi.org/10.1093/nar/gkz1019
https://doi.org/10.1038/nbt.2839
https://doi.org/10.1093/nar/gkv1042
https://plot.ly/
http://www.wikidata.org/wiki/Wikidata
https://en.wikipedia.org/w/index.php?title=Resource_Description_Framework&oldid=1161223823
https://en.wikipedia.org/w/index.php?title=Resource_Description_Framework&oldid=1161223823
https://sugar.naturalproducts.net/
https://coconut.naturalproducts.net/
https://coconut.naturalproducts.net/
https://doi.org/10.1021/ci700286x
https://doi.org/10.1021/ci700286x
https://doi.org/10.1021/ci700286x
https://www.w3schools.com/kotlin/kotlin_intro.php
https://www.w3schools.com/kotlin/kotlin_intro.php
https://www.zdnet.com/article/programming-languages-javascript-now-used-by-12-million-developers-but-kotlin-rises-fastest/
https://www.zdnet.com/article/programming-languages-javascript-now-used-by-12-million-developers-but-kotlin-rises-fastest/
https://www.zdnet.com/article/programming-languages-javascript-now-used-by-12-million-developers-but-kotlin-rises-fastest/
https://search.nprod.net/
https://docs.streamlit.io/
https://directus.io/
https://digital-botanical-gardens-initiative.github.io/dendron-dbgi/notes/mpboa8wpvhpygf5fw4o9v11/
https://digital-botanical-gardens-initiative.github.io/dendron-dbgi/notes/mpboa8wpvhpygf5fw4o9v11/

Bibliography 44

[28] Pierre-Marie Allard. Earth Metabolome Initiative semantic model workshop intro - What
is the stuff we are talking about ? eng. July 2023. DOI: 10.5281/zenodo.8137605. URL:
https://zenodo.org/record/8137605 (visited on 07/14/2023).

[29] Michael Heron, Vicki L. Hanson, and Ian Ricketts. “Open source and accessibility:
advantages and limitations”. In: Journal of Interaction Science 1.1 (May 2013), p. 2.
ISSN: 2194-0827. DOI: 10.1186/2194-0827-1-2. URL: https://doi.org/10.1186/
2194-0827-1-2 (visited on 07/21/2023).

[30] Janith Gamage. Single-Threaded and Asynchronous — How Does Node Do It? en. Dec.
2020. URL: https://betterprogramming.pub/single-threaded-and-asynchronous-
how-does-node-do-it-d964100766a (visited on 08/28/2023).

[31] Node.js Introduction. en-US. URL: https://www.w3schools.com/nodejs/nodejs_
intro.asp (visited on 08/24/2023).

[32] Express JS Tutorial: What is Express in Node JS? en-US. URL: https://www.simplilearn.
com/tutorials/nodejs-tutorial/what-is-express-js (visited on 08/03/2023).

[33] Building and structuring a Node.js MVC application - LogRocket Blog. URL: https :
// blog . logrocket . com / building - structuring - node - js - mvc - application/
(visited on 08/03/2023).

[34] Bruno Bienfait and Peter Ertl. “JSME: a free molecule editor in JavaScript”. In: Jour-
nal of Cheminformatics 5.1 (May 2013), p. 24. ISSN: 1758-2946. DOI: 10.1186/1758-
2946 - 5 - 24. URL: https : / / doi . org / 10 . 1186 / 1758 - 2946 - 5 - 24 (visited on
08/03/2023).

[35] d3. URL: https://github.com/d3/d3 (visited on 08/03/2023).

[36] stackgl. en. URL: https://github.com/stackgl (visited on 08/03/2023).

[37] Introduction to HTML. en-US. URL: https :/ / www . w3schools . com / html / html _
intro.asp (visited on 08/03/2023).

[38] CSS Introduction. en-US. URL: https://www.w3schools.com/Css/css_intro.asp
(visited on 07/17/2023).

[39] Brian C. node-postgres. original-date: 2010-10-15T23:05:50Z. Aug. 2023. URL: https:
//github.com/brianc/node-postgres (visited on 08/03/2023).

