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Preface

This deliverable provides a report on the biodiversity and ecosystem services (ESS) models
as well as the socio-economic statistical model, generated in the Work Package 3 (WP3) -
Farming System Archetypes of BESTMAP. A general overview of the research goals and
guiding principles under which the models were developed is given, followed by a detailed
description of the four biophysical models (biodiversity, food and fodder, carbon
sequestration and water quality) and of the socio-economic model, each with case study
(CS) examples. This document is accompanied by model factsheets (see Appendix) which
loosely follow the structure of the ODMAP (Overview, Data, Model, Assessment and
Prediction) protocol developed by Zurell et al. (2020). The deliverable also discusses the
obstacles and challenges encountered during the model adaptation and implementation in
the different CS, and how the model outputs will be used in various other tasks within the
project.

Summary

This deliverable presents the biodiversity, ESS and socio-economic models developed and
adapted for each case study (CS) in BESTMAP. Understanding the environmental effects of
currently subsidised measures like agri-environmental schemes (AES), ecological focus
areas (EFA) and organic farming in the different project’'s CS is a first important step in
assessing the effectiveness of such measures for environmental and biodiversity protection.
It also contributes to the impact assessment of the current Common Agricultural Policy
(CAP) and helps guide decisions for future CAP directions. This deliverable builds on the
ideas and guidelines presented in the “MS4 - Directives for Modelling Approach in Case
Studies”, and directly employs the geospatial dataset collected and harmonised in “D3.1 -
Case Study Base Layer dataset for each of the case studies”. We here present four models
on biodiversity and ESS, which estimate the impact of selected agri-environmental measures
(AEM, used here as an umbrella term for agri-environment schemes, ecological focus areas
and organic farming) on biodiversity, food and fodder, carbon sequestration and water
quality. Additionally, a socio-economic model based on data from the Farm Accountancy
Data Network (FADN) is described. All models are generated or adapted using open-source
software, and the model scripts are made freely available and reusable. Moreover, the
models are validated and uncertainty in the model results is assessed for all models and CS,
thereby ensuring the reliability and correct interpretation of the model outputs. The core part
of this deliverable is built from a general overview of each model's workflow, followed by
examples of the model outputs from the different CS. Model factsheets with a detailed
description of the input data, statistical approach, and outputs of each model, are attached to
this deliverable and ensure transparency and reproducibility of all analyses (see Appendix).
Modelling AEM effects across different countries, each with diverse agricultural policies,
environmental conditions and data availability, is a challenging task; this deliverable also
discusses problems and setbacks encountered during this process and how they were
overcome. Lastly, we describe how the model outputs link to other ongoing and future
activities within the project, and how they will be made available to the wider public, including
local stakeholders, in the interactive BESTMAP dashboard.
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1. Research goals

Biophysical and socio-economic modelling is one of the core tasks in the WP3 - Farming
System Archetypes of BESTMAP, and is closely linked to activities in WP4 and WP5. The
goal of this task is to estimate and map, in a spatially explicit way, the effects of selected
agri-environmental measures (AEM) on biodiversity, ESS and socio-economic outputs for
each of the five CS of the project. We here refer to AEM as an umbrella term for
agri-environmental schemes, ecological focus areas and organic farming, as these practices
are often similar in management and environmental objectives. Based on the results of the
deliverable, other tasks within BESTMAP will implement the following: the model results will
be used to identify trade-offs and synergies between biodiversity, ESS and socio-economic
indicators in and across the five CS. Differences in the provision and flows of ESS and
biodiversity between the different Farming System Archetypes (FSAs) will be assessed
using the biophysical models’ outputs. Useful policy indicators at the CS level will be
developed from the biophysical models’ results, and will later be upscaled to the European
level. The indicators will be visualised either via the interactive dashboard, in which different
policy scenarios and their effects will be explored, or in other ways (depending on the
feedback from the CS co-design sessions). The biophysical models will also be applied to
different AEM scenarios resulting from the agent-based modelling task, so that the
environmental impacts of farmers’ decisions can be directly estimated.

2. FAIR guiding principles

BESTMAP is committed to following the FAIR (Findability, Accessibility, Interoperability, and
Reusability) guiding principles for scientific data - and model - management (Wilkinson et al.,
2016), and strives to make all its outputs open access and reusable. BESTMAP’'s ESS and
biodiversity models were selected from a comprehensive list of pre-existing open-source,
spatially-explicit, calibrated and validated models (for further details on model selection, see
MS4), which have been adapted for their application at the CS level and for the specific goal
of detecting AEM effects on ESS and biodiversity. The model factsheets that accompany this
deliverable describe in detail the input data, workflow (including calibration and validation),
and output products for each of the models in each CS, to ensure the full reproducibility of
the analyses and their results. The input data for the models were compiled and harmonised
across CS in the Case Study Base Layer, a geospatial dataset described in the “D3.1 - Case
Study Base Layer dataset for each of the case studies” stored in the UFZ GeoNetwork
(https://geonetwork.ufz.de). The software (e.g R https://www.r-project.org/, InVEST
https://naturalcapitalproject.stanford.edu/software/invest, Python https://www.python.org/,
QGIS https://qais.org/en/site/) used for data preparation and modelling are all freely
available, and the codes developed by the modellers for the adaptation and application of
the models at CS level are stored in the UFZ GitLab page (https://qgit.ufz.de/), which hosts
model-specific repositories. Finally, the outputs of the models will be made publically
available via the UFZ GeoNetwork (https://geonetwork.ufz.de) at the end of the project. This
ensures long-time data availability beyond the running time of the project.

3. Models

The BESTMAP modelling team held a virtual workshop in April 2020 to discuss and
delineate the goals and directives for the biophysical and socio-economic models to be
developed and adapted at the CS level (“MS4 - Directives for Modelling Approach in Case
Studies”). As the primary goal of the biophysical modelling task was to investigate AEM
effects on different ESS and biodiversity, the selection of both AEM and ESS to be modelled
was tailored to this purpose. Multiple spatially-explicit open-source modelling suites and
techniques for different ESS and biodiversity were reviewed, requirements regarding input
data and parametrization collated and approaches for model validation selected. Models


https://geonetwork.ufz.de
https://www.r-project.org/
https://naturalcapitalproject.stanford.edu/software/invest
https://www.python.org/
https://qgis.org/en/site/
https://git.ufz.de/
https://geonetwork.ufz.de
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were selected also on the basis of their ability to detect the environmental and
socio-economic impacts of the implementation of different AEM at the field, farm and
landscape level. The final list of selected and implemented models includes three ESS
models (food and fodder, carbon sequestration and water quality), one biodiversity model
and one socio-economic statistical model.

We originally selected a set of AES that occurred in all or most of the CS, and that were
widely adopted. We later included ecological focus areas (EFA) to the AES groupings, as
some of these are very similar in management to the AES and hence lead to similar
environmental effects. Organic farming was also selected as one of BESTMAP’'s focal
management practices, due to its growing popularity and widespread uptake across all CS.
To ensure consistency and comparability of the AEM groupings across CS, we outlined
definitions for each measures’ group (see D2.5). The final list of modelled AEM are: buffer
areas/strips, cover crops, land-use conversion to permanent grassland, land-use conversion
to forest, maintaining permanent grassland, organic farming and fallow land. The frequency
and spatial coverage of these seven AEM groups vary across CS, as does their
relevance/impact for different ESS and biodiversity models, so not all AEM are considered in
all models and CS.

To best visualise the contribution of the modelled AEM on ESS and biodiversity, we adopted
a two-scenario approach: one land-use scenario reflects the current land-use management
conditions for the year 2019, i.e. the most recent year for which land management data from
the Integrated Administration and Control System and Land Parcel Identification System
(IACS/LPIS) were available in the CS; in a second scenario, we removed all AEM from the
landscape. ESS and biodiversity were modelled in both scenarios, and the difference
between the two output maps allows us to clearly visualise the positive or negative effects of
AEM on the selected ESS and biodiversity. All models were validated following established
methods, as described in the next chapter for each model. Uncertainty in the model outputs
can derive from incomplete or biased input data, model limitations as well as lack of
knowledge and/or incorporation of associated or underlying processes. Uncertainty
assessment is thus a fundamental factor for the correct interpretation of model outputs
(Bryant et al., 2018); we performed uncertainty analyses for each model and CS.

3.1. Biodiversity
3.1.1. Model description

Authorship

Contact: Stephanie Roilo (stephanie.roilo@tu-dresden.de) for the models in DE, CZ, ES and
UK; Tijana Nikolic (tijana.nikolic@biosense.rs) for the models in RS; Tomas Vaclavik
(tomas.vaclavik@upol.cz) for the models in CZ.

Model name

Species distribution model (SDM; Figure 1) for selected farmland bird species.


mailto:stephanie.roilo@tu-dresden.de
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Figure 1: A general framework of species distribution models. Data on species location are
linked to spatial data on the environment with quantitative models. Different model
algorithms can vary considerably in the way they relate species responses to environmental
gradients. With estimated response curves, species distributions are mapped in space
and/or time. Ensemble models combine several model algorithms to deliver more robust
forecasts (source: Fletcher & Fortin 2018).

Model objective

Main objective of the model is to estimate how the adoption of Agri-Environmental Measures
(AEM) affects habitat suitability for a selected set of farmland bird species.

Model output

The model output consists of habitat suitability maps for the selected bird species.

Data specifications

Response data type: presence-only, georeferenced point occurrences of several farmland
bird species.

Predictor types: geospatial (e.g. raster and shapefile data) information on climate,
topography, anthropogenic disturbance, land cover and land-use, including land-use
management information like AEM adoption extracted from the Integrated Administration
and Control System (IACS) and Land Parcel Identification System (LPIS).

Assumptions

Model assumptions: 1. Species-environment equilibrium, 2. All relevant ecological drivers of
farmland bird distributions are included in the models, 3. Bird dataset adequately covers
fields with and without agri-environment measures.

Algorithms and workflow

Modelling techniques: We used ensemble SDMs to minimise the uncertainties arising from
single algorithm models. The ensemble models were based on five modelling algorithms,
namely generalised linear models and generalised additive models (GLM and GAM,
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regression-based methods), random forest, generalised boosting models, and maximum
entropy (RF, GBM, and MAXENT, machine-learning methods) as implemented in the
biomod2 package version 3.4.6 (Thuiller et al. 2019).

Model workflow: We fitted 10 repetitions for each model by randomly subdividing the dataset
into 70% training data and 30% testing data. Each model run was evaluated via
cross-validation. We used the Area Under the Receiver Operating Characteristics Curve
(AUC), the True Skills Statistics (TSS), specificity and sensitivity as evaluation metrics
(Fletcher & Fortin 2018). To obtain a relevant combination of several unbiased (i.e., with fair
accuracy) models, only models with an AUC value = 0.7 were retained, and the ensemble
model was constructed for each species by computing the weighted average of all remaining
models. The weights were based on the AUC scores of each model, so that better
performing models had a higher influence in the final ensemble. The models were then
projected onto the current (as of 2019) environmental and agricultural conditions to obtain
habitat suitability maps for each bird species.

Model validation

Each model run was evaluated via cross-validation, and the average across the 10 runs was
computed to assess the performance of the final model. We used AUC, TSS, specificity and
sensitivity as evaluation metrics.

Uncertainty estimation

Ensemble SDMs were developed with the specific goal of minimising the uncertainty in
estimating species distribution deriving from single algorithm models (Aradjo & New 2007,
Wiest et al. 2020). Indeed, among the many potential sources of uncertainty in SDMs, such
as algorithms, environmental datasets, species presences, variable collinearity, etc., the
choice of modelling algorithm is thought to be the greatest source of uncertainty in SDM
performance and prediction maps (Watling et al. 2015, Wiest et al. 2020). We therefore
produced uncertainty maps calculated as the standard deviation of the prediction maps
deriving from the model algorithms included in the ensemble model (Buisson et al. 2010;
Senai & Worner 2019). Such maps highlight the areas of highest disagreement across single
algorithm predictions.

Software

Software: We used the biomod2 package version 3.4.6 (Thuiller et al. 2019) in R version
4.0.2 (R Core Team 2020).

Code availability: the R code used for the preparation of the environmental variables at
multiple spatial scales (approach adopted in DE, CZ and RS), fitting the models and
producing the uncertainty maps, together with a README file, is available here:

https://qit.ufz.de/bestmap/bestmap-biodiversity
Linking the model outputs to indicators

The model results can be linked to the following policy indicators:

C.35/1.18 Farmland Bird Index (FBI) (European Commission 2021).

While the European Farmland Bird Index represents temporal trends of population sizes
based on annual national bird surveys, we here aimed at developing an indicator that could
detect the effects of AEM in a spatially-explicit way, and that could be compared across CS.
We hence normalised all individual species’ SDMs and we computed the average habitat
suitability score across all modelled bird species. The output is an index of farmland birds’


https://git.ufz.de/bestmap/bestmap-biodiversity
https://agridata.ec.europa.eu/Qlik_Downloads/InfoSheetEnvironmental/infoC35.html
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habitat suitability, with high (positive) values indicating highly suitable habitat, and low
(negative) values indicating unsuitable habitat.

Model specifications for each case study are available in the model factsheet in the
appendix.

3.1.2. Case study examples
Mulde, DE

Figure 2 shows the modelled habitat suitability maps, under the two scenarios, for one
example species: the red-backed shrike (Lanius collurio). Model performance was very good
(Area Under the Receiver Operating Characteristics Curve = 0.91, sensitivity = 0.86,
specificity = 0.83). For this species, the application of AEM, especially extensive grassland
management, fallow land and organic farming, led to an increase in habitat suitability, as is
evident by comparing the two maps (Figure 3). The uncertainty map for the current scenario
highlights some areas of higher disagreement in the single algorithm predictions; these are
areas with large proportions of fallow land and organic farming, for which the estimated
species-environment relationships diverged across different algorithms.
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Figure 2: Modelled habitat suitability, ranging from 0 to 1000 as a measure of habitat quality,
and the related uncertainty maps, calculated as standard deviation across the single model
algorithms’ predictions, for the red-backed shrike (Lanius collurio) in the Mulde river basin.
The maps on the left refer to the current scenario, i.e. the land-use conditions as of 2019; the
maps on the right refer to the “no AEM scenario”, in which all modelled AEM groups are
removed from the landscape.
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Figure 3: Difference in habitat suitability between the current and the no AEM scenario, for
the red-backed shrike (Lanius collurio) in the Mulde river basin. Positive values (in blue)
mark areas in which habitat suitability is higher when AEM are implemented, that is under
current land-use conditions as of 2019. The opposite is true for areas with a negative change
(in red).

Catalonia, ES

In Catalonia, bird occurrence data was only available in gridded format at 1km resolution.
The model outputs are thus also at a coarser spatial resolution than in DE, CZ and RS,
where georeferenced occurrence points of bird observations were available (see Appendix,
biodiversity model factsheet). Figure 4 shows the modelled habitat suitability maps, under
the two scenarios, for the skylark (Alauda arvensis) in Catalonia. Model performance was
very good (Area Under the Receiver Operating Characteristics Curve = 0.82, sensitivity =
0.75, specificity = 0.77). For this species, the considered AEM, especially extensive
grassland management and fallow land, were positively related to habitat suitability (Figure
5). In both scenarios, the uncertainty is highest in the southern tip of the CS.
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Figure 4: Modelled habitat suitability and related uncertainty maps for the skylark (Alauda
arvensis) in Catalonia. The maps on the left refer to the current scenario, i.e. the land-use
conditions as of 2019; the maps on the right refer to the “no AEM scenario”, in which all
modelled AEM groups are removed from the landscape.
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Figure 5: Difference in habitat suitability between the current and the no AEM scenario, for
the skylark (Alauda arvensis) in Catalonia. Positive values (in blue) mark areas in which
habitat suitability is higher when AEM are implemented, that is under current land-use
conditions as of 2019. The opposite is true for areas with a negative change (in red).

3.2.Food and fodder
3.2.1. Model description

Authorship
Contact: Anne Paulus (anne.paulus@ufz.de), Predrag Lugonja
(predrag.lugonja@biosense.rs), Katharina  Schneider (katharina.schneider@ufz.de),
Rosemary Wool (r.wool@leeds.ac.uk), Michael Beckmann (michael.beckmann@ufz.de)

Model name

Model of the effects of agri-environmental measures on food and fodder production.
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Model objective

Main objective of the model is to estimate how the adoption of agri-environmental measures
(AEM) affects the yield and production area of selected agricultural crops as well as
economic output at the field and farm level. Figure 6 provides a conceptual overview of the
model workflow.

AEM distribution map
Estimates of AEM
effects on P/i‘eld

A
Standard Output Coefficients

Spatially explicit yield data |
Crop distribution map

e AEM). - -
aseline (no )I: AEM adoption scenario
scenario |

Figure 6: Schematic overview of the food and fodder model.

Model output
The model output consists of maps of crop production area, yield and standard output.

Data specifications
Geospatial information (e.g. as raster and shapefile data) on agricultural land-use, including
management information like AEM adoption (cover crops, buffer areas/flower strips,
land-use conversion, maintaining permanent grasslands, organic farming) and type of crops
grown as well as spatially explicit yield data of agricultural crops and their standard output
coefficients.

Assumptions

1. All relevant effects of the AEM on food and fodder production are included in the

models,

2. Current AEM implementation levels do not affect the baseline yield and standard
output,

3. Cover crop effects on yield depend only on climate, soil texture, catch crop and cover
crop type,

4. Implementation of buffer areas and land-use conversion do not affect yield and
standard output of neighbouring fields,
5. EUROSTAT and IACS/LPIS information on agricultural management is correct.