[40] SQLite vs MySQL vs PostgreSQL: A Comparison Of Relational Database Management
Systems | DigitalOcean. en. URL: https :// www . digitalocean . com / community /
tutorials/sqlite- vs- mysql- vs- postgresql- a- comparison- of- relational-
database-management-systems (visited on 07/17/2023).

[41] SQL Introduction. en-US. URL: https://www.w3schools.com/sql/sql_intro.asp
(visited on 07/21/2023).

[42] About GraphDB — GraphDB 10.2.3 documentation. URL: https://graphdb.ontotext.
com/documentation/10.2/about-graphdb.html (visited on 07/21/2023).

[43] Mohit Mayank. A guide to the Knowledge Graphs. en. Sept. 2021. URL: https : / /
towardsdatascience.com/a- guide- to- the- knowledge- graphs- bfb5c40272f1
(visited on 07/13/2023).

[44] What is a NoSQL Graph Database? en-US. URL: https : / / www . ontotext . com /
knowledgehub/fundamentals/nosql-graph-database/ (visited on 08/03/2023).

[45] What is SPARQL? en-US. URL: https://www.ontotext.com/knowledgehub/fundamentals/
what-is-sparql/ (visited on 07/17/2023).

[46] Greg Landrum et al. rdkit/rdkit: 2023_03_1 (Q1 2023) Release. Apr. 2023. DOI: 10 .
5281/zenodo.7880616. URL: https://doi.org/10.5281/zenodo.7880616.

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://doi.org/10.5281/zenodo.8137605
https://zenodo.org/record/8137605
https://doi.org/10.1186/2194-0827-1-2
https://doi.org/10.1186/2194-0827-1-2
https://doi.org/10.1186/2194-0827-1-2
https://betterprogramming.pub/single-threaded-and-asynchronous-how-does-node-do-it-d964100766a
https://betterprogramming.pub/single-threaded-and-asynchronous-how-does-node-do-it-d964100766a
https://www.w3schools.com/nodejs/nodejs_intro.asp
https://www.w3schools.com/nodejs/nodejs_intro.asp
https://www.simplilearn.com/tutorials/nodejs-tutorial/what-is-express-js
https://www.simplilearn.com/tutorials/nodejs-tutorial/what-is-express-js
https://blog.logrocket.com/building-structuring-node-js-mvc-application/
https://blog.logrocket.com/building-structuring-node-js-mvc-application/
https://doi.org/10.1186/1758-2946-5-24
https://doi.org/10.1186/1758-2946-5-24
https://doi.org/10.1186/1758-2946-5-24
https://github.com/d3/d3
https://github.com/stackgl
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/Css/css_intro.asp
https://github.com/brianc/node-postgres
https://github.com/brianc/node-postgres
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.w3schools.com/sql/sql_intro.asp
https://graphdb.ontotext.com/documentation/10.2/about-graphdb.html
https://graphdb.ontotext.com/documentation/10.2/about-graphdb.html
https://towardsdatascience.com/a-guide-to-the-knowledge-graphs-bfb5c40272f1
https://towardsdatascience.com/a-guide-to-the-knowledge-graphs-bfb5c40272f1
https://www.ontotext.com/knowledgehub/fundamentals/nosql-graph-database/
https://www.ontotext.com/knowledgehub/fundamentals/nosql-graph-database/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://doi.org/10.5281/zenodo.7880616
https://doi.org/10.5281/zenodo.7880616
https://doi.org/10.5281/zenodo.7880616

Bibliography 45

[47] Olaf Bánki et al. Catalogue of Life Checklist. ISSN: 2405-8858 Place: Leiden, Nether-
lands Version Number: 2023-07-18. July 2023. DOI: 10 .48580 / dfsy. URL: https:
//www.checklistbank.org/dataset/9916.

[48] Biota | COL. ISSN: 2405-8858. URL: https:/ / www .catalogueoflife.org / data /
taxon/5T6MX (visited on 07/31/2023).