Algorithms and workflow

The general workflow of the food and fodder model is depicted in Figure 6. We obtained
standard output coefficients (StOCs) of agricultural crops from EUROSTAT (2022) as an
economic measure of agricultural production. A baseline yield map without AEM was
produced using predictions created by the WOFOST model for arable land. Regional yield
data for grassland were obtained from local data sources. These data were used as a
weighting factor in order to account for spatial variation of StOCs. StOCs are published by
EUROSTAT (2021) and represent the monetary value produced by cultivating a crop per
hectare at a given time and location. We then used existing empirical data to estimate the
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relative effect of AEM on crop yield. The results were then combined in order to produce
case study maps of production area and yield of the selected crops.

WOFOST

WOFOST (WOrld FOod STudies) is a simulation model developed at Wageningen University
& Research for the quantitative analysis of the growth and production of annual field crops
(Van Diepen et al., 1989). WOFOST is used in the European Mars crop yield forecasting
system (de Wit et al., 2019). The WOFOST data used here were previously generated in the
JRC study “Analysis of climate change impacts on EU agriculture by 2050” (Hristov et al.,
2020). The WOFOST model was run on climate data. 8 climate models were used from 5
families and yield predictions were generated for two RCP scenarios, mid-range mitigation
emission scenario (RCP4.5) and the high-end emission scenario (RCP8.5). We aggregated
this data in the following way to create single yield maps for each scenario: first, we
calculated the mean of each model’s family, and then the median of aggregated results was
used for final yield prediction. Yield predictions are generated for the following six crops:
maize, sugar beet, wheat, sunflower, winter rapeseed, spring barley at a resolution of appr.
11km. WOFOST data were used as a baseline in all case studies, except for Spain, where
agriculture is dominated by crop species not included in WOFOST.

Uncertainty analysis

The food and fodder model is largely based on two sources of information: i. the yield model,
ii. information from IACS/LPIS and EUROSTAT. As there is no information of uncertainty
about the latter, we assume that they are correct, so the uncertainty of our model can be
calculated from the uncertainty of the crop yield model. As a measure for uncertainty of the
WOFOST baseline model, we decided to use variance across the 8 climate models. To
calculate uncertainty of the WOFOST model, we calculated variance of each pixel across
years, since each pixel across 8 yield maps represents an independent random process. For
comparison of uncertainty across years we calculated a histogram of variance for each year
separately.

Model validation

The baseline yield model of arable crops was validated using regional yield statistics of each
case study. The model was evaluated using the metrics R? and RMSE.

Software
Software: We used R version 4.0.2 (R Core Team 2020).
Code availability: the R code used for the preparation of the environmental variables and for

fitting the models, together with  a README file, is available here:
https://qit.ufz.de/bestmap/bestmap-food-and-fodder.

Linking the model outputs to indicators

The model results are not identical to, but can be linked to the following indicator
(EUROSTAT 2022):

C.24 Agricultural factor income

Agricultural factor income represents the value generated by a farm business including all
factors of production, which makes it a suitable indicator for evaluating the impact of


https://git.ufz.de/bestmap/bestmap-food-and-fodder
https://ec.europa.eu/eurostat/cache/metadata/en/sdg_02_20_esmsip2.htm
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changes in subsidies like AEM on farm income. It is also used for the EU reporting on the
United Nations’ Sustainable Development Goals.

Model specifications for each case study are available in the model factsheet in the
appendix.

3.2.2. Case study example
Mulde, DE

For the case study model of the Mulde river basin, annual yield data of the predominant
arable crops (wheat, maize, barley, rapeseed, sugar beet) was obtained from WOFOST
predictions (Hristov et al. 2020) and amended with regional grassland yield information from
LfULG (2001). For all other crops, it was only possible to model changes in standard output.
Cover crop effects on maize yield based on soil texture, main crop, cover crop, and climate
were estimated according to Jian et al. (2020). We used the SoilHealthDatabase consisting
of more than 200 original studies comparing crop yields with and without cover crops. For
the effect of the maintaining grasslands AEM on food and fodder production, we took into
consideration the reduction of grassland yield due to lower mowing frequency and
fertilisation. Figure 7 shows the modelled standard output maps under the two scenarios
(current implementation of AEM vs. no AEM). Crop-specific StOCs vary by several orders of
magnitude, which masks the effect of AEM and leads to a similar appearance of the two
maps. The effect becomes clearer when looking at the differences between the two
scenarios shown in Figure 8. The largest reduction in standard output due to AEM is in the
southern part of the CS, where maintaining permanent grassland schemes are common. In
some fields, standard output is enhanced by AEM, which can be explained by a modelled
yield increase due to cover crop implementation.

N Standard Output (€) o B Standard Output (€)
0to 100 o’ 0to 100
% :$: 100 to 10,000 %Q’[ 100 to 10,000

10,000 to 1,000,000 10,000 to 1,000,000
B 1,000,000 to 10,000,000 B 1,000,000 to 10,000,000
Missing Missing

[— | [— |
0 15 30 km 0 15 30 km

Figure 7: Modelled standard output (€) in the Mulde river basin. The map on the left refers to
the current scenario, i.e. the land-use conditions as of 2019; the map on the right refers to
the “no AEM scenario”.
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Figure 8: Difference in standard output (%) between the current and the no AEM scenario
in the Mulde river basin. Positive values (in blue) mark areas in which standard output is
equal or higher when AEM are implemented, that is under current land-use conditions as of
2019. The opposite is true for areas with a negative change (in red).

3.3.Carbon sequestration

3.3.1. Model description
Authorship

Contact: Fanny Langerwisch (fanny.langerwisch@upol.cz)

Model name

Model of the effect of agri-environmental measures on soil organic carbon (SOC).
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Model objective

The main objective of the model is to estimate how the adoption of agri-environmental
measures (AEM) affects soil carbon sequestration on field level / within landscapes (see
Figure 9 for a conceptual workflow of the model).

soil characteristic

- pH S0C base map [t/ha]
i (F:Iay e current SOC [t/ha) estimated SOC [t/ha]
- bulk density arable land 1/0 alternative now
scenarios
elevation ¢rop groups - no AEM
climate - soil improving
- soil neutral

- annual precipitation
- average min temperature
- average max temperature AEM adoption

soil disturbing

abiotic conditions LPIS information

Figure 9: Conceptual figure of the workflow of the carbon model.

Model output

The model output consists of maps of soil organic carbon per field/parcel, under the current
land-use patterns and AEM implementation and under alternative-now scenarios.

Data specifications

Response data type: soil organic carbon (SOC [t/ha]).

Predictor types: geospatial data (raster and polygons) on soil characteristics, climatic
conditions, crops and adopted AEMs (agri-environmental schemes and ecological focus
areas).

Hypotheses

We hypothesise that SOC is sensitive to the crop type and to the adoption of AEM. We also
hypothesise that underlying SOC (SOC,,s), which is only driven by abiotic factors (e.g.
climate, clay content), is affected by the above-mentioned land-use and AEM interventions
(SOC,, and SOC,,,, respectively). To test our hypothesis we compared the simulated SOC
under the current AEM implementation (SOC,,,) with a second scenario in which no AEM is
implemented.

Assumptions

Model assumptions: (1) The soil organic carbon depends on abiotic conditions and is altered
by land cover and land use. (2) Current amount of soil carbon is in equilibrium, i.e. the soll
already contains organic carbon, there is no general building-up of soil organic carbon
assumed. (3) There is no dependence of SOC on soil management (ploughing/mulching
etc). (4) SOC is affected differently by different crop groups (soil-improving, soil-disturbing
and neutral crops). (5) The rotation of each parcel over several years can be depicted by the
crops rotated on all parcels per farm. This can be used to identify a ‘pseudorotation’, which
indicates the coverage with soil-improving and soil-disturbing crops. (6) The effect of the
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AEM ‘maintaining permanent grassland’, ‘buffer stips’ and ‘land-use conversion to
permanent grassland’ are similar to the effect of growing ‘permanent grassland’ on the
parcel.

Algorithms and workflow

We calculated the soil organic carbon base for each parcel/pixel only depending on abiotic
conditions, such as climate and soil characteristics (clay, pH, bulk density, elevation, annual
precipitation, average min. and max. temperature, see Eq.1).

SOCb = - e (intercept + elevxc.elev + clayxc.clay + pHxc.pH + BDxc.BD + precxc.prec + TminxcTmin + TmaxxcTmax)
ase
(Eq.1)

The coefficients for this calculation (Table 1) were extracted from LUCAS observation points
making use of a quasi-Poisson generalised linear model. Further information and data
accessibility of the LUCAS data can be found at http://esdac.jrc.ec.europa.eu/projects/lucas).
For our study, we included only the 8,554 points classified as arable, which were used also
by Quemade et al. 2020.)

Table 1: Coefficients used in Eq.1 to calculate the SOC basemap.

Input variable Coefficient Value and significance
- intercept 8.938178™
elevation (elev) c.elev -0.000077"
clay content (clay) c.clay -0.009685™
soil pH (pH) c.pH -0.022066™"
bulk density (BD) c.BD -3.162275™
mean annual precipitation (prec) c.prec -0.000097™
mean maximal temperature (Tmax) | c.Tmax -0.014182™"
mean minimal temperature (Tmin) c.Tmin 0.013269™

The quasi-Poisson-GLM led to an R?=0.902. The deviance residuals were distributed the
following: Min=-9.7610; 1Q=-0.6710; Median=0.0440; 3Q=0.7073, Max=10.5140.

In a second step, we used the baseline SOC (SOC,...) and adapted it according to the land
use to calculate the SOC,,. On arable parcels, we assumed that SOC is altered by different
crops. We organised crops into three crop groups: (1) soil-disturbing crops, such as potatoes
and sugar beet, which reduce the SOC, (2) soil-improving crops, such as legumes, which
increase the SOC, and (3) neutral crops, which do not affect the SOC. This grouping was
done for each case study separately. The parameters for the effects were extracted from the
literature (Table 2). The parameters can be adapted to case study conditions. Additionally,
we adapted the SOC (SOC, on permanent grassland) for parcels under permanent
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grassland management, assuming an increase in SOC based on Poeplau & Don (2015).
Also this parameter can be adapted locally. We assumed SOC to remain unaltered in the
remaining parcels, i.e. non-arable and non-permanent grassland parcels.

The last step was the modification of SOC,, depending on the currently applied AEM
(SOC,,,) and alternative-now scenarios (SOC,;). Here, we applied parameters for each of
the following AEM groups: (1) cover crops, (2) organic farming, (3) maintaining permanent
grassland, (4) buffer stips and land-use conversion (5) to permanent grassland and (6) to
forest. The difference between SOC,,, and SOC,; is the different distribution of AEM, where
SOC,, represents the current AEM adoption and SOC,; any alternative AEM adoption. The
parameters for this calculation were extracted from the literature (Table 2) and can be further
adapted to local conditions. The parameters to calculate SOC,, (p.lu.xxx) and SOC,,, and
SOC,; (p.aem.xxx) are listed in Table 2.

Calculation of SOC,, and SOC,,, (as well as SOC,,) with the following equations.
SOC,, = SOCy,e * (1+p.Iu.xxx) (Eq. 2)
SOC,.,. = SOC,, x (1+p.aem.xxx) (Eq.3)

Eq.3 is applied to calculated SOC,,; as well as SOC,;.

Table 2: Parameters used for the adaptation of the baseline SOC according to different land
use and AEM application.

Parameter name Value Source

p.lu.soilimproving 0.35 Wu et al. 2016, Gregorich et al. 2001, Guan et al. 2016

p.lu.soildisturbing -0.1 Goidts & van Wesemael 2007

p.lu.permgrass 0.45 Poeplau & Don 2015, Gregorich et al. 2001

p.aem.covercrops 0.1 Crystal-Ornelas et al. 2021, Poeplau & Don 2015,
Abdalla et al. 2019

p.aem.organic -0.05 Lorenz & Lal 2016, Mondelears et al. 2006, Gattinger
etal. 2012

p.aem.maintgrass 0.45 Poeplau & Don 2015, Gregorich et al. 2001

p.aem.buffer 0.45 Poeplau & Don 2015, Gregorich et al. 2001

p.aem.luconvgrass 0.3 Poeplau & Don 2015, Ledo et al. 2020, Martens et al.

2003, Gregorich et al. 2001

p.aem.luconvforest 0.45 Poeplau & Don 2015, Gregorich et al. 2001, Martens et
al. 2003
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The resulting maps of SOC under different AEM implementation scenarios, including a “no
AEM” scenario and several different AEM implementations (varying spatial arrangements of
one or multiple AEM types) were used to estimate the effect of each agri-environmental
measure.

Uncertainty analysis

We conducted an uncertainty analysis of the SOC basemap calculation (SOC,..), in which
we changed the values of all input variables (see Table 1) by +/-5% and +/-10%. The effect
of changes in the bulk density (BD) was the highest, which is in line with our expectations
and with empirical evidence since the coefficient for BD (cgp) was the largest. The effect of
variation in clay content and maximal temperature was small, while elevation, precipitation
and minimal temperature had a negligible effect.

Additionally, we did a sensitivity analysis of the SOC, and SOC., by changing the
parameters listed in Table 2.

Model validation

Validation of SOC base map (SOC.,.) and current SOC (SOC.,) was done with
observations from SOILGRIDS 250m organic carbon stock. Case study specific validation is
possible with regional data.

Software

R version 4.1.2 ‘Bird Hippie’' (2021-11-01) R Core Team (2021).

Code availability: the R code used for the preparation of the variables and for fitting the
model is available here: https://git.ufz.de/bestmap/bestmap-carbon-sequestration

Linking the model outputs to indicators

The model results can be linked to the following policy indicators:

C41 - Soil organic matter in arable land

The indicator consists of 2 sub-indicators: i. the total estimate of organic carbon content in
arable land; ii. the mean organic carbon content. The indicator is expressed as an estimate
of the total SOC stocks in topsoil (0-20) of EU Member States. The mean SOC concentration
per Member State is calculated for orientation purposes (European Commission 2021). The
outputs of the carbon sequestration model can be linked to the first sub-indicator of the
indicator C41.

Model specifications for each case study are available in the model factsheet in the
appendix.


https://git.ufz.de/bestmap/bestmap-carbon-sequestration
https://agridata.ec.europa.eu/Qlik_Downloads/InfoSheetEnvironmental/infoC41.html
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3.3.2. Case study example

South Moravia, CZ

The South Moravia case study is dominated by arable land in the lowlands and permanent
grassland farms in the higher elevations (Figure 10). This is reflected by the distribution of
SOC, which is influenced by cropping vs. permanent grassland (Figure 10). On about half of
the parcels at least one AEM is adopted. The grouping of crops into soil-disturbing and
soil-improving is shown in Table 3. All crops not included are referred to as ‘neutral’. Barren

parcels were classified as soil-

Table 3: List of crops of each group in the case study.

disturbing.

Soil-improving crops

Alfalfa
Bean
Chickpea
Clover
Legume
Lupine
Pea

Soil-disturbing crops

Potato
Radish
Sugar beet
Topinambur

Land use type on parcel

standard arable land

- permanent grassland

[ =
0 25 5 10

Figure 10: Distribution of the main land-use types - standard arable land and permanent

grassland - in South Moravia.
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Figure 11: Estimated SOC_,, [t/ha] for each parcel in South Moravia.

Figure 12 shows the relative changes in SOC between the “no AEM” scenario (SOC,;) and
the current conditions (SOC,,,) (in terms of crops grown and applied AEM) as of 2019.
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Figure 12: Relative changes in SOC [%] under the ‘no AEM’ scenario, compared to the
current land-use conditions.

3.4. Water quality

3.4.1. Model description
Authorship

The model is authored by the Natural Capital Project:
https://naturalcapitalproject.stanford.edu/. This instance of the model was run by: Dr. Arjan
Gosal (a.gosal@leeds.ac.uk), Rosemary Wool (r.wool@leeds.ac.uk), Dr. Marek Bednar
(marek.bednar@upol.cz) and Dr. Sanja Brdar (sanja.brdar@biosense.rs).

Model name

INVEST Nutrient Delivery Ratio: https://naturalcapitalproject.stanford.edu/software/invest
Model manual

A comprehensive manual is available online:
https://invest-userguide.readthedocs.io/en/latest/ndr.html
Model objective

The InVEST Nutrient Delivery Model (NDR) is designed to map nutrient sources, from
watershed to stream. It allows nutrient retention by natural vegetation in relation to surface
water quality to be investigated (Sharp et al., 2018).

Model processes

The following summary is abridged from the comprehensive INVEST documentation on the
NDR model. The approach the NDR model utilises is one of simple mass balance by the
movement of nutrients through space (see Figure 13). Rather than use details of the nutrient


https://naturalcapitalproject.stanford.edu/
https://naturalcapitalproject.stanford.edu/
https://naturalcapitalproject.stanford.edu/software/invest
https://invest-userguide.readthedocs.io/en/latest/ndr.html
https://invest-userguide.readthedocs.io/en/latest/ndr.html
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cycle, the NDR model instead uses long-term, steady state flows through empirical
relationships (Sharp et al., 2018). Nutrient loads are associated with different land (or crop)
types with nutrient delivery ratios computed for nutrient transport by surface flow (with the
option for subsurface flow in the model). Surface flow is calculated using a delivery factor,
which represents ability to transport nutrients without retention for downstream pixels and a
topographic index (Sharp et al., 2018).