[49] 5.8: Line Notation (SMILES and InChI). en. Aug. 2020. URL: https://chem.libretexts.
org / Courses / Fordham _ University / Chem1102 % 3A _ Drug _ Discovery_ - _From _
the_Laboratory_to_the_Clinic/05%3A_Organic_Molecules/5.08%3A_Line_
Notation_(SMILES_and_InChI) (visited on 08/05/2023).

[50] Comparison of InChI to other chemical formats. en-US. URL: http :/ / inchi . info /
inchi_comparison_en.html (visited on 08/05/2023).

[51] Hans-Christian Ehrlich and Matthias Rarey. “Systematic benchmark of substruc-
ture search in molecular graphs - From Ullmann to VF2”. In: Journal of Cheminfor-
matics 4.1 (July 2012), p. 13. ISSN: 1758-2946. DOI: 10.1186/1758-2946-4-13. URL:
https://doi.org/10.1186/1758-2946-4-13 (visited on 07/29/2023).

[52] Miroslav Kratochvíl, Jirˇí Vondrášek, and Jakub Galgonek. “Sachem: a chemical car-
tridge for high-performance substructure search”. In: Journal of Cheminformatics 10.1
(May 2018), p. 27. ISSN: 1758-2946. DOI: 10.1186/s13321-018-0282-y. URL: https:
//doi.org/10.1186/s13321-018-0282-y (visited on 08/05/2023).

[53] Explaining the Ullmann Algorithm: A Simple Example | Saturn Cloud Blog. en. Section:
blog. July 2023. URL: https://saturncloud.io/blog/explaining-the-ullmann-
algorithm-a-simple-example/ (visited on 07/29/2023).

[54] Roberto Todeschini et al. “Similarity Coefficients for Binary Chemoinformatics Data:
Overview and Extended Comparison Using Simulated and Real Data Sets”. In:
Journal of Chemical Information and Modeling 52.11 (Nov. 2012). Publisher: American
Chemical Society, pp. 2884–2901. ISSN: 1549-9596. DOI: 10.1021/ci300261r. URL:
https://doi.org/10.1021/ci300261r (visited on 07/24/2023).

[55] Dávid Bajusz, Anita Rácz, and Károly Héberger. “Why is Tanimoto index an ap-
propriate choice for fingerprint-based similarity calculations?” en. In: Journal of
Cheminformatics 7.1 (Dec. 2015). Number: 1 Publisher: BioMed Central, pp. 1–13.
ISSN: 1758-2946. DOI: 10 . 1186 / s13321 - 015 - 0069 - 3. URL: https :// jcheminf .
biomedcentral.com/articles/10.1186/s13321-015-0069-3 (visited on 08/28/2023).

[56] Jaccard index. en. Page Version ID: 1166842542. July 2023. URL: https://en.wikipedia.
org/w/index.php?title=Jaccard_index&oldid=1166842542 (visited on 08/05/2023).

[57] Theory: Descriptors, Similarity Measures, and Clustering Schemes. en-US. URL: https:
//girke-lab.github.io/chemminetools-docs/docs/theory/ (visited on 08/05/2023).

[58] Hyunwoo Kim et al. NPClassifier: A Deep Neural Network-Based Structural Classifica-
tion Tool for Natural Products. en. Aug. 2020. DOI: 10.26434/chemrxiv.12885494.v1.
URL: https://chemrxiv.org/engage/chemrxiv/article-details/60c74f58702a9ba8dc18bb6b
(visited on 08/28/2023).

[59] Yannick Djoumbou Feunang et al. “ClassyFire: automated chemical classification
with a comprehensive, computable taxonomy”. In: Journal of Cheminformatics 8.1
(Nov. 2016), p. 61. ISSN: 1758-2946. DOI: 10.1186/s13321-016-0174-y. URL: https:
//doi.org/10.1186/s13321-016-0174-y (visited on 08/28/2023).

[60] and Bootstrap Mark Otto contributors Jacob Thornton. Bootstrap. en. URL: https:
//getbootstrap.com/ (visited on 08/03/2023).