Pixel properties used
in the computation
of NDR

(1-p) % load_n

1-p) ® load_n * NDR

.y
p * load_n % NDR,.. -~
ik

Figure 13: Conceptual representation of the nutrient delivery in the Nutrient Delivery Ratio
model (source: Sharp et al, 2018). The model is run assuming that the subsurface
component is zero, as per Redhead et al. (2018)

Model output

The model provides spatial outputs. The first is a vector shapefile with the following
attributes; the total nutrient loads in each watershed (i.e. the sum of the nutrient contribution
from all land cover types), the total subsurface nutrient loads in each watershed, and the
total nutrient export from each watershed. The second output is a raster tif file showing how
much load from each pixel eventually reached the stream in kg/pixel. The model resolution
of the output raster is the same resolution of the DEM provided as the input, and therefore
this resolution will vary depending on the specific input data for different areas. The outputs
of the model will be extracted at the farm-level in place of using the sub/watershed
catchments that are outputted from the native model.
Data specifications

Geospatial information including digital elevation model (DEM), land use/land cover map
(LCM), crop map, nutrient runoff proxy, watersheds delineated from a digital elevation model,
and a biophysical table containing several different values on nutrients loading relating to
each land use type (see Table 4).

Table 4: Description of Nutrient Delivery Model inputs.

Data type Input Description

Spatial Digital elevation | Raster dataset with an elevation value for each pixel,
model (DEM) given in metres
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Land use/land | Raster of land use/land cover type for each pixel, where
cover (LULC) each unique integer represents a different land use/land
cover class

Nutrient runoff | Raster representing the spatial variability in runoff
proxy potential, which in this case is annual precipitation

Watersheds Shapefile delineating the boundary of the watersheds
within the case study area

Non-spatial Biophysical A table containing information corresponding to each
table land use class in the LULC raster, which also includes
each AEM class. The parameters include
nitrogen/phosphorus load, maximum  retention
efficiency, the distance after which it is assumed that a
patch of a particular LULC type retains nutrient at its
maximum capacity, and the proportion of dissolved
nutrients over the total amount of nutrients.

Assumptions

This model has high-sensitivity to inputs, therefore errors in the biophysical table have a
large effect on predictions. This includes the outputs of the model being highly sensitive to
the small number of input parameters.

Algorithms and workflow

See the model specification and details of the algorithm at:
https://invest-userguide.readthedocs.io/en/latest/ndr.html
Model validation

This instance of the model is not validated, but has been validated in previous research for
the UK: https://www.sciencedirect.com/science/article/pii/S0048969717320909

Uncertainty estimation

Uncertainty was ascertained using the results of Redhead et al (2018) study which validated
the NDR model using regression models. We used the x solved trendline equation x =
(y-b)m (where b is intercept, and m is slope). Intercept and slope values were taken for 25m
resolution values, with the intercept being 0.31 for both N and P, and slope 0.67 and 0.49 for
N and P respectively. We then calculated the Mean Absolute Percentage Error for each
model instance.

Software

The Nutrient Delivery Ratio model as part of the INVEST Software Platform developed by the
Natural Capital Project (Sharp et al., 2018). The model was run using the GUI version of
INVEST (version 3.9.0), though the steps can also be replicated using the INVEST Python
package (version 3.9.2), which is outside the scope of this document (this additional method
can be explored here and at the Python Package Index; PyPi). Many of the inputs are spatial
in nature (see Table 4 and Model specifications section), these inputs were manually
processed using GIS software, for example QGIS (https://qgis.org/).
Linking the model outputs to indicators

The outputs of this model (N and P export) are related to Gross Nutrient balance for nitrogen
and phosphorus. The InVEST NDR model does not account for emissions into the
atmosphere, and is limited to the retention in land/crop types to fresher water systems;


https://invest-userguide.readthedocs.io/en/latest/ndr.html
https://invest-userguide.readthedocs.io/en/latest/ndr.html
https://www.sciencedirect.com/science/article/pii/S0048969717320909
https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest
https://invest.readthedocs.io/en/latest/index.html
https://pypi.org/project/natcap.invest/
https://qgis.org/
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‘pollution swapping’ is not considered. Therefore this model contributes towards the gross
calculation of nutrient balance, but does not have the function to calculate it independently.
Model settings

Apart from the spatial model inputs, there are a variety of model input values that were kept
constant in the model unless specified elsewhere. These were set at values according to
those from Redhead et al. (2018): Threshold Flow Accumulation (1000), Borselli k
Parameter (2), Subsurface Critical Length (200), and Subsurface Maximum Retention
Efficient (0.8).

Assessment

Validation has been carried out by Redhead et al. (2018) for the UK. The model was found to
perform well for relative magnitude of nutrient export, though absolute values of modelled
nutrient export showed large percentage differences from validation data (Redhead et al.,
2018).

Model specifications for each case study are available in the model factsheet in the
appendix.

3.4.2. Case study example

Humber, UK

Figure 14 shows modelled nitrogen export and Figure 15 modelled phosphorus export under
the two scenarios for the Humber, UK. Model performance from validation by Redhead et al.
(2018) showed that the absolute values from the INVEST NDR model should be treated with
caution; though the model is useful in demonstrating relative differences (Redhead, et al.
2018). Current scenario Mean Absolute Percentage Error (MAPE) was 40.45 for N and
53.78 for P, and for the no AEM scenario MAPE was 32.92 for N and 50.80 for P. Change
maps between both scenarios for both pollutants (Figures 16 and 17) show that the
implementation of AEMs demonstrated a decrease in total exported pollutants.
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Figure 14: Modelled total nitrogen (N) export from farms to stream (kg/y) as a measure of N
pollution from farms, with related uncertainty maps in the Humber, UK. The latter are
calculated as percentage differences between modelled and validation regression corrected
values (see uncertainty section earlier). Current scenario MAPE = 40.45, and No AEM
scenario MAPE = 32.92. The maps on the left refer to the current scenario, i.e. the land-use
conditions as of 2019; the maps on the right refer to the “no AEM scenario”, in which all
modelled AEM groups described earlier are removed from the landscape.
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Figure 15: Modelled total phosphorus (P) export from farms to stream (kg/y) as a measure
of P pollution from farms, with related uncertainty maps in the Humber, UK. The latter are
calculated as percentage differences between modelled and validation regression corrected
values (see uncertainty section earlier). Current scenario MAPE = 53.78, and No AEM
scenario MAPE = 50.80. The maps on the left refer to the current scenario, i.e. the land-use
conditions as of 2019; the maps on the right refer to the “no AEM scenario”, in which all
modelled AEM groups described earlier are removed from the landscape.
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Figure 16: Difference in N export (%) between the current and the no AEM scenario in the
Humber, UK. All values are positive and the darker blue mark areas in which N export is

higher when AEM are not implemented.
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Figure 17: Difference in P export (%) between the current and the no AEM scenario in the
Humber, UK. All values are positive and the darker blue mark areas in which P export is
higher when AEM are not implemented.
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3.5. Socio-economic effects
3.5.1. Model description
Authorship

Contact: *g.ziv@leeds.ac.uk

Authorship: George Breckenridge (model programming, analysis, writeup), Guy Ziv*
(conceptual framing, analysis concept, data acquisition), Arjan Gosal (supervision), Anne
Paulus (DEU data guidance, model interaction), Katharina Schneider (CZE data guidance,
model interaction), Tomas Vaclavik (CZE data/crop classification guidance), Stephanie Roilo
(supervision).

Model name
Model of the socio-economic effects of the adoption of agri-environmental schemes.
Model objective

The main objective of the model is to estimate how the adoption of agri-environmental
schemes (AES) affects the estimated total income per farm (per worker) in different case
studies across Europe.

Model output

The model output comprises the estimated change in total income between
adoption/non-adoption of AES scenarios, by calculating the change in estimated Farm Net
Value Added (‘FNVA’) for a given year per farm. These results can then be aggregated.

Data specifications
For each BESTMAP case study region:

e ‘IACS/LPIS’ data containing field-level information on crop type, field area (.shp),
AES uptake at group level of detail (i.e. ‘cover crops’ / ‘maintaining grassland’ etc.).

e Output data from BESTMAP food and fodder model containing farm-level estimated
standard output values (in Euros) for overall income from crops, both for AES
non-adoption scenario (‘so’) and, where applied, for AES adoption (‘so_mod’). As
stated, in turn this calculation used NUTS1-specific EUROSTAT (2021) standard
output coefficients and scientific literature to achieve these estimates.

e FADN microdata on selected variables (mostly continuous and area-based) for 2017.
Full input selection (to be filtered for all-Os/NaN columns, weighted by ‘SYS02’, then
filtered for multicollinearity, then feature-selected using Lasso() regression model):
['SE005','SE025','SE030','SE035','SE041','SE042','SE046','SE050','SE054','SE055','SE065','S
EO071''SE073','SEQ74','SE075','AGE",'TF8','SEX','REGION','ALTITUDE','/ANC"].

e Expert judgement from agricultural academics on available AES schemes and their
typical/distinct payment rates for the BESTMAP region, in Euros per ha per year,
across these types/’groupings’ of AES: ‘cover crops’, ‘flower strips’, ‘maintaining
grassland’, ‘converting arable land to grassland’.


mailto:g.ziv@leeds.ac.uk
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e Expert judgement from agricultural academics on crop type classification in given
local regions according to typical purposes of crops / crop classifications.
Judgements are applied for AWU regression parameterization from ‘IACS/LPIS’ data.

Assumptions

In the calculation of FNVA it is assumed that other components do not change between the
scenarios of AES adoption and AES non-adoption. It is assumed that all information from
‘IACS/LPIS’ data on crop land use and AES uptake is accurate/complete.

Algorithms and workflow

Farm Net Value Added (FNVA) is a new statistical definition of the indicator C.27 in the
approved Context and Indicators Impact guidelines for the new Performance Monitoring and
Evaluation Framework (PMEF) of the post-2020 EU Common Agricultural Policy (CAP),
officially adopted in December 2021. It is absent from the older CMEF framework for CAP.

Farm Net Value Added (FNVA) is calculated by formula (European Commission, 2022: 54):

FNVA = Value of agricultural production + Pillar | and Pillar Il payments + any national subsidies + VAT
balance - intermediate consumption - farm taxes (excluding income taxes) - depreciation.

FNVA is standardised through Annual Work Units (AWU). FNVA is calculated per AWU ‘in
order to take into account the differences in the scale of farms and to obtain a better
measure of the productivity of the agricultural workforce” (European Commission, 2022: 54).

Our viable farm income model estimates the difference in Farm Net Value Added (‘FNVA)
between the scenarios of adoption / non-adoption of AES per farm in the European context.

The net contribution of AES adoption to FNVA is therefore deduced through calculating:

(Value of agricultural production + Pillar | and Pillar Il payments + any national subsidies + VAT balance
- intermediate consumption - farm taxes (excluding income taxes) - depreciation) with AES
paymentslyield changes

(Value of agricultural production + Pillar | and Pillar Il payments + any national subsidies + VAT balance
- intermediate consumption - farm taxes (excluding income taxes) - depreciation) without AES
payments/yield changes.

Our estimation of FNVA is partial insofar as we do not incorporate FNVA components other
than Value of Agricultural Production and Pillar Il payments. We assume that other aspects
do not change between the scenarios of AES adoption and AES non-adoption.

First, we take the output of the BESTMAP food and fodder model, which for a given
BESTMAP case study region outputs a table of all unique farms and their associated
modelled standard output values (in Euros). These are values rather than coefficients as
they are understood here to represent the total modelled net income for an individual farm.
These are calculated both for AES non-adoption (‘so’) and, where applied, for AES adoption
(‘so_mod’), with the modelling for AES adoption capturing the changes in crop coverage and
respective yield implications in the calculations. This is the case though only on those farms
with which AES is applied in real-life: otherwise, the value of ‘so_mod’ is always equal to the
value for ‘so’. These modelled estimations of the Value of Agricultural Production component
of FNVA are derived from AES uptake information available in ‘IACS/LPIS’, as well as
EUROSTAT (2021) data on NUTS1 Standard Output coefficients.


https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/pmef-context-impact-indicators_en.pdf
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Second, the value of Pillar Il payments is initially determined through research into local
Agri-Environmental Schemes (AES) using expert knowledge by local agricultural
researchers, in the case of the 5 BESTMAP Case Study regions (see Table 5 below).
Difficulties were experienced in reconciling the complex agri-environment scheme policy
landscape with this generalised schematic, although all values were based on expert
judgement and/or statistical summarisation. We then estimate the modelled Pillar Il
payments due (AES) by summing up the areas of modelled AES adoption (at the field level
from ‘IACS/LPIS’ data) multiplied by their researched payment rates per ha (Table 5).

Table 5: Data on AES payment rates per BESTMAP Case Study Region. Data Source:

Consultation with subject/country experts by/within BESTMAP.

BESTMAP | Flower strips Catch/cover crops | Maintaining Grassland | Conversion of arable
CS Region | (inc. buffers) (/ha per annum) (/ha per annum) land to grassland
(/ha per annum) (/ha permanent)
UK (AB8): €615.59 (SW6): €130.20 (GS6, ~GS2/GS9): (SW7): €355.19
€207.86
DE (AL5c): €835.00 (AL4): €78.00 (GL5a): €330.00 -
Cz (10.1.6): €591.00 | - (Not as AES in (10.1.4 Osetfovani (10.1.5 Zatraviiovani orné
Cz) travnich porost(): pudy): €400.00 (no
€180.00 permanent AES)
ES - (~AES_367): €95.92 | (~AES_363): €280.80 -
(variable so split by (~AES_368): €30.00
crop group in model)
RS ~€662.00 ~€287.00 ~€136.00 ~€551.00

Finally, we calculate an estimation for AWU from a model trained using FADN microdata.
Our model for the socio-economic indicator uses FADN microdata to determine a linear
regression model which can, for each given area, determine the variables from FADN which
best account for the variance in farm labour as expressed through Annual Work Units
(AWU). This FADN data is filtered to include only data from within NUTS2 and/or NUTS3
areas overlapping with the BESTMAP Case Study regions (see Ziv et al., 2020), unless the
overlap was clearly not meaningful and therefore would have likely distorted the results more
from including the NUTS region than from excluding it. With FADN data the weighting
estimated by the ‘SYS02’ column representing ‘farms represented’ was used at all stages
from collinearity analysis onwards to calculate appropriate relationships between variables in
the FADN data. This was accounted for in practical terms by replicating the rows within the
FADN table as many times as the ‘rounded down’ integer value cast from SYSO02.

In the first instance, FADN columns with entirely 0.0 values / NaN values were removed from
the analysis. Then, an algorithm was developed to automatically remove extreme levels of
multicollinearity, so as to address the assumption that variables are truly independent.
Variables were automatically removed if they had an absolute Pearson correlation coefficient
(‘r') greater than 0.8 with another independent variable and generated a lower relative R?
value when modelled as a single input variable against SE010 (Total Labour in AWU) in a
bivariate linear regression model. This process occurred for all (unique) sets of collinear
variables identified in the corr() correlation matrix until a list of unique ‘variables to remove’
were determined for that iteration. This entire process iterated until no unique sets of
collinear variables remained. The value of this approach beyond automatically removing all
variables with collinearities was that despite a higher computational demand, particularly


https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
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valuable explanatory variables could still remain in the model as (truly) independent entities
so long as they only presented collinearities with less individually-explanatory input variables
across the weighted FADN table.

For each case study area a feature-selecting Lasso regression model is then fitted which
runs by aiming to reduce as many variable coefficients as possible to 0, leaving only
significant features in the model. Continuous variables are normalized using
StandardScaler() and categorical variables are encoded using the OneHotEncoder() function
to ensure suitable incorporation into this first Lasso regression model. At this point, the
selected variables from each case study were then input as Fixed Effects into a Linear Mixed
Effects Regression (LMER) Model, with selected categorical variables included as the
declared Random Effects, in part to see if we can further improve the predictability of AWU
(as measured through AIC). Although this was a worthwhile methodological exploration, it
was ultimately determined that this farm income model would instead rely on the outputs of
re-running a statsmodel linear regression using the feature-selected variables from the
Lasso regression model output.

Having derived this statistical relationship to AWU from FADN variables, we can then return
exclusively to data from ‘IACS/LPIS’ in order to build a socio-economic indicator through
modelling change in Farm Net Value Added (FNVA) according to adoption/non-adoption of
AES, as standardised through Annual Work Units (AWU). By taking, wherever pragmatically
possible, variables of equivalent meaning from the ‘IACS/LPIS’ data to those selected in the
FADN model for AWU, we are then able to use the estimated model for predicting AWU
derived from FADN microdata and thenceforth deduce a more accurate estimate for AWU
per farm in the ‘IACS/LPIS’ data across European places in order to complete our
methodology for estimating (standardised) FNVA in both adoption scenarios. This estimate
of AWU for standardisation was ‘dynamic’ insofar as it responded, in some instances, to
changes in the adoption scenario when calculating proxy values from ‘1ACS/LPIS’ to put into
the AWU regression. As such, on a given individual farm, the estimated AWU value used to
standardise estimations of FNVA was different according to if AES were being adopted.

Once an AWU-standardised value for the Value of Agricultural Production is therefore
calculated for both adoption scenarios, the estimated percentage change in FNVA between
AES non-adoption and AES adoption is calculated per farm. Tabular outputs from the model
are at this point de-identified (assuming a sufficient sample of individual farms was input,
e.g. n >= 10) though they are also then typically aggregated as summary statistics to
indicate the overall effect of AES adoption on farmer incomes across a given geographical
region. All boxplot figures were generated using the matplotlib (Hunter, 2007) graphics
environment in Python, with both matplotlib and seaborn (Waskom, 2021) libraries used for
the histogram and scatterplot figures.