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://doi.org/10.48580/dfsy
https://www.checklistbank.org/dataset/9916
https://www.checklistbank.org/dataset/9916
https://www.catalogueoflife.org/data/taxon/5T6MX
https://www.catalogueoflife.org/data/taxon/5T6MX
https://chem.libretexts.org/Courses/Fordham_University/Chem1102%3A_Drug_Discovery_-_From_the_Laboratory_to_the_Clinic/05%3A_Organic_Molecules/5.08%3A_Line_Notation_(SMILES_and_InChI)
https://chem.libretexts.org/Courses/Fordham_University/Chem1102%3A_Drug_Discovery_-_From_the_Laboratory_to_the_Clinic/05%3A_Organic_Molecules/5.08%3A_Line_Notation_(SMILES_and_InChI)
https://chem.libretexts.org/Courses/Fordham_University/Chem1102%3A_Drug_Discovery_-_From_the_Laboratory_to_the_Clinic/05%3A_Organic_Molecules/5.08%3A_Line_Notation_(SMILES_and_InChI)
https://chem.libretexts.org/Courses/Fordham_University/Chem1102%3A_Drug_Discovery_-_From_the_Laboratory_to_the_Clinic/05%3A_Organic_Molecules/5.08%3A_Line_Notation_(SMILES_and_InChI)
http://inchi.info/inchi_comparison_en.html
http://inchi.info/inchi_comparison_en.html
https://doi.org/10.1186/1758-2946-4-13
https://doi.org/10.1186/1758-2946-4-13
https://doi.org/10.1186/s13321-018-0282-y
https://doi.org/10.1186/s13321-018-0282-y
https://doi.org/10.1186/s13321-018-0282-y
https://saturncloud.io/blog/explaining-the-ullmann-algorithm-a-simple-example/
https://saturncloud.io/blog/explaining-the-ullmann-algorithm-a-simple-example/
https://doi.org/10.1021/ci300261r
https://doi.org/10.1021/ci300261r
https://doi.org/10.1186/s13321-015-0069-3
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-015-0069-3
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-015-0069-3
https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=1166842542
https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=1166842542
https://girke-lab.github.io/chemminetools-docs/docs/theory/
https://girke-lab.github.io/chemminetools-docs/docs/theory/
https://doi.org/10.26434/chemrxiv.12885494.v1
https://chemrxiv.org/engage/chemrxiv/article-details/60c74f58702a9ba8dc18bb6b
https://doi.org/10.1186/s13321-016-0174-y
https://doi.org/10.1186/s13321-016-0174-y
https://doi.org/10.1186/s13321-016-0174-y
https://getbootstrap.com/
https://getbootstrap.com/

Bibliography 46

[61] JavaScript performance optimization - Learn web development | MDN. en-US. Aug.
2023. URL: https://developer.mozilla.org/en-US/docs/Learn/Performance/
JavaScript (visited on 08/07/2023).

[62] How to Optimize HTML to Boost Web Performance. en. URL: https://bluetriangle.
com / blog / how - to - optimize - html - to - boost - web - performance (visited on
08/07/2023).

[63] Frontend Optimization - 9 Tips to Improve Web Performance. en. URL: https://www.
keycdn.com/blog/frontend-optimization (visited on 08/07/2023).

[64] Introduction to the DOM - Web APIs | MDN. en-US. May 2023. URL: https : / /
developer . mozilla . org / en - US / docs / Web / API / Document _ Object _ Model /
Introduction (visited on 08/07/2023).

[65] Node.js. URL: https://nodejs.org/en (visited on 08/03/2023).

[66] ENAPSO Graph Database Client. original-date: 2018-06-19T09:39:30Z. Nov. 2022. URL:
https://github.com/innotrade/enapso-graphdb-client (visited on 08/03/2023).

[67] axios/axios at main. URL: https://github.com/axios/axios/tree/main (visited on
08/03/2023).

[68] Mot. dotenv. original-date: 2013-07-05T18:25:05Z. Aug. 2023. URL: https://github.
com/motdotla/dotenv (visited on 08/03/2023).

[69] Matthew Eernisse. Embedded JavaScript templates. original-date: 2014-12-31T17:49:35Z.
Aug. 2023. URL: https://github.com/mde/ejs (visited on 08/03/2023).

[70] Favicons. original-date: 2014-05-16T03:00:08Z. Aug. 2023. URL: https :// github .
com/itgalaxy/favicons (visited on 08/03/2023).

[71] graphdb.js. original-date: 2019-02-26T14:07:05Z. July 2023. URL: https://github.
com/Ontotext-AD/graphdb.js (visited on 08/03/2023).

[72] json2csv. URL: https://mircozeiss.com/json2csv/ (visited on 08/03/2023).

[73] J. P. Richardson. Node.js - jsonfile. original-date: 2012-09-10T19:02:27Z. July 2023.
URL: https://github.com/jprichardson/node-jsonfile (visited on 08/03/2023).

[74] Simple and fast NodeJS internal caching. original-date: 2011-10-18T14:30:09Z. Aug.
2023. URL: https://github.com/node-cache/node-cache (visited on 08/29/2023).

[75] node-fetch/node-fetch. original-date: 2015-01-26T07:29:26Z. Aug. 2023. URL: https :
//github.com/node-fetch/node-fetch (visited on 08/03/2023).

[76] nodemon. URL: https://nodemon.io/ (visited on 08/03/2023).

[77] svg. original-date: 2012-08-26T03:38:25Z. Jan. 2022. URL: https :/ / github . com /
npm-dom/svg (visited on 08/03/2023).

Author-formatted document posted on 12/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114048

https://developer.mozilla.org/en-US/docs/Learn/Performance/JavaScript
https://developer.mozilla.org/en-US/docs/Learn/Performance/JavaScript
https://bluetriangle.com/blog/how-to-optimize-html-to-boost-web-performance
https://bluetriangle.com/blog/how-to-optimize-html-to-boost-web-performance
https://www.keycdn.com/blog/frontend-optimization
https://www.keycdn.com/blog/frontend-optimization
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://nodejs.org/en
https://github.com/innotrade/enapso-graphdb-client
https://github.com/axios/axios/tree/main
https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv
https://github.com/mde/ejs
https://github.com/itgalaxy/favicons
https://github.com/itgalaxy/favicons
https://github.com/Ontotext-AD/graphdb.js
https://github.com/Ontotext-AD/graphdb.js
https://mircozeiss.com/json2csv/
https://github.com/jprichardson/node-jsonfile
https://github.com/node-cache/node-cache
https://github.com/node-fetch/node-fetch
https://github.com/node-fetch/node-fetch
https://nodemon.io/
https://github.com/npm-dom/svg
https://github.com/npm-dom/svg

	Abstract
	Acknowledgements
	Introduction
	Background_and_motivation_for_the_projec
	Brief_overview_of_the_research_problem_a
	Literature_Review
	Discussion_of_existing_research_on_creat
	GNPS_dashboard
	LOTUS_resources
	Wikidata
	Natural_Products_Online
	Nprod.net
	Methodology
	Description_of_the_data_sources_and_how_
	Discussion_of_the_software_tools_and_pro
	Results
	Presentation_of_the_dashboard_interface_
	Home_(B.1)
	Explore_whole_dataset_(B.2)
	Explore_Molecules_(B.8)
	Molecule_Page_(B.9)
	Explore_Organism_(B.10)
	Organism_page_(B.11)
	Download_(B.12)
	Informations
	Perspectives
	Error_handling
	Visualisation_options
	SQL_search
	Sample_page
	Download_page
	Functionalities_for_DBGI_data
	Cross-Browser_and_Device_Compatibility_T
	Examples_of_SPARQL_queries
	Discussion_&_Conclusion
	Discussion_of_how_the_code_was_optimized
	Javascript_optimization
	HTML_optimization
	Further_optimization
	Challenges_of_the_study_and_potential_av
	Challenges_caused_by_a_dual_data_sources
	Choice_of_Software_and_Programming_Langu
	Conclusion
	Softwares_&_libraries_version
	Nodejs
	Python
	PostgreSQL
	Dashboard_pages
	Bibliography