Model validation

Country-level EU data for validation assessments for farm income per AWU was identified to
be available as C.25/C.26 in the old CAP CMEF framework, the closest available metric.
These are currently available at:

1. https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriFactorincome.html
[Accessed 24/05/22]. C.25 in CMEF.

2. https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriculturalEntrepreneuri
allncome.html [Accessed 24/05/22]. C.26 in CMEF.

Although a model validation exercise wasn’t systematically conducted, using these statistics
facilitates a qualitative evaluation of the model outputs, indicating that our model outputs in


https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://www.statsmodels.org/stable/examples/notebooks/generated/mixed_lm_example.html
https://www.statsmodels.org/stable/examples/notebooks/generated/mixed_lm_example.html
https://www.statsmodels.org/stable/regression.html
https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriFactorIncome.html
https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriculturalEntrepreneurialIncome.html
https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriculturalEntrepreneurialIncome.html

— ARPHAPreprints Author-formatted document posted on 26/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114653

D3.3: Ecosystem service, biodiversity and socio-economic models 37 | Page

the test case study are within the correct expected magnitude (~5 pre-decimal figures i.e.
€10 000s) for income per AWU in late-2010s EU agricultural settings.

In some respects, it is actually unsurprising that our average Value of Agricultural Production
estimate value would present disparities to the value contained here as on top of being a
separate, new CAP indicator, not covered by the old CMEF indicator framework directly, our
modelling also did not incorporate many of the stated components deducting from the total
income figure in FNVA or similar metrics, including intermediate consumption, farm taxes
and asset depreciation (European Commission, 2022: 54).

Data from FADN in Total labour output (SE010) can be used similarly to indicate reasonable
bounds for estimating AWU at the farm level, with our model outputs appearing to roughly
align, indicating efforts to estimate AWU using ‘IACS/LPIS’ data were acceptably accurate.

Uncertainty analysis

Uncertainty is relatively high for this farm income model, as it is a result of the outputs of the
BESTMAP food and fodder model, as well as for being the outcome of the application of a
linear regression from one dataset within the available (‘best-fit’) fields from another.

In the first instance the regression model for SE010 ‘Total labour input’ (AWU) for CZE
shows excellent (R? > 0.85) but nevertheless not perfect performance, despite best efforts to
use a feature-selecting Lasso model to determine which variables should be included after
excluding multicollinear columns. This is inevitable but clearly represents uncertainty and the
model may be able to generate different levels of explainability in other European contexts.

The model specified below, from the Czech FADN region (n = 3,350 rows after weighting),
produced an Adjusted R? value = 0.862, the same as it's unadjusted R? value = 0.862:

SE010 = 0.7986 + 0.0097(SE005) + 0.1178(SE054) + 0.0212(SE071)

Here, the equal R? and Adjusted R? values (to 3 d.p.) and the large sample size indicate a
relatively low risk of overfitting for a regional agricultural study.

In the application of this regression model to ‘IACS/LPIS’ data, there is inherent uncertainty
introduced into the accuracy of the result, owing to the difficulty in accurately and
consistently estimating an FADN category using ‘IACS/LPIS’ fields. In some cases values
were unavailable, weren’t readily available, or had uncertain degrees of crossover between
categories and classifications.

As for measures to counter uncertainty, the uncertainty in the statistical model for AWU was
countered through repeated, iterative efforts to improve the regression scores, including the
Adjusted R? value. This included passing in a large number of both continuous and
categorical variables, using feature-selection techniques, and experimenting with running
more complicated models. In the case of classifications, avoiding unacceptable levels of
uncertainty was helped through referencing the May 2019 European Commission (2019)
Definitions for FADN wherever possible. Consulting regularly with local experts internal to
BESTMAP also reduced uncertainties arising from classification issues between data sets,
case study regions, and languages.

Software
Software: Python v3.7.11 (Python, 2018), using Geopandas 0.9.0 (Jordahl et al., 2021),

sklearn 1.0.1 (cited as Pedregosa et al., 2011), matplotlib 3.4.3 (Hunter, 2007) and seaborn
0.11.2 (Waskom, 2021).
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Code availability: Code to be made available via the UFZ GitLab repository.

Data availability: Data not publicly available or on request from authors. FADN microdata
access available from European Commission DG Agri subject to specific request.
IACS/LPIS’ data access available from national and regional governments subject to
specific request.

Linking the model outputs to indicators

The model results can be linked to the following policy indicator in European Commission
(2022) CAP PMEF:

C.27 1.4 Supporting viable farm income / 1.5 Contributing to territorial balance (p.54-56):
‘Farm income by type of farming, region, by farm size, in areas facing natural and other
specific constraints’.

Case study example: South Moravia, Czech Republic (FNVA; 2017)
Data specification: South Moravia, Czech Republic (FNVA; 2017)

The application of the socio-economic model to the BESTMAP case study region of South
Moravia in Czech Republic used annual administrative data from 2017 at the field/farm
scale. IACS/LPIS’ data for South Moravia for 2015-2019 was sourced from the Ministry of
Agriculture of the Czech Republic, though only 2017 data was used for consistency. FADN
microdata for Czech Republic (FADN region 745) for 2017 was accessed from the
Directorate-General for Agriculture and Rural Development at the European Commission.

As crop type and AES uptake were arranged in a complex way in the Czech ‘IACS/LPIS’
data, further pre-processing completed by the BESTMAP food and fodder model team was
used in the implementation of the farm income algorithm. This involved the use of the input
file to the food and fodder model, detailing crop use at the field-level (otherwise usually taken
from the ‘IACS/LPIS’ file(s)), in addition to the routine use of the output file containing
information on the ordinary and adjusted standard output values according to AES uptake.

Investigating biases: South Moravia, Czech Republic (FNVA; 2017)

Data from South Moravia posed challenges and presented potential biases. Firstly this was
owing to the relatively high number of records output from the food and fodder model which
were unable to determine standard output values for Czech farms. Unfortunately this meant
that in 446 of the 1104 unique farms in South Moravia results for farm income could not be
produced as the inputs were not available. In many other cases farms were not recorded as
adopting AES in ground-truth data and therefore could not be represented in our results,
which depend upon real distinction between the AES non-adoption and adoption scenarios
within the input data format. As such, only 257 (23.28% to 2 d.p.) farms could be included.

As stated, such exclusions in the South Moravia case study occurred in part due to
methodological choices and data issues in the food and fodder model, which was applied in
the Czech Republic to ensure consistency between BESTMAP case studies. Firstly, the use
of the WOFOST simulation predictions (Hristov et al., 2020) to generate yield predictions for
six crops (maize, sugar beet, wheat, sunflower, winter rapeseed, spring barley), in addition to
the Czech-specific ReSteP yield model for permanent and temporary grassland (VUMOP,
2015), meant that whilst many crop types were catered for, many were also left without the
yield information necessary for income modelling. Secondly, in the case of the Czech
Republic, an abnormal number of crop entries in the EUROSTAT data on standard output
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coefficients contained 0/NaN values which also prevented Values of Agricultural Production
from being calculated with EUROSTAT (2021) coefficients.

To informally understand the biases these exclusions may introduce, the nature and spatial
patterns of fields for farmers with no income estimation were examined in Python and GIS
software. Firstly, a CSV file was created with the farm IDs of farms which were unable to be
included in the final results. This generated a file which could be joined - as a delimited text
layer - to the field-level South Moravia ‘IACS/LPIS’ shapefile in QGIS, with ‘not null rows’
highlighted for visual examination. It became immediately apparent that the majority of total
field area did not belong to this set of excluded farm IDs, despite this set of IDs representing
76.72% of all farms in the South Moravia case study region. This initial impression was
supported by statistical evidence that both the mean and median average field size was
lower for excluded fields (4.38 ha, 0.61 ha respectively) than for all fields in the region (6.01
ha, 0.91 ha respectively), and that 66.77% (2 d.p.) of total field area in South Moravia was
used in the final results. So, in conclusion, the fields attached to farmer IDs (‘ID_UZ’) whose
income cannot be estimated represent in fact the minority of fields, as well as
disproportionately representing smaller area fields. All this said, it is nevertheless true that a
slim majority of fields in South Moravia were excluded from the results due to being
associated with an excluded farmer: 53.84% (to 2 d.p.). Both the largest and the smallest
fields were excluded from the analysis so the range of field sizes affected was as broad as
theoretically possible. Returning to the findings of the visual inspection, it was clear that
although many fields were scattered across the region, many also clustered together (as
may be expected given fields are excluded on the basis of a common owner, and usually
owned/managed locally in any case). Regions with higher than average presence of
excluded fields were overlaid across an OpenStreetMap (2022) base layer which illustrated
that clusters were not consistently found in urban centres. Although there was a degree of
spatial grouping amongst excluded fields, the same could not be said for the remaining
included fields, as they formed a larger part of the landscape, which was itself
discontinuously represented across space by the vector shapefile fields in existence.

As such, it is concluded that it is more likely than otherwise that the biases introduced by
these (involuntary) exclusions were disproportionately on groups of small holdings, and that
they didn’t prevent the majority of agricultural land (and for that matter, probably agricultural
income) from being represented in the farm income analysis. The results of this farm income
model application are therefore expected to be broadly representative of South Moravia. The
code for this investigation into spatial biases is included in the main code file as an appendix.

Results: South Moravia, Czech Republic (FNVA; 2017)

Results for the demonstrative implementation of the BESTMAP socio-economic model are
represented in Table 6, Figure 18, Figure 19 and Figure 20. They illustrate the FNVA value
as standardised per Annual Work Unit (AWU) for South Moravia, Czech Republic, using
2017 data, for those farms (n = 257) for which income for both scenarios could be modelled.

The results indicate that the aggregate impact of AES adoption in this region is a major
increase in net farm income, with a mean percent change of +67.72% (to 2 d.p.). This relates
to mean average Value of Agricultural Production figures of €12,325.00 for non-adoption of
AES, in comparison to €13,295.69 in the scenario of AES adoption. On average, therefore, it
can be deduced that the income from AES subsidies estimated by this analysis is more than
compensating sufficiently for the changes in land use and crop yield that are needed to fulfil,
or a consequence of, agri-environment scheme requirements. Interestingly, the median
average for non-adoption stands at the far lower level of €2,042.95, compared to €3,566.74
in the scenario of AES adoption.
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The median average is many times closer to the minimum Value of Agricultural Production
figures (€17.22, €33.14) than it is to the maximum figures which stood at €89,290.60 and
€89,355.18 for non-adoption/adoption of AES respectively (see Table 6). A large range of
values for the Value of Agricultural Production were predicted here, even within the single
region of South Moravia, and despite the possible biases from excluding smaller holdings.
Similarly, a large range of estimated percent changes in Farm Net Value Added (FNVA) are
also predicted, ranging from a minimum value of -64.93% to a maximum value of +194.27%.

Given the major percentage increase, both in mean and median average terms, it was
investigated whether unrealistic farm receipts were driving this summary statistic, as
investigated by Figure 20. At various thresholds for inclusion on the basis of income levels in
the scenario of AES non-adoption it was recorded the mean average value of estimated
percent changes in FNVA, to examine this relationship between a selected sub-sample and
aggregate results. Figure 20 reports results of the mean average FNVA change upon AES
adoption statistic at the increasing thresholds of every €200 between €0 and €15,000. The
results evidence a strong non-linear relationship between the size of the farm before AES
adoption and the proportion of FNVA (income) increase reported overall (despite AES
subsidy payments being calculated per ha). The mean percent change drops to below +30%
once the lower half of the farms are excluded, as per the sequential Q1/Q2/Q3 grey lines
shown. These results indicate that the effect of AES adoption on income is highly associated
with levels of pre-AES adoption income, possibly due to similar levels of area being
dedicated to the AES schemes irrespective of the size of the farm, which would naturally
produce higher levels of proportionate income increase in farms with a smaller overall size.

Table 6: Aggregated summary statistics (all to 2 d.p.) for farm-level FNVA outputs,
generated using pandas.DataFrame.describe() (records with €0 for either AES scenarios
removed), South Moravia, 2017.

Summary statistics for 'Value of Agricultural Production' estimations in socio-economic model
South Moravia, Czech Republic, 2017 [Data: FADN, 'lACS/LPIS"]
[€0 income farms removed]

Value of Agricultural Production (€)

No AES adoption  AES adoption |Percent change

summary records count 257 257 257
average  mean 12325.00 13295.69 67.72

variance  std 22604.38 22394.46 59.26

percentiles min 0% 17.22 33.14 -64.93
- 25% 864.13 1798.17 4.36

median 50% 2042.95 3566.74 78.09

- 75% 7608.46 9407.57 112.34

max 100% 8§9290.60 89355.18 194.27

Data Acknowledgements: FADN data in methodology for ESP (2017) from Directorate-General for
Agriculture and Rural Development, European Commission. 'IACS/LPIS' data (2017)
is from Ministry of Agriculture of the Czech Republic.
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— ARPHAPreprints Author-formatted document posted on 26/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114653

D3.3: Ecosystem service, biodiversity and socio-economic models 41 | Page

Figure 18: Boxplots of distributions for estimated FNVA, South Moravia, 2017.

Boxplots of distributions for estimated 'Value of Agricultural Production® values (€)
for Agri-Environment Scheme (*AES'} non-adoption and adoption scenarios.
South Moravia, Czech Republic, 2017 (n=257) [Data: FADN,"IACS/LPIS'].

[€0 income farms removed, outliers not displayed]
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Data Acknowledgements: FADN data in methodelogy for CZE (2017) from Directorate-General for Agriculture and Rural Develapment,
European Commission. TACS/LPIS' data (2017) from Ministry of Agriculture of the Czech Republic.

Figure 19: Histogram of distribution for farm-level percentage difference for FNVA between
AES non-adoption and AES adoption, South Moravia, 2017.

Proportion of farm sample (h = 257) exhibiting (approximate) estimate percent
difference in Farm Net Value Added ('FNVA', C.27 PMEF) from adopting AES.
South Moravia, Czech Republic, 2017 [Data: FADN, 'lACS/LPIS'].
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Data Acknowledgements: FADN data in methodology for CZE (2017) from Directorate-General
for Agriculture and Rural Development, European Commission.'|ACS/LPIS' data (2017)
from Ministry of Agriculture of the Czech Republic.
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Figure 20: Scatterplot of relationship between sample inclusion threshold according to AES
non-adoption income, and the cohort’s respective mean average farm-level percentage
difference for FNVA between AES non-adoption and AES adoption, South Moravia, 2017.
[Data Acknowledgements: FADN for CZE (2017) from Directorate-General for Agriculture
and Rural Development, European Commission. ‘IACS/LPIS’ data (2017) from Ministry of
Agriculture of the Czech Republic.]

Filtering sensitivity: relationship between threshold for income from non-AES adoption for eligibility for inclusion
in the analysis and the respective cohort mean average for estimated percent change in FNVA upon AES adoption
South Moravia, Czech Republic, 2017 (Maximum n = 257) [Grey lines at Q1, Q2, Q3: AES non-adoption income]
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Specifications for other BESTMAP case study regions are currently under development and
will in future be made available in the UFZ GitLab page (https./qit.ufz.de/).

4. Obstacles and challenges

The first and major challenge that we encountered upon modelling agricultural policy impacts
across several European countries was the significant access restrictions of the IACS/LPIS
and the FADN datasets. Getting access to the IACS/LPIS and FADN data was a highly
bureaucratic and time-consuming process, which delayed the start of the modelling tasks in
several CS. Since the requests for IACS/LPIS data is still handled on a (sub)national level,
the process had to be gone through multiple times and with different individual hold-ups and
obstacles. While this lack of consistency and interoperability seems to have been
acknowledged at EU level, e.g. through the funding of the Open-IACS Innovation Action
(grant no 2018-EU-1A-0086; hiips://open-iacs.eu/), these initiatives have yet to bear fruit.

In addition, IACS/LPIS data in certain CSs are subject to strict data sharing agreements that
prevent data sharing between project partners from different institutions and CSs. This
meant that some modellers did not have access to data from other CSs and had to rely on
other project staff for (pre-)processing of modelling input data based on IACS/LPIS. The
interdependencies resulting from this situation posed an additional challenge for the timely
provision of model results in all CSs. In addition to the difficulties at the CS level, requesting
access to FADN data at the EU level was particularly difficult, resulting in delays to the
development of the socio-economic model.

As planned from the beginning, the BESTMAP biodiversity and ES models were fitted on
already available datasets, meaning that no fieldwork was performed nor additional data


https://git.ufz.de/
https://open-iacs.eu/
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collected for this purpose. We acknowledge that a tailored fieldwork or data collection,
specifically designed to target fields and farms with/without AEM, would have allowed us a
better, more robust assessment of AEM impacts on ESS and biodiversity; however, this was
not possible within the resources available for the project. The search for high-quality,
country or CS-level information to be used as input data for the models was thus also a
tedious task, especially for models that heavily rely on parameters that have to be estimated
from the literature (e.g. food and fodder model), that vary significantly across regions (e.g.
water quality model), or for data that are collected and owned by third parties and are not
freely available (e.g. biodiversity datasets). A major obstacle was the lack of area-based (i.e.
field level) yield data, which is not systematically collected at the CS level or elsewhere. The
ongoing war in Ukraine and the accompanying discussions on food security in Europe and
elsewhere have clearly shown that the lack of centrally collected yield data is a major blind
spot preventing research to develop alternative scenarios for agricultural production in the
EU. Moreover, there is little scientific literature on the impact of some AEMs on yields,
making this a priority topic for future research.

The different structure of the IACS/LPIS data in each CS meant that the models had to be
adapted from CS to CS to accommodate the variable input data while providing comparable
results (see “D1.3 Guidelines and protocols for harmonising activities in each CS” and “D3.1
Case study base layer dataset for each of the case studies” for how the data were collected,
harmonised and stored for the modelling task).

5. Outlook

The biodiversity, ESS and socio-economic models are a central tool in the broader
framework of the BESTMAP project. Indeed, there are several interdependencies between
WP3 and the various work packages in the project. The results of the biophysical models
provide the input data for many tasks in WP4, which includes a trade-off and synergy
analysis across ESS, biodiversity and socio-economic outputs within and across CS.
Differences in ESS, biodiversity and socio-economic outputs’ intensities, derived from the
models, will also be analysed across the various FSAs developed in WP3. WP4 is also
responsible for mapping ESS/biodiversity/socioeconomic bundles into policy indicators, and
relies on the spatially-explicit model results presented in this deliverable for it. The indicators
will be visualised either via the interactive dashboard, in which different policy scenarios and
their effects will be explored, or in other ways. Indeed, preliminary model results have
already been presented in a first prototype of the BESTMAP dashboard in co-design
sessions with stakeholders in each of the five CS. Moreover, the policy indicators will be
upscaled from CS to European level based on the FSAs and the FADN data in WP5. The
agent-based models will also be directly linked to the biophysical models, as the AEM
adoption scenarios resulting from ABM models will be used as inputs for the biophysical
models to directly estimate environmental impacts of farmers’ decision-making.

The models of WP3 also feed directly into Task 5.1, and model results from each of the
models at the CS level will feed into analysis at the European level (Task 5.2), that considers
FSA and FADN data, and bioclimatic variables that are relevant to each particular ESS and
biodiversity. This will enable predictions of ESS and biodiversity across the EU, together with
an indicator of the confidence of those predictions based on a refined transferability analysis.
Therefore, the EU-wide ESS results will be based on the model outputs from WP3.
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Appendix

The appendix contains all the model factsheets for each of the biodiversity, ESS and
socio-economic models developed in BESTMAP’s WP3. The most recent version of each
factsheet can be found in the BESTMAP GitLab (https://git.ufz.de/) in the respective model’s
repository.

Biodiversity model factsheet

BESTMAP biodiversity model
2022-05-10
The structure of this factsheet is largely based on the ODMAP (Overview, Data, Model,

Assessment and Prediction) protocol developed by Zurell et al. 2020
doi/full/10.1111/ec0g.04960

Overview

Authorship

Contact: Stephanie Roilo (stephanie.roilo@tu-dresden.de) for the models in DE, CZ, ES and
UK; Tijana Nikolic (tijana.nikolic@biosense.rs) for the models in RS; Tomas Vaclavik
(tomas.vaclavik@upol.cz) for the models in CZ.

Model name

Species distribution model (SDM; Figure 1) for selected farmland bird species.

Data: Models: Predicted distribution:

species and environment algorithms and response curves current, past and/or future

Predicted value

>

Predicted value

Predicted value

3

Figure 1: A general framework of species distribution models. Data on species location are
linked to spatial data on the environment with quantitative models. Different model
algorithms can vary considerably in the way they relate species responses to environmental
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gradients. With estimated response curves, species distributions are mapped in space
and/or time. Ensemble models combine several model algorithms to deliver more robust
forecasts (source: Fletcher & Fortin 2018).

Model objective

Main objective of the model is to estimate how the adoption of Agri-Environment Measures
(AEM, used here as an umbrella term for agri-environment schemes, ecological focus areas
and organic farming) affects habitat suitability for a selected set of farmland bird species.

Model output

The model output consists of habitat suitability maps for the selected bird species.

Data specifications

Response data type: presence-only, georeferenced point occurrences of farmland birds.

Predictor types: geospatial (e.g. raster and shapefile data) information on climate,
topography, anthropogenic disturbance, land cover and land-use, including land-use
management information like AEM adoption extracted from the Integrated Administration
and Control System (IACS) and Land Parcel Identification System (LPIS).

Assumptions

Model assumptions: 1. Species-environment equilibrium, 2. All relevant ecological drivers of
farmland bird distributions are included in the models, 3. Bird dataset adequately covers
fields with and without agri-environment measures.

Algorithms and workflow

Modelling techniques: we used ensemble SDMs to minimise the uncertainties arising from
single algorithm models. The ensemble models were based on five modelling algorithms,
namely generalised linear models and generalised additive models (GLM and GAM,
regression-based methods), random forest, generalised boosting models, and maximum
entropy (RF, GBM, and MAXENT, machine-learning methods) as implemented in the
biomod2 package version 3.4.6 (Thuiller et al. 2019).

Model workflow: We fitted 10 repetitions for each model by randomly subdividing the dataset
into 70% training data and 30% testing data. Each model run was evaluated via
cross-validation. We used the Area Under the Receiver Operating Characteristics Curve
(AUC), the True Skills Statistics (TSS), specificity and sensitivity as evaluation metrics
(Fletcher & Fortin 2018). To obtain a relevant combination of several unbiased (i.e., with fair
accuracy) models, only models with an AUC value = 0.7 were retained, and the ensemble
model was constructed for each species by computing the weighted average of all remaining
models. The weights were based on the AUC scores of each model, so that better
performing models had a higher influence in the final ensemble. The models were then
projected onto the current (as of 2019) environmental and agricultural conditions to obtain
habitat suitability maps for each bird species.

Model validation

Each model run was evaluated via cross-validation, and the average across the 10 runs was
computed to assess the performance of the final model. We used AUC, TSS, specificity and
sensitivity as evaluation metrics.
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Uncertainty estimation

Ensemble SDMs were developed with the specific goal of minimising the uncertainty in
estimating species distribution deriving from single algorithm models (Araujo & New 2007,
Woiest et al. 2020). Indeed, among the many potential sources of uncertainty in SDMs, such
as algorithms, environmental datasets, species presences, variable collinearity, etc., the
choice of modelling algorithm is thought to be the greatest source of uncertainty in SDM
performance and prediction maps (Watling et al. 2015, Wuest et al. 2020). We therefore
produced uncertainty maps calculated as the standard deviation of the prediction maps
deriving from the model algorithms included in the ensemble model (Buisson et al. 2010;
Senai & Worner 2019). Such maps highlight the areas of highest disagreement across single
algorithm predictions.

Software

Software: We used the biomod2 package version 3.4.6 (Thuiller et al., 2019) in R version
4.0.2 (R Core Team 2020).

Code availability: the R code used for the preparation of the environmental variables at
multiple spatial scales (approach adopted in DE, CZ and RS), fitting the models and
producing the uncertainty maps, together with a README file, is available here:
https://qgit.ufz.de/bestmap/bestmap-biodiversity

Linking the model outputs to indicators
The model results can be linked to the following policy indicators:

C.35/1.18 Farmland Bird Index (FBI).

While the European Farmland Bird Indicator represents temporal trends of population sizes
based on annual national bird surveys, we here aimed at developing an indicator that could
detect the effects of AEM in a spatially-explicit way, and that could be compared across CS.
We normalised all individual species’ SDMs and we computed the average habitat suitability
score across all modelled bird species. The output is an index of farmland birds’ habitat
suitability, with high (positive) values indicating highly suitable habitat, and low (negative)
values indicating unsuitable habitat.

Model specifications in each case study

1) Mulde, DE

Location

Mulde River Basin, Saxony, Germany, which serves as one of the five BESTMAP case study
regions.

Scale of Analysis

Spatial extent: 12.34771, 13.69364, 50.3809, 51.64169 (xmin, xmax, ymin, ymax, CRS=
WGS84)

Spatial resolution: 20 m
Temporal extent: 2016 - 2019
Temporal resolution: year

Boundary: natural


https://git.ufz.de/bestmap/bestmap-biodiversity
https://agridata.ec.europa.eu/Qlik_Downloads/InfoSheetEnvironmental/infoC35.html
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Data

Biodiversity data

Species selection: We selected farmland bird species as those breeding in grassland, wet
grassland, arable land, ruderal and fallow areas, according to the list of species occurring in
Saxony (Blischke 2017). For the species for which no specific habitat information was
available in Blischke (2017), we selected farmland species according to Busch et al. (2019).
We excluded the common cuckoo (Cuculus canorus) and the mallard (Anas platyrhynchos)
due to their parasitic and synanthropic behaviour, respectively, making them generalist
species in terms of their breeding habitat selection. Lastly, we included in the analysis only
those farmland species with a minimum number of 40 presence points after removal of
replicates, i.e. multiple records in the same environmental raster cell. The final list of
modelled species is shown in Table 1.1.

Ecological level: species

Data sources: Data is stored in the Saxon Central Species Database (Zentrale
Artdatenbank, www.natur.sachsen.de/zentrale-artdatenbank-zena-sachsen-6905.html) and
was shared with us upon request to the Saxon State Agency for Environment, Agriculture
and Geology.

Sampling design: The database comprises observations from standardised monitoring
projects (breeding bird monitoring, Natura2000 monitoring), monitoring activities of special
interest groups and NGOs and opportunistic observations verified by the state agency
ornithologists.

Sample size: number of presence points per species are reported in Table 1.1; we set the
number of absence points as 10 times that of presence points for each species; with the
exception of Lanius collurio for which the presence/absence ratio is 0.4.

Table 1.1: List of species included in the analyses and number of presence points used for
modelling after filtering.

Species Common name Presence points
Alauda arvensis Eurasian Skylark 79
Anthus pratensis Meadow pipit 299

Carduelis cannabina Common Linnet 55
Charadrius dubius Little Ringed Plover 96
Coturnix coturnix Common Quail 63
Crex crex Corncrake 84
Emberiza calandra Corn Bunting 90



http://www.natur.sachsen.de/zentrale-artdatenbank-zena-sachsen-6905.html
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Emberiza citrinella Yellowhammer 164
Gallinago gallinago Common Snipe 63
Lanius collurio Red-backed Shrike 988
Motacilla flava Blue-headed Yellow Wagtail 92
Saxicola rubetra Whinchat 411
Saxicola rubicola European Stonechat 205
Sylvia communis Common Whitethroat 106
Vanellus vanellus Northern Lapwing 41

Cleaning: We cleaned the dataset by removing incomplete (e.g. genus name with no species
name) or incorrect taxonomical records. Based on the information on reproduction status,
unit of observation (e.g. breeding pair, eggs, chicks, etc.), and behaviour (e.g. territorial
behaviour, courtship, etc.), we filtered the dataset to retain only observations for which the
breeding status was possible, probable or confirmed. Lastly, we included in the analysis only
those farmland species with a minimum number of 40 presence points after removal of
replicates, i.e. multiple records in the same environmental raster cell.

Absence data: As absence points, we used randomly selected observation points of other
(farmland and non-farmland) bird species in the dataset, with a minimum distance to all
presence points of 500 m.

Errors and biases: Due to its diverse sources, the observation data entails biases in the
monitoring effort, which is higher in protected areas and close to cities, and in the species
ratio, with rare species being monitored more intensively. The spatial uncertainty of the
georeferenced observations is < 100 m.

Predictor variables

Table 1.2: Explanatory variables used in the SDMs and sources of the original data.

Group Variable (units) Data source (original resolution)

DGM20, Staatsbetrieb Geobasisinformation und
Vermessung Sachsen (20 m)

Elevation (m)

Topography
DGM20, Staatsbetrieb Geobasisinformation und

Slope (°) Vermessung Sachsen (20 m)



https://www.geodaten.sachsen.de/downloadbereich-dgm25-4162.html
https://www.geodaten.sachsen.de/downloadbereich-dgm25-4162.html
https://www.geodaten.sachsen.de/downloadbereich-dgm25-4162.html
https://www.geodaten.sachsen.de/downloadbereich-dgm25-4162.html
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Distance from forest Copernicus High Resolution Layer (HRL) Forest
Distance edge (m) type 2015 (20 m)
metrics

Distance from highways

(m)

Agricultural land-use
diversity (Shannon’s
index)

OpenStreetMap 2020 (shapefile)

IACS/LPIS 2016-2019 (shapefile) (SMEKUL
2020)

Arable land (%) IACS/LPIS 2016-2019 (shapefile) (SMEKUL

2020)
Land
[ Grassland status map 2015
cover/use Grassland cover (%) ﬁ:q())pernlcus HRL Grassland status map 2015 (20
Small Woody Features | Copernicus HRL Small Woody Features 2015 (5
(SWF) cover (%) m)
Urban cover (%) APIC 2016 (Preidl et al. 2020) (20 m)
Buffer areas (%) IACS/LPIS 2016-2019 (shapefile) (SMEKUL
2020)
Cover crops (%) IACS/LPIS 2016-2019 (shapefile) (SMEKUL
Agri , 2020)
gri-Environ
M ment Extensive grassland IACS/LPIS 2016-2019 (shapefile) (SMEKUL
Ee:;:\;ﬂr)es management (%) 2020)

IACS/LPIS 2016-2019 (shapefile) (SMEKUL

Fallow land (%) 2020)

IACS/LPIS 2016-2019 (shapefile) (SMEKUL

Organic farming (%) 2020)

Predictor variables, data sources and their original spatial resolution and reference year are
summarised in Table 1.2.

Coordinate reference system: EPSG:3035

Temporal resolution: Yearly resolution of IACS/LPIS data between 2016 and 2019; the other
predictors were kept constant throughout the years.

Data processing: As elevation layer, we used the Digital Elevation Model of Saxony,
(DGM20, Staatsbetrieb Geobasisinformation und Vermessung Sachsen, 2016). From this
layer, we derived slope using the terrain() function from the raster package (Hijmans et al.,
2020). To map land cover outside of agricultural fields, we used the Copernicus High
Resolution Layers for Small Woody Features (SWF), Forest type product, Grassland status
map, all available for the reference year 2015. Urban cover was extracted from the
Sentinel-2a-based land cover map for 2016 by Preidl et al., 2020. All products were cropped
and aligned to the same extent, disaggregated to 5 m resolution, and binary maps
(O:absence, 1:presence) were produced for each land cover type. If binary maps overlapped
(i.e. the same raster cell was covered by multiple land cover types), we masked the layers in
the following hierarchical order: SWF (used as mask for all other layers due to its higher
original resolution), grassland, forest, urban cover. From the forest cover layer we derived a


https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2015
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2015
https://www.openstreetmap.org
https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps/2015
https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015
https://doi.pangaea.de/10.1594/PANGAEA.910837
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raster (5 m res.) of distance to forest edge, using the Proximity(Raster Distance) tool in
QGIS version 3.10.11 (www.qgis.org). To account for anthropogenic disturbance, we
included distance from highways to the environmental predictors. This was calculated at 5 m
res. based on the OpenStreetMap highways shapefile (key:highway, value:motorway;
www.openstreetmap.org), which we downloaded and rasterized. All layers were reprojected
to the coordinate reference system EPSG:3035, cropped and aligned to the study area
extent using the raster package (Hijmans et al., 2020) and the terra package (Hijmans et al.,
2021) in R version 4.0.2 (R Core Team 2020). IACS/LPIS data for four consecutive years
(2016-2019) were used in this study. While the IACS/LPIS data for the years of 2018 and
2019 held precise spatial information about the geometry and location of linear EFAs (field
edges and buffer strips) within the field, the older datasets of 2016 and 2017 did not, and
linear EFAs were linked to the entire field parcel. We therefore had to estimate the shape
and location of 2016-2017 linear EFAs. If the same EFA scheme was applied also in
2018/2019, we assumed its geometry to stay constant, and used the precise spatial
information of the 2018/2019 data. For all other fields, we assumed linear EFAs to be 1 m
wide across the entire field perimeter. We chose a narrow width (1 m) to compensate for the
total length (entire perimeter of the field parcel) of these features, which are usually applied
on only one border of the field. From the IACS/LPIS data referring to the most recent year
(2019), we calculated raster layers at 20 m resolution in which each raster cell value
corresponded to the proportion of the given land cover/use type within circular windows with
radii of 200, 500 and 1000 m. These rasters were used for projecting the models into the
current AES and EFA adoption conditions, to obtain 20 m res. habitat suitability maps for
each bird species.

Model
Variable pre-selection

Variable pre-selection: Explanatory variables were chosen to reflect environmental and
habitat conditions likely to impact farmland birds” distributions at the field and landscape
level. Climatic predictors, e.g. multiannual (1981-2010) total precipitation, minimum and
maximum temperature (Deutscher Wetterdienst,
opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/), were initially
included in the models, but due to their high correlation (r > 0.7) with elevation and their
lower spatial resolution (1 km), we ultimately excluded them, thereby using elevation in the
models, which roughly approximates the temperature and precipitation gradients in the study
area.

Multicollinearity

Multicollinearity: To select the best scale for each variables and to exclude highly correlated
variables from the same model, we fitted univariate linear models with binomial distribution
for each explanatory variable and we ranked them by their Akaike Information Criterion
corrected for small sample size (AICc) score. For each species, we then selected the best
set of uncorrelated variables (i.e. with Spearman's correlation coefficient < 0.7) with the
lowest AlCc score.

Model settings

GLM: we used a binomial link function, and a stepwise backward selection was applied to
select final models by removing unimportant variables, based on the Akaike Information
Criterion (AIC). Interaction level was set to 0.

GAM: we used a binomial link function using the algorithm as implemented in the mgcv
package (Wood, 2017), and the basis dimension of the smooth functions was set to k = 5 to
avoid overfitting. Interaction level was set to 0.


https://opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/
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MAXENT: the maximum number of iterations was set to 200 and the feature classes linear,
quadratic and threshold were selected. The regularisation parameter 3 was set to -1 to allow
for automatic setting, as the optimal value is likely to change across species (Elith et al.,
2011).

RF: the number of trees was set to 500, the minimum size of terminal nodes was set to 5,
and the number of variables randomly sampled as candidates at each split to 1.

GBM: we used the default settings (number of trees = 100, interaction depth parameter = 1,
learning rate = 0.1, and subsampling fraction = 0.5) suggested in the gbm package
(Greenwell et al., 2019).

Model estimates

Variable importance: Variable importance scores were obtained using the
get variable_importance() function in the biomod2 package (Thuiller et al., 2019) and were
normalised, so that the sum of the importance scores of all variables in a model equals 100,
to ensure comparability between variables and across species.

Assessment

Performance statistics

Performance on training data: AUC, TSS, sensitivity (true positive rate), specificity (true
negative rate); see table 1.3 for the evaluation metrics of single models.

Table 1.3: Mean values of the evaluation metrics across the 10 model runs for each
species-specific model.

Species AUC TSS Sensitivity Specificity
Alauda arvensis 0.89 0.67 0.86 0.81
Anthus pratensis 0.99 0.9 0.96 0.94

Carduelis cannabina 0.9 0.73 0.85 0.88
Charadrius dubius 0.93 0.75 0.85 0.90
Coturnix coturnix 0.94 0.77 0.87 0.90
Crex crex 0.97 0.87 0.93 0.94
Emberiza calandra 0.95 0.8 0.89 0.91
Emberiza citrinella 0.84 0.6 0.79 0.81
Gallinago gallinago 0.96 0.84 0.94 0.90
Lanius collurio 0.91 0.69 0.86 0.83
Motacilla flava 0.94 0.8 0.94 0.87
Saxicola rubetra 0.97 0.84 0.92 0.92
Saxicola rubicola 0.94 0.76 0.94 0.83




— ARPHAPreprints Author-formatted document posted on 26/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114653

56 | Page D3.3: Ecosystem service, biodiversity and socio-economic models
Sylvia communis 0.8 0.49 0.74 0.76
Vanellus vanellus 0.96 0.85 0.98 0.87

Plausibility check

Response shapes: The variable response plots were built with the response.plot2() function
of the same package, and the standard deviation was calculated across the 10 model runs.

2) South Moravia, CZ

Location

South Moravia, Czech Republic, which serves as one of the five BESTMAP case study
regions.

Scale of Analysis

Spatial extent: 16.893 17.919, 48.792, 49.189 (xmin, xmax, ymin, ymax; CRS= WGS84)
Spatial resolution: 10 m

Temporal extent: 2015 - 2019

Temporal resolution: year

Boundary: administrative

Data

Biodiversity data

Species selection: We selected farmland bird species according to the list used for the
calculation of the European Farmland Bird Index, as in Gamero et al. (2016). We excluded
species for which less than 40 presence points were available. The list of modelled species
is shown in Table 2.1.

Ecological level: species

Data sources: Data was extracted from the official database of the Natuvre Conservation
Agency of the Czech Republic ( Nalezova databaze ochrany pfirody AOPK CR, NDOP).

Sampling design: The database includes confirmed observations from standardised
monitoring projects (breeding bird monitoring, Natura2000 monitoring), monitoring activities
of special interest groups and NGOs and opportunistic observations verified by the database
maintainers.

Sample size: number of presence points per species are reported in Table 2.1; we set the
number of absence points as 10 times that of presence points for each species; if this
number exceeded the total available absence points after the distance filtering, we used all
available points in the dataset.

Table 2.1: List of species included in the analyses and number of presence points used for
modelling after filtering.

Species Common name Presence points



https://portal.nature.cz/nd/
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Alauda arvensis Eurasian Skylark 90
Anthus pratensis Meadow Pipit 62

Carduelis cannabina Common Linnet 73
Ciconia ciconia White Stork 313
Corvus frugilegus Rook 66
Emberiza calandra Corn Bunting 57
Emberiza citrinella Yellowhammer 228
Falco tinnunculus Common Kestrel 181
Galerida cristata Crested Lark 241
Hirundo rustica Barn Swallow 350
Lanius collurio Red-backed Shrike 347
Motacilla flava Blue-headed Yellow Wagtail 126
Passer montanus Eurasian Tree Sparrow 176
Perdix perdix Grey Partridge 190
Saxicola rubetra Whinchat 69
Saxicola rubicola European Stonechat 195
Serinus serinus European Serin 73
Streptopelia turtur European Turtle Dove 134
Sturnus vulgaris Common Starling 237
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Sylvia communis

Common Whitethroat 52

Upupa epops

Eurasian Hoopoe 89

Vanellus vanellus

Northern Lapwing

216

Cleaning: The dataset included only records verified by the Nature Conservation Agency of
the Czech Republic. We excluded species with less than 40 presence points.

Absence data: As absence points, we used randomly selected observation points of other
farmland bird species in the dataset, with a minimum distance to all presence points of 500

m.

Errors and biases: The observation data entails biases in the monitoring effort, which is
higher in protected areas and close to cities and road infrastructures.

Predictor variables

Table 2.2: Explanatory variables used in the SDMs and sources of the original data.

Group Variable (units) Data source (original resolution)
4th generation digital relief model of the Czech
Elevation (m) Republic (DMR 4G) (5 m) (Czech Office for
Surveying, Mapping and Cadastre 2020
Topography hitps:/www.cuzk.cz/English/Home.aspx)
4th generation digital relief model of the Czech
Slope (°) Republic (DMR 4G) (5 m) (Czech Office for
Surveying, Mapping and Cadastre 2020)
Distance from forest S2GLC Europe 2017 (10 m) (Malinowski et al.
edge (m) 2020) - classes 82 and 83 Broadleaf and
Distance 9 coniferous tree cover
metrics ) )
Dlstanpe from highways OpenStreetMap 2020 (shapefile)
and primary roads (m)
gggf;i'ttuzas'h'gzg;ﬁi IACS/LPIS 2015-2019 (shapefile) (Ministry of
. y Agriculture of the Czech Republic 2020)
index)
IACS/LPIS 2015-2019 (shapefile) (Ministry of
o
Arable land (%) Agriculture of the Czech Republic 2020)
Land
cover/use o S2GLC Europe 2017 (10 m) (Malinowski et al.
Grassland cover (%) 2020)- class 102 Herbaceous vegetation
Small Woody Features | Copernicus HRL Small Woody Features 2015 (5
(SWF) cover (%) m)



https://www.cuzk.cz/English/Home.aspx
https://www.cuzk.cz/English/Home.aspx
https://www.cuzk.cz/English/Home.aspx
https://s2glc.cbk.waw.pl/extension
https://www.openstreetmap.org
https://s2glc.cbk.waw.pl/extension
https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015
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S2GLC Europe 2017 (10 m) (Malinowski et al.
Urban cover (%) 2020) - class 62 Artificial surfaces and
constructions

IACS/LPIS 2015-2019 (shapefile) (Ministry of

o
Buffer areas (%) Agriculture of the Czech Republic 2020)

Agri-Environ | Extensive grassland IACS/LPIS 2015-2019 (shapefile) (Ministry of
ment management (%) Agriculture of the Czech Republic 2020)
Measures
(AEM) Land use conversion to |IACS/LPIS 2015-2019 (shapefile) (Ministry of
grassland (%) Agriculture of the Czech Republic 2020)

Organic and integrated | IACS/LPIS 2015-2019 (shapefile) (Ministry of
farming (%) Agriculture of the Czech Republic 2020)

Predictor variables, data sources and their original spatial resolution and reference year are
summarised in Table 2.2.

Coordinate reference system: EPSG:3035

Temporal resolution: Yearly resolution of IACS/LPIS data between 2015 and 2019; the other
predictors were kept constant throughout the years.

Data processing: As elevation layer, we used the 4th generation digital relief model of the
Czech Republic (DMR 4G) (Czech Office for Surveying, Mapping and Cadastre 2020). From
this layer, we derived slope using the slope() function from the terra package (Hijmans et al.,
2021). To map land cover outside of agricultural fields, we used the Land Cover Map of
Europe 2017 from the S2GLC project (Malinowski et al., 2020) and the Copernicus High
Resolution Layers for Small Woody Features (SWF) for the reference year 2015. All
products were cropped and aligned to the same extent, disaggregated to 5 m resolution, and
binary maps (0:absence, 1:presence) were produced for each land cover type. If binary
maps overlapped (i.e. the same raster cell was covered by multiple land cover types), we
used the SWF layer as mask for all other layers due to its higher original resolution. From
the forest cover layer we derived a raster (5 m res.) of distance to forest edge, using the
Proximity(Raster Distance) tool in QGIS version 3.10.11 (www.qgis.org). To account for
anthropogenic disturbance, we included distance from highways and primary roads to the
environmental predictors. This was calculated at 5 m res. based on the OpenStreetMap
highways shapefile (key:highway, value:primary; www.openstreetmap.org), which we
downloaded and rasterized. All layers were reprojected to the coordinate reference system
EPSG:3035, cropped and aligned to the study area extent using the raster package
(Hijmans et al., 2020) and the terra package (Hijmans et al., 2021) in R version 4.0.2 (R
Core Team 2020). IACS/LPIS data for five consecutive years (2015-2019), provided by the
Ministry of Agriculture of the Czech Republic, were used in this study to compute the
proportion of arable land and of different AES, as well as the agricultural land-use diversity
index. The Czech IACS/LPIS data hold information on all grown crops within each field
parcel, but no spatial information on the distribution of the crops within the parcel is given.
This implied some approximation in the calculation of the agricultural land-use diversity
index. From the IACS/LPIS data referring to the most recent year (2019), we calculated
raster layers at 10 m resolution in which each raster cell value corresponded to the
proportion of the given land cover/use type within circular windows with radii of 200, 500 and
1000 m. These rasters were used for projecting the models into the current AES adoption
conditions, to obtain 10 m res. habitat suitability maps for each bird species.


https://s2glc.cbk.waw.pl/extension
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Model

Variable pre-selection

Variable pre-selection: Explanatory variables were chosen to reflect environmental and
habitat conditions likely to impact farmland birds” distributions at the field and landscape
level. We used elevation in the models, which roughly approximates the temperature and
precipitation gradients in the study area, and allowed us to model at much higher spatial
resolution.

Multicollinearity

Multicollinearity: To select the best scale for each variables and to exclude highly correlated
variables from the same model, we fitted univariate linear models with binomial distribution
for each explanatory variable and we ranked them by their Akaike Information Criterion
corrected for small sample size (AICc) score. For each species, we then selected the best
set of uncorrelated variables (i.e. with Spearman's correlation coefficient < 0.7) with the
lowest AlCc score.

Model settings

GLM: we used a binomial link function, and a stepwise backward selection was applied to
select final models by removing unimportant variables, based on the Akaike Information
Criterion (AIC). Interaction level was set to 0.

GAM: we used a binomial link function using the algorithm as implemented in the mgcv
package (Wood, 2017), and the basis dimension of the smooth functions was setto k =5 to
avoid overfitting. Interaction level was set to 0.

MAXENT: the maximum number of iterations was set to 200 and the feature classes linear,
quadratic and threshold were selected. The regularisation parameter 3 was set to -1 to allow
for automatic setting, as the optimal value is likely to change across species (Elith et al.,
2011).

RF: the number of trees was set to 500, the minimum size of terminal nodes was set to 5,
and the number of variables randomly sampled as candidates at each split to 1.

GBM: we used the default settings (number of trees = 100, interaction depth parameter = 1,
learning rate = 0.1, and subsampling fraction = 0.5) suggested in the gbm package
(Greenwell et al., 2019).

Model estimates

Variable importance: Variable importance scores were obtained using the
get variable_importance() function in the biomod2 package (Thuiller et al., 2019) and were
normalised, so that the sum of the importance scores of all variables in a model equals 100,
to ensure comparability between variables and across species.

Assessment

Performance statistics

Performance on training data: AUC, TSS, sensitivity (true positive rate), specificity (true
negative rate); see table 2.3 for the evaluation metrics of single models.

Table 2.3: Mean values of the evaluation metrics across the 10 model runs for each
species-specific model.
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Species AUC TSS Sensitivity Specificity

Alauda arvensis 0.81 0.53 0.74 0.79
Anthus pratensis 0.79 0.51 0.68 0.83
Carduelis cannabina 0.82 0.53 0.76 0.78
Ciconia ciconia 0.77 0.42 0.74 0.69
Corvus frugilegus 0.82 0.54 0.74 0.81
Emberiza calandra 0.95 0.88 0.93 0.95
Emberiza citrinella 0.88 0.64 0.86 0.78
Falco tinnunculus 0.79 0.47 0.71 0.77
Galerida cristata 0.97 0.85 0.93 0.93
Lanius collurio 0.80 0.47 0.75 0.73
Hirundo rustica 0.83 0.53 0.77 0.75
Motacilla flava 0.90 0.65 0.82 0.84
Passer montanus 0.88 0.65 0.88 0.77
Perdix perdix 0.89 0.66 0.85 0.81
Saxicola rubetra 0.76 0.45 0.76 0.70
Saxicola rubicola 0.75 0.41 0.67 0.74
Serinus serinus 0.85 0.61 0.83 0.79
Streptopelia turtur 0.85 0.61 0.75 0.86
Sturnus vulgaris 0.87 0.60 0.82 0.78
Sylvia communis 0.84 0.60 0.87 0.73
Upupa epops 0.84 0.59 0.70 0.89
Vanellus vanellus 0.89 0.64 0.78 0.86

Plausibility check

Response shapes: The variable response plots were built with the response.plot2() function
of the same package, and the standard deviation was calculated across the 10 model runs.

3) Catalonia, ES

Location

Catalonia, Spain, which serves as one of the five BESTMAP case study regions.
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Scale of Analysis

Spatial extent: 0.1557295, 3.338699, 40.51405, 42.8691 (xmin, xmax, ymin, ymax; CRS=
WGS84)

Spatial resolution: 1 km
Temporal extent: 2019
Temporal resolution: year

Boundary: administrative

Data

Biodiversity data

Species selection: We selected farmland bird species according to the list used for the
calculation of the European Farmland Bird Index, as in Gamero et al. (2016), and we
complemented it with the species of the Spanish Farmland Bird Index, as in Traba & Morales
(2019). We excluded species for which less than 40 presence points were available. The list
of modelled species is shown in Table 3.1.

Ecological level: species

Data sources: the bird data was downloaded from GBIF.org on 23 August 2021 (GBIF
Occurrence Download https://doi.org/10.15468/dl.9svutg), and is owned by the Catalan
Ornithological Institute (Institut Catala d'Ornitologia).

Sampling design: The database, curated by the Catalan Ornithological Institute, includes
observations collected through the portal www.ornitho.cat, a website that allows citizens to
store  and share field observations of some groups of animals

(https://www.gbif.org/publisher/ada19a05-4216-44c7-aa4f-6e7177bcb0Oac). The data is
uploaded in the GBIF repository in gridded format, at 1x1 km resolution.

Sample size: number of presence points per species are reported in Table 3.1; we set the
number of absence points as 10 times that of presence points for each species; if this
number exceeded the total available absence points after the distance filtering, we used all
available points in the dataset.

Table 3.1: List of species included in the analyses and number of presence points used for
modelling after filtering.

Species Common name Presence points
Alauda arvensis Eurasian Skylark 463
Alectoris rufa Red-legged Partridge 708
Anthus campestris Tawny Pipit 111
Anthus pratensis Meadow Pipit 668



https://doi.org/10.15468/dl.9svutg
http://www.ornitologia.org/ca/
https://www.gbif.org/publisher/ada19a05-4216-44c7-aa4f-6e7177bcb0ac
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Athene noctua

Little Owl

417

Bubulcus ibis

Cattle Egret

508

Carduelis carduelis

European Goldfinch

1733

Ciconia ciconia

White Stork

417

Cisticola juncidis

Zitting Cisticola

634

Coturnix coturnix

Common Quail

329

Emberiza calandra

Corn Bunting

696

Emberiza cirlus

Cirl Bunting

1152

Emberiza citrinella

Yellowhammer

145

Emberiza hortulana

Ortolan Bunting

74

Falco tinnunculus

Common Kestrel

1561

Galerida cristata

Crested Lark

850

Galerida theklae

Thekla's Lark

132

Hirundo rustica

Barn Swallow

1677

Lanius collurio

Red-backed Shrike

269

Lanius senator

Woodchat Shrike

493

Linaria cannabina

Common Linnet

919

Melanocorypha calandra

Calandra Lark

114

Merops apiaster

European Bee-eater

1118




— ARPHAPreprints Author-formatted document posted on 26/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114653

64 | Page D3.3: Ecosystem service, biodiversity and socio-economic models
Motacilla flava Blue-headed Yellow Wagtail 425
Oenanthe hispanica Western black-eared Wheatear 115
Passer domesticus House Sparrow 1651
Passer montanus Eurasian Tree Sparrow 691
Petronia petronia Rock Sparrow 390
Pica pica Eurasian Magpie 1472
Saxicola rubetra Whinchat 370
Saxicola rubicola European Stonechat 1020
Serinus serinus European Serin 1742
Streptopelia turtur European Turtle Dove 487
Sturnus unicolor Spotless Starling 458
Sturnus vulgaris Common Starling 1315
Sylvia communis Common Whitethroat 335
Upupa epops Eurasian Hoopoe 1247
Vanellus vanellus Northern Lapwing 201

Cleaning: We excluded species with less than 40 presence points.

Absence data: As absence points, we used randomly selected observation points of other
farmland bird species in the dataset, with a minimum distance to all presence points of 5 km.

Errors and biases: The observation data is based on a citizen science project
(www.ornitho.cat), and may thus entail biases in terms of monitoring effort, e.g. with higher
coverage in and around populated areas.



http://www.ornitho.ct
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Predictor variables

Table 3.2: Explanatory variables used in the SDMs and sources of the original data.

Group Variable (units) Data source (original resolution)

Topography Elevation (m) Copernicus EU-DEM v1.1 (25 m)

Maximum temperature CHELSA Climatologies 1981-2010 V2.1,
between April and July fasmax_04 - 07 (1 km) (Karger et al. 2020)

Climate
Precipitation sum HELSA Climatologies 1981-2010 V2.1
between April and July pr_04 - 07 (1 km) (Karger et al. 2020)

IACS/LPIS 2019 (shapefile) (Generalitat de
Land cover diversity Catalunya-Ministry of Agriculture, Livestock,
(Shannon’s index) Fisheries and Food-Department of Rural
Department 2020)

IACS/LPIS 2019 (shapefile) (Generalitat de
Catalunya-Ministry of Agriculture, Livestock,
Fisheries and Food-Department of Rural
Department 2020)

Arable land (%)

IACS/LPIS 2019 (shapefile) (Generalitat de
Catalunya-Ministry of Agriculture, Livestock,
Fisheries and Food-Department of Rural
Department 2020)

Forest cover (%)

IACS/LPIS 2019 (shapefile) (Generalitat de
Catalunya-Ministry of Agriculture, Livestock,
Fisheries and Food-Department of Rural
Land cover/use Department 2020)

Grassland cover (%)

IACS/LPIS 2019 (shapefile) (Generalitat de
Orchards, nuts and fruit | Catalunya-Ministry of Agriculture, Livestock,
plantations cover (%) Fisheries and Food-Department of Rural
Department 2020)

Small Woody Features Copernicus HRL Small Woody Features
(SWF) cover (%) 2015 (5 m)

IACS/LPIS 2019 (shapefile) (Generalitat de
Catalunya-Ministry of Agriculture, Livestock,
Fisheries and Food-Department of Rural
Department 2020)

Urban cover (%)

IACS/LPIS 2019 (shapefile) (Generalitat de
(Mixed) Vineyards cover | Catalunya-Ministry of Agriculture, Livestock,
(%) Fisheries and Food-Department of Rural
Department 2020)



https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://chelsa-climate.org/downloads/
https://chelsa-climate.org/downloads/
https://chelsa-climate.org/downloads/
https://chelsa-climate.org/downloads/
https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015
https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015
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IACS/LPIS 2019 (shapefile) (Generalitat de
Catalunya-Ministry of Agriculture, Livestock,
Fisheries and Food-Department of Rural

Cover crops, as part of
integrated production
management (%)

Department 2020)
IACS/LPIS 2019 (shapefile) (Generalitat de
Extensive grassland Catalunya-Ministry of Agriculture, Livestock,
management (%) Fisheries and Food-Department of Rural
Agri-Environme Department 2020)
nt Measures
(AEM) IACS/LPIS 2019 (shapefile) (Generalitat de

Catalunya-Ministry of Agriculture, Livestock,
Fisheries and Food-Department of Rural
Department 2020)

Fallow land (%)

Organic farming,
including organic
livestock and alternative
systems to chemical
control (%)

IACS/LPIS 2019 (shapefile) (Generalitat de
Catalunya-Ministry of Agriculture, Livestock,
Fisheries and Food-Department of Rural
Department 2020)

Predictor variables, data sources and their original spatial resolution and reference year are
summarised in Table 3.2.

Coordinate reference system: EPSG:3035

Temporal resolution: models were developed based on the IACS/LPIS data relative to the
year of 2019; the reference year of the other environmental layers are listed in table 3.2.

Data processing: As the bird data was in gridded format, we used the bird monitoring grid
provided by the Catalan Ornithological Institute as a blueprint for the preparation of all other
environmental layers. We intersected the bird monitoring grid with the IACS/LPIS 2019 layer
and calculated the proportion of cover, within each 1x1 km grid cells, for the different land
cover classes and AES groups (Table 3.2), using the sf package (Pebesma 2018). We then
rasterized each of the computed variables using the terra package (Hijmans et al., 2021).
We downloaded the Copernicus High Resolution Layers for Small Woody Features (SWF)
for the reference year 2015, extracted the proportion of SWF cover within each grid cell, and
rasterized it. We used the Copernicus EU-DEM v1.1 as elevation layer, which was
reprojected to the same extent and resolution of the other previously prepared layers. We
downloaded the CHELSA climatologies (Karger et al. 2020) layers for maximum temperature
and precipitation sum for the months April to July, and we computed the maximum
temperature values and the sum of precipitation across the 4 months. All layers were
reprojected to the coordinate reference system EPSG:3035, cropped and aligned to the
study area extent using the terra package (Hijmans et al., 2021) in R version 4.1.1 (R Core
Team 2020).

Model

Variable pre-selection

Variable pre-selection: Explanatory variables were chosen to reflect environmental and
habitat conditions likely to impact farmland birds” distributions at the field and landscape
level.



— ARPHAPreprints Author-formatted document posted on 26/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114653

D3.3: Ecosystem service, biodiversity and socio-economic models 67 | Page

Multicollinearity

Multicollinearity: To exclude highly correlated variables from the same model, we fitted
univariate linear models with binomial distribution for each explanatory variable and we
ranked them by their Akaike Information Criterion corrected for small sample size (AlCc)
score. For each species, we then selected the best set of uncorrelated variables (i.e. with
Spearman's correlation coefficient < 0.7) with the lowest AlCc score.

Model settings

GLM: we used a binomial link function, and a stepwise backward selection was applied to
select final models by removing unimportant variables, based on the Akaike Information
Criterion (AIC). Interaction level was set to 0.

GAM: we used a binomial link function using the algorithm as implemented in the mgcv
package (Wood, 2017), and the basis dimension of the smooth functions was set to k = 5 to
avoid overfitting. Interaction level was set to 0.

MAXENT: the maximum number of iterations was set to 200 and the feature classes linear,
quadratic and threshold were selected. The regularisation parameter 3 was set to -1 to allow
for automatic setting, as the optimal value is likely to change across species (Elith et al.,
2011).

RF: the number of trees was set to 500, the minimum size of terminal nodes was set to 5,
and the number of variables randomly sampled as candidates at each split to 1.

GBM: we used the default settings (number of trees = 100, interaction depth parameter = 1,
learning rate = 0.1, and subsampling fraction = 0.5) suggested in the gbm package
(Greenwell et al., 2019).

Model estimates

Variable importance: Variable importance scores were obtained using the
get_variable_importance() function in the biomod2 package (Thuiller et al., 2019) and were
normalised, so that the sum of the importance scores of all variables in a model equals 100,
to ensure comparability between variables and across species.

Assessment

Performance statistics

Performance on training data: AUC, TSS, sensitivity (true positive rate), specificity (true
negative rate); see table 3.3 for the evaluation metrics of single models.

Table 3.3: Mean values of the evaluation metrics across the 10 model runs for each
species-specific model.

Species AUC TSS Sensitivity Specificity
Alauda arvensis 0.82 0.51 0.75 0.77
Alectoris rufa 0.78 0.41 0.66 0.76
Anthus campestris 0.78 0.47 0.74 0.73
Anthus pratensis 0.86 0.59 0.77 0.83
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Athene noctua 0.90 0.68 0.81 0.87
Bubulcus ibis 0.95 0.78 0.92 0.86
Carduelis carduelis 0.84 0.55 0.75 0.81
Ciconia ciconia 0.94 0.77 0.87 0.91
Cisticola juncidis 0.95 0.76 0.88 0.89
Coturnix coturnix 0.89 0.65 0.83 0.82
Emberiza calandra 0.89 0.64 0.81 0.83
Emberiza cirlus 0.87 0.62 0.83 0.79
Emberiza citrinella 0.88 0.66 0.79 0.87
Emberiza hortulana 0.76 0.48 0.67 0.81
Falco tinnunculus 0.83 0.52 0.72 0.81
Galerida cristata 0.94 0.73 0.87 0.86
Galerida theklae 0.94 0.76 0.87 0.90
Hirundo rustica 0.85 0.56 0.71 0.85
Lanius collurio 0.96 0.82 0.88 0.95
Lanius senator 0.83 0.51 0.80 0.71
Linaria cannabina 0.74 0.37 0.59 0.78
Melanocorypha 0.99 0.95 1.00 0.95
calandra
Merops apiaster 0.86 0.55 0.68 0.87
Motacilla flava 0.89 0.65 0.81 0.84
Oenanthe 0.83 0.56 0.78 0.78
hispanica
Passer domesticus 0.93 0.70 0.83 0.87
Passer montanus 0.93 0.74 0.86 0.88
Petronia petronia 0.83 0.54 0.82 0.73
Pica pica 0.94 0.77 0.88 0.90
Saxicola rubetra 0.81 0.50 0.80 0.70
Saxicola rubicola 0.78 0.43 0.72 0.72
Serinus serinus 0.88 0.62 0.83 0.79
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Streptopelia turtur 0.81 0.48 0.82 0.66
Sturnus unicolor 0.88 0.61 0.82 0.79
Sturnus vulgaris 0.92 0.72 0.87 0.85
Sylvia communis 0.80 0.49 0.71 0.79
Upupa epops 0.89 0.64 0.82 0.83
Vanellus vanellus 0.93 0.73 0.83 0.90

Plausibility check

Response shapes: The variable response plots were built with the response.plot2() function
of the same package, and the standard deviation was calculated across the 10 model runs.

4) BaCka, RS
Location
Backa region, Serbia, which serves as one of the five BESTMAP case study regions.

Scale of Analysis

Spatial extent: 18.8194, 20.31623, 45.13434, 46.18879 (xmin, xmax, ymin, ymax; CRS=
WGS84)

Spatial resolution: 10 m
Temporal extent: 2015-2019
Temporal resolution: year

Boundary: administrative

Data
Biodiversity data

Species selection: We selected farmland bird species by using a two step approach: first, we
checked the list of farmland species used for the calculation of the European Farmland Bird
Index, as in Gamero et al. (2016) and in a second step from that list, in communication with
species expert from University of Novi Sad we selected species that rely on open grassland
habitat distribution for its foraging and reproduction in our study area. Additionally, we used
data on small mammal grassland specialists whose life cycle is strongly attained to open
grassland habitats. The final list of modelled species is shown in Table 4.1.

Ecological level: species

Data sources: The Bird Protection and Study Society of Serbia provided us with the data for
selected bird species; we used in-house (BioSense) data on small mammal grassland
specialists.
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Sampling design: The database includes confirmed observations from standardised
monitoring projects (breeding bird monitoring, Natura2000 monitoring), and monitoring
activities of researchers verified by the species experts at University of Novi Sad.

Sample size: number of presence points per species are reported in Table 4.1; we set the
number of absence points as 10 times that of presence points for each species, randomly
distributed across study area.

Table 4.1: List of species included in the analyses and number of presence points used for

modelling after filtering.

Species Common name Presence points
Anthus campestris Tawny Pipit 53
Lanius minor Lesser Grey Shrike 50
Vanellus vanellus Northern Lapwing 299
Spermophilus citellus European Ground Squirrel 76

Cleaning: The dataset included only records verified by local experts. We excluded species
with less than 40 presence points.

Absence data: As absence points, we used randomly selected observation points with a
minimum distance to all presence points of 500 m.

Errors and biases: The observation data entails biases in the monitoring effort, which is
higher in protected areas or within ecological network and road infrastructures.

Predictor variables

Table 4.2: Explanatory variables used in the SDMs and sources of the original data.

Group Variable (units) Data source (original resolution)
ALOS World 3D-30m (AW3D30) Version
Elevation (m) 3.2/3.1 (30m) ALOS@EORC Homepage
jaxa.j
Topography
Derived from ALOS World 3D-30m
Slope (°) and aspect (AW3D30) Version 3.2/3.1 (30m)
ALOS@EORC Homepage (jaxa.jp)
Distance from forest edge COpem'CUS HRL Fore_st TyEe 20|1\/|8 (1.0“?)
(m) — i n nitorin
Distance Service
metrics . . .
Distance from highways (m) | OpenStreetMap 2020 (shapefile)



https://www.eorc.jaxa.jp/ALOS/en/index_e.htm
https://www.eorc.jaxa.jp/ALOS/en/index_e.htm
https://www.eorc.jaxa.jp/ALOS/en/index_e.htm
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps
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Distance from Water and
wetness areas (m)

Copernicus Water & Wetness 2018 (10m)

Water & Wetness 2018 — Copernicus Land
Monitoring Service

Agricultural land-use
diversity (Shannon’s index)

BioSense in-house crop distribution map
2013-2020 (10 m)

Arable land (%)

BioSense in-house file (shapefile)

Grassland cover and
grassland cover change
Land (%)

cover/use

Copernicus HRL Grassland 2015 (20m) and

2018 (10m) Status Maps — Copernicus Land

Monitoring Service
Copernicus HRL Grassland change

2015-2018 (20m) Change_Maps —
Copernicus Land Monitoring Service

Small Woody Features
(SWF) cover (%)

Copernicus HRL Small Woody Features

2015 (5m) Small Woody Features —
Copernicus Land Monitoring Service

Urban cover (%)

Copernicus European Settlement Map 2012,
release 2017 ESM 2012 - Release 2017 —

Copernicus Land Monitoring Service

Linear elements (%)

Surrogates

BioSense in-house file derived from sentinel
images available for the pick of vegetation
season in the CS area 2019 (10 m)

for
Agri-Environ
ment
Measures

Extensive grassland
management - grassland
maintenance (%)

Provincial Institute for Nature Protection
2016-2019 (shapefile)

(AEM)
Fallow land (%)

BioSense in-house file derived from crop
diversity maps 2019 (10 m)

Organic farming (%)

BioSense in-house file (shapefile)

Predictor variables, data sources and their original spatial resolution and reference year are

summarised in Table 4.2.

Coordinate reference system: EPSG:3035

Temporal resolution: Yearly resolution of grassland 2015 and 2018; the other predictors were
kept constant throughout the years.

Data processing: As an elevation layer, we used the Digital Elevation Model ALOS World
3D-30m (AW3D30) Version 3.2/3.1 (30m) ALOS@EORC Homepage (jaxa.jp). From this
layer, we derived slope and aspect using the terrain() function from the raster package
(Hijmans et al.,, 2020). To map land cover outside of agricultural fields, we used the
Copernicus High Resolution Layers for Small Woody Features (SWF), Forest type product,
Grassland status map, all available for the reference year 2015, and grasslands for
reference years 2015 and 2018 in which percentage of grassland pixels varied. Urban cover
was extracted from the Copernicus European Settlement Map 2017. All products were
cropped and aligned to the same extent, disaggregated to 10 m resolution, and binary maps


https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness/status-maps/water-wetness-2018
https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness/status-maps/water-wetness-2018
https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps
https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps
https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps
https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps
https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features
https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features
https://land.copernicus.eu/pan-european/GHSL/european-settlement-map/esm-2012-release-2017-urban-green
https://land.copernicus.eu/pan-european/GHSL/european-settlement-map/esm-2012-release-2017-urban-green
https://www.eorc.jaxa.jp/ALOS/en/index_e.htm
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(O:absence, 1:presence) were produced for each land cover type. If binary maps overlapped
(i.e. the same raster cell was covered by multiple land cover types), we masked the layers in
the following hierarchical order: SWF (used as mask for all other layers due to its higher
original resolution), grassland, forest, urban cover. From the forest cover layer and water
and wetness we derived a raster (10 m res.) of distance to forest edge, using the
Proximity(Raster Distance) tool in QGIS version 3.10.11 (www.qgis.org). To account for
anthropogenic disturbance, we included distance from highways to the environmental
predictors. This was calculated at 10 m res. based on the OpenStreetMap highways
shapefile (key:highway; primary, secondary and trunk, code: 5111; 5113; 5114 and 5112;
www.openstreetmap.org), which we downloaded and rasterized. All layers were reprojected
to the coordinate reference system EPSG:3035, cropped and aligned to the study area
extent using the raster package (Hijmans et al., 2020) and the terra package (Hijmans et al.,
2021) in R version 4.0.2 (R Core Team 2020). For developing the linear elements layer we
used available Sentinel 2 images and Google engine, and used NDVI time series to detect
permanent vegetation along roads and arable fields in the study area. We developed the
fallow land layer in the agricultural zone by using crop cover distribution data (2015-2019)
and, by applying an algorithm for plugin detection, we calculated areas where in 3
consecutive years no plugin activity was detected. The developed binary files were masked
with grassland maintenance and grassland maps. In a final step, all the pixels from SWF,
grassland, forest, linear elements, and fallow land binary maps were once again masked
from urban areas. We rasterized the shapefile of organic farms and the grasslands
maintenance files in QGIS version 3.10.11 (www.qggis.org) and developed 10 m resolution
binary layers. From the linear elements, grassland maintenance, fallow land and organic
farming data referring to the most recent year (2019), we calculated raster layers at 10 m
resolution in which each raster cell value corresponded to the proportion of the given land
cover/use type within circular windows with radii of 200, 500 and 1000 m. These rasters
were used for projecting the models into the current conditions of AES “surrogates”, to obtain
10 m res. habitat suitability maps for each selected species.

Model

Variable pre-selection

Variable pre-selection: Explanatory variables were chosen to reflect environmental and
habitat conditions likely to impact farmland species” distributions at the field and landscape
level.

Multicollinearity

Multicollinearity: To select the best scale for each variables and to exclude highly correlated
variables from the same model, we fitted univariate linear models with binomial distribution
for each explanatory variable and we ranked them by their Akaike Information Criterion
corrected for small sample size (AICc) score. For each species, we then selected the best
set of uncorrelated variables (i.e. with Spearman's correlation coefficient < 0.7) with the
lowest AlCc score.

Model settings

GLM: we used a binomial link function, and a stepwise backward selection was applied to
select final models by removing unimportant variables, based on the Akaike Information
Criterion (AIC). Interaction level was set to 0.

GAM: we used a binomial link function using the algorithm as implemented in the mgcv
package (Wood, 2017), and the basis dimension of the smooth functions was setto k =5 to
avoid overfitting. Interaction level was set to 0.


http://www.qgis.org
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MAXENT: the maximum number of iterations was set to 200 and the feature classes linear,
quadratic and threshold were selected. The regularisation parameter 3 was set to -1 to allow
for automatic setting, as the optimal value is likely to change across species (Elith et al.,
2011).

RF: the number of trees was set to 500, the minimum size of terminal nodes was set to 5,
and the number of variables randomly sampled as candidates at each split to 1.

GBM: we used the default settings (number of trees = 100, interaction depth parameter = 1,
learning rate = 0.1, and subsampling fraction = 0.5) suggested in the gbm package
(Greenwell et al., 2019).

Model estimates

Variable importance: Variable importance scores were obtained using the
get variable_importance() function in the biomod2 package (Thuiller et al., 2019) and were
normalised, so that the sum of the importance scores of all variables in a model equals 100,
to ensure comparability between variables and across species.

Assessment

Performance statistics

Performance on training data: AUC, TSS, sensitivity (true positive rate), specificity (true
negative rate); see table 4.3 for the evaluation metrics of single models.

Table 4.3: Mean values of the evaluation metrics across the 10 model runs for each
species-specific model.

Species AUC TSS Sensitivity Specificity
Anthus campestris 0.83 0.60 0.78 0.83
Lanius minor 0.81 0.53 0.84 0.70
Vanellus vanellus 0.79 0.49 0.74 0.75
Spermophilus citellus 0.96 0.89 0.97 0.92

Plausibility check

Response shapes: The variable response plots were built with the response.plot2() function
of the same package, and the standard deviation was calculated across the 10 model runs.

5) Humber, UK

Location

Humber River Basin, United Kingdom, which serves as one of the five BESTMAP case study
regions.

Scale of Analysis

Spatial extent: -1.723979, 0.1374987, 53.05964, 54.46706 (xmin, xmax, ymin, ymax; CRS=
WGS84)
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Spatial resolution: 1 km
Temporal extent: 2019
Temporal resolution: year

Boundary: natural

Data
Biodiversity data

Species selection: We selected farmland bird species according to the list used for the
calculation of the European Farmland Bird Index, as in Gamero et al. (2016). We excluded
species for which less than 30 presence points were available. We used a lower threshold
compared to the one (40 presence points) used in other CS because of the coarser spatial
resolution (1 km) of the UK models compared to e.g. DE and CZ models, and to the
relatively small extent of the CS. The list of modelled species is shown in Table 5.1; species
highlighted in red were not included in the calculation of the indicator due to low model
performance (i.e. whenever more than half of the algorithms had AUC < 0.7, hindering the
setup of a robust ensemble model).

Ecological level: species

Data sources: the bird data was requested for the selected species to the British Trust for
Ornithology (BTO). The data was collected as part of the breeding bird survey of the BTO. To
increase the number of observations and the spatial coverage of the dataset, additional bird
observations from the National Biodiversity Network (NBN) Atlas (https://nbnatlas.org,
accessed on Fri Dec 17 12:46:47 UTC 2021) for the year of 2019. The NBN Atlas records
were further filtered to only retain observations considered correct, with spatial uncertainty <
708 m, and for which the listed data provider was the BTO.

Sampling design: The bird data is part of the UK breeding bird survey, a standardised annual
bird count on randomly-located 1-km sites (more information can be found here
https://www.bto.org/our-science/projects/bbs). The NBN Atlas dataset is a collection of
records from multiple sources (we only retained datasets from the BTO), deriving from
diverse monitoring schemes; more information can be found here
https://nbnatlas.org/about-nbn-atlas/.

Sample size: number of presence points per species are reported in Table 5.1; for each
modelled species we used all available absence points, e.g. all location points of surveyed
grid squares where the focal species was not recorded.

Table 5.1: List of species included in the analyses and number of presence points used for
modelling after filtering. For the species marked in red, model performance was too low to
produce reliable results, and are thus removed from the multispecies indicator.

Species

Common name

Presence points

Alauda arvensis Eurasian Skylark 70
Alectoris rufa Red-legged Partridge 32
Corvus frugilegus Rook 62



http://www.bto.org
https://nbnatlas.org
https://www.bto.org/our-science/projects/bbs
https://nbnatlas.org/about-nbn-atlas/
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Emberiza citrinella Yellowhammer 62
Falco tinnunculus Common Kestrel 41

Hirundo rustica Barn Swallow 77
Linaria cannabina Common Linnet 59
Passer montanus Eurasian Tree Sparrow 37
Sturnus vulgaris Common Starling 80
Sylvia communis Common Whitethroat 65
Vanellus vanellus Northern Lapwing 45

Cleaning: We excluded species with less than 30 presence points.

Absence data: As absence points, we used all other monitored grid squares (from the UK
Ordnance survey grid at 1 km) in which the focal species was not found.

Errors and biases: data from standardised monitoring schemes such as the breeding bird
monitoring of the BTO are collected by skilled volunteers and are not spatially biassed
towards more populated area, like other citizen science monitoring programs; nonetheless,
the number of monitored grid per year within the Humber catchment is rather small, which
affects the performance of our models.

Predictor variables

Table 5.2: Explanatory variables used in the SDMs and sources of the original data.

Group Variable (units) Data source (original resolution)

Topography Elevation (m) Copernicus EU-DEM v1.1 (25 m)

Maximum temperature | CHELSA Climatologies 1981-2010 V2.1,
between April and July |tasmax_04 - 07 (1 km) (Karger et al. 2020)

Climate

Precipitation sum CHELSA Climatologies 1981-2010 V2.1, pr_04
between April and July |- 07 (1 km) (Karger et al. 2020)

Copernicus HRL Small Woody Features 2015

(5 m)and S2GLC Eur 2017 (10 m)
(Malinowski et al. 2020)

Land cover diversity

Land cover/use |(Shannon’s index)



https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://chelsa-climate.org/downloads/
https://chelsa-climate.org/downloads/
https://chelsa-climate.org/downloads/
https://chelsa-climate.org/downloads/
https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015
https://s2glc.cbk.waw.pl/extension
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S2GLC Europe 2017 (10 m) (Malinowski et al.
2020)- class 73 Cultivated areas

Arable land (%)

S2GLC Europe 2017 (10 m) (Malinowski et al.
Forest cover (%) 2020)- classes 82 and 83 Broadleaf tree cover
and coniferous tree cover

S2GLC Europe 2017 (10 m) (Malinowski et al.
2020)- class 102 Herbaceous vegetation

Grassland cover (%)

Small Woody Features | Copernicus HRL Small Woody Features 2015

(SWF) cover (%) (5m)
S2GLC Europe 2017 (10 m) (Malinowski et al.
Urban cover (%) 2020) - class 62 Atrtificial surfaces and
constructions

IACS/LPIS 2019 (shapefile) (Rural Payments

Buffer strips/areas (%) Agency, 2020)

IACS/LPIS 2019 (shapefile) (Rural Payments

Agri-Environme | Cover crops (%) Agency, 2020)

nt Measures

(AEM) Extensive grassland IACS/LPIS 2019 (shapefile) (Rural Payments
management (%) Agency, 2020)

IACS/LPIS 2019 (shapefile) (Rural Payments

Fallow land (%) Agency, 2020)

Predictor variables, data sources and their original spatial resolution and reference year are
summarised in Table 5.2.

Coordinate reference system: EPSG:3035

Temporal resolution: models were developed based on the IACS/LPIS relative to the year of
2019; the reference years of the other environmental layers are listed in table 5.2.

Data processing: As the bird data was in gridded format, we used the ordnance survey
national grid as a blueprint for the preparation of all other environmental layers. We
intersected the bird monitoring grid with the IACS/LPIS 2019 layer and calculated the
proportion of cover, within each 1 km grid cells, for the different AES groups, using the sf
package (Pebesma 2018). We then rasterized each of the computed variables using the
terra package (Hijmans et al., 2021). Similarly, we downloaded the Copernicus High
Resolution Layers for Small Woody Features (SWF) for the reference year 2015, extracted
the proportion of SWF cover within each grid cell, and rasterized it. We applied the same
approach for the other land cover classes (e.g. forest, grassland, etc.) using the S2GLC
Europe 2017 (Malinowski et al. 2020) land cover raster, which we previously masked with
the SWF layer. We downloaded the CHELSA climatologies (Karger et al. 2020) layers for
maximum temperature and precipitation sum for the months April to July, and we computed
the maximum temperature values and the sum of precipitation across the 4 months. We
used the elevation layer EU-DEM v1.1 from Copernicus, which we aggregated to 1 km
resolution. All layers were reprojected to the coordinate reference system EPSG:3035,
cropped and aligned to the study area extent using the terra package (Hijmans et al., 2021)
in R version 4.1.1 (R Core Team 2020).


https://s2glc.cbk.waw.pl/extension
https://s2glc.cbk.waw.pl/extension
https://s2glc.cbk.waw.pl/extension
https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015
https://s2glc.cbk.waw.pl/extension
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Model

Variable pre-selection

Variable pre-selection: Explanatory variables were chosen to reflect environmental and
habitat conditions likely to impact farmland birds” distributions at the field and landscape
level. Some AES groups (e.g. organic farming, land-use conversion to grassland, land-use
conversion to forest) could not be included in the model as only limited (i.e. only 4 monitored
squares) bird data was available from the farms/area where these schemes were applied.

Multicollinearity

Multicollinearity: To exclude highly correlated variables from the same model, we fitted
univariate linear models with binomial distribution for each explanatory variable and we
ranked them by their Akaike Information Criterion corrected for small sample size (AlCc)
score. For each species, we then selected the best set of uncorrelated variables (i.e. with
Spearman's correlation coefficient < 0.7) with the lowest AICc score.

Model settings

GLM: we used a binomial link function, and a stepwise backward selection was applied to
select final models by removing unimportant variables, based on the Akaike Information
Criterion (AIC). Interaction level was set to 0.

GAM: we used a binomial link function using the algorithm as implemented in the mgcv
package (Wood, 2017), and the basis dimension of the smooth functions was set to k = 3 to
avoid overfitting. Interaction level was set to 0.

MAXENT: the maximum number of iterations was set to 200 and the feature classes linear,
quadratic and threshold were selected. The regularisation parameter 3 was set to -1 to allow
for automatic setting, as the optimal value is likely to change across species (Elith et al.,
2011).

RF: the number of trees was set to 500, the minimum size of terminal nodes was set to 5,
and the number of variables randomly sampled as candidates at each split to 1.

GBM: we used the default settings (number of trees = 100, interaction depth parameter = 1,
learning rate = 0.1, and subsampling fraction = 0.5) suggested in the gbm package
(Greenwell et al., 2019).

Model estimates

Variable importance: Variable importance scores were obtained using the
get variable_importance() function in the biomod2 package (Thuiller et al., 2019) and were
normalised, so that the sum of the importance scores of all variables in a model equals 100,
to ensure comparability between variables and across species.

Assessment

Performance statistics

Performance on training data: AUC, TSS, sensitivity (true positive rate), specificity (true
negative rate); see table 5.3 for the evaluation metrics of single models.

Table 5.3: Mean values of the evaluation metrics across the 10 model runs for each
species-specific model. For four species, several single algorithm models had AUC scores
lower than 0.7, and hence no ensemble model was produced.
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Species AUC TSS Sensitivity Specificity
Alauda arvensis 0.78 0.51 0.81 0.69
Alectoris rufa no ensemble model produced
Corvus frugilegus 0.77 0.55 0.85 0.70
Emberiza citrinella 0.83 0.59 0.83 0.77
Falco tinnunculus no ensemble model produced
Hirundo rustica 0.77 0.48 0.86 0.62
Linaria cannabina 0.76 0.75 0.70 0.45
Passer montanus 0.79 0.53 0.83 0.71
Sturnus vulgaris no ensemble model produced
Sylvia communis 0.75 0.65 0.82 0.46
Vanellus vanellus no ensemble model produced

Plausibility check

Response shapes: The variable response plots were built with the response.plot2() function
of the same package, and the standard deviation was calculated across the 10 model runs.
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Food and fodder model factsheet

BESTMAP food & fodder model
2022-05-16
The structure of this factsheet is largely based on the ODMAP (Overview, Data, Model,

Assessment and Prediction) protocol developed by Zurell et al. 2020
doi/full/10.1111/ecog.04960

Overview
Authorship
Contact: Anne Paulus (anne.paulus@ufz.de), Predrag Lugonja
(predrag.lugonja@biosense.rs),  Katharina  Schneider (katharina.schneider@ufz.de),
Rosemary Wool (r.wool@leeds.ac.uk), Michael Beckmann (michael.beckmann@ufz.de).
Model name
Model of the effects of agri-environmental measures on food and fodder production.
Model objective
Main objective of the model is to estimate how the adoption of agri-environmental measures
(AEM) affects yield and production area of selected agricultural crops as well as economic

output at the field and farm level. Figure 1 provides a conceptual overview of the model
workflow.

AEM distribution map
Estimates of AEM

effects on field
Standard Output Coefficients

. L Baseli AEM . .
Spatially explicit yield data St (no ) *AEM adoption scenario
N scenario
Crop distribution map

Figure 1: Schematic overview of the food and fodder model.
Model output
The model output consists of maps of crop production area, yield and standard output.
Data specifications
Geospatial information (e.g. as raster and shapefile data) on agricultural land-use, including
management information like AEM adoption (cover crops, buffer areas/flower strips,

land-use conversion, maintaining permanent grasslands) and type of crops grown as well as
spatially explicit yield data of agricultural crops and their standard output coefficients.
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Assumptions

1. All relevant effects of the AEM on food and fodder production are included in the
models,

2. Current AEM implementation levels do not affect the baseline yield and standard
output,

3. Cover crop effects on yield depends only on climate, soil texture, catch crop and
cover crop type,

4. Implementation of buffer areas and land-use conversion do not affect yield and
standard output of neighbouring fields,

5. EUROSTAT and IACS/LPIS information on agricultural management is correct.

Algorithms and workflow

The general workflow of the food and fodder model is depicted in Figure 1. We obtained
standard output coefficients of agricultural crops from EUROSTAT (2022) as an economic
measure of agricultural production. A baseline yield map without AEM was produced using
predictions created by the WOFOST model for arable land. Regional yield data for grassland
was obtained from local data sources. These data were used as a weighting factor in order
to account for spatial variation of standard output coefficients (SOC). SOC are published by
EUROSTAT (2021) and represent the monetary value produced by cultivating a crop per
hectare at a given time and location. We then used existing empirical data to estimate the
relative effect of AEM on crop yield. The results were then combined in order to produce
case study maps of production area and yield of the selected crops.

WOFOST

WOFOST (WOrld FOod STudies) is a simulation model developed at Wageningen University
& Research for the quantitative analysis of the growth and production of annual field crops
(Van Diepen et al., 1989). WOFOST is used in the European Mars crop yield forecasting
system (de Wit et al., 2019). The WOFOST data used here were previously generated in the
JRC study “Analysis of climate change impacts on EU agriculture by 2050” (Hristov et al.,
2020). The WOFOST model was run on climate data. 8 climate models were used from 5
families and yield predictions were generated for two RCP scenarios, mid-range mitigation
emission scenario (RCP4.5) and the high-end emission scenario (RCP8.5). We aggregate
this data in the following way to create single yield maps for each scenario: first, we
calculated the mean of each model’s family, and then the median of aggregated results was
used for final yield prediction. Yield predictions are generated for the following six crops:
maize, sugar beet, wheat, sunflower, winter rapeseed, spring barley at a resolution of appr.
11km. WOFOST data were used as a baseline in all case studies, except for Spain, where
agriculture is dominated by crop species not included in WOFOST.

Uncertainty analysis

The food and fodder model is largely based on two sources of information: i. the yield model,
ii. information from IACS/LPIS and EUROSTAT. As there is no information of uncertainty
about the latter, we assume that they are correct, so the uncertainty of our model can be
calculated from the uncertainty of the crop yield model. As a measure for uncertainty of the
WOFOST baseline model, we decided to use variance across the 8 climate models. To
calculate uncertainty of the WOFOST model, we calculated variance of each pixel across
years, since each pixel across 8 yield maps represents an independent random process. For
comparison of uncertainty across years we calculated a histogram of variance for each year
separately.
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Model validation

The baseline yield model of arable crops was validated using regional yield statistics of each
case study. The model was evaluated using the metrics R? and RMSE.

Software
Software: We used R version 4.0.2 (R Core Team 2020).

Code availability: the R code used for the preparation of the environmental variables and for
fitting the models, together with  a README file, is available here:

https://qgit.ufz.de/bestmap/bestmap-food-and-fodder.

Linking the model outputs to indicators

The model results are not identical to, but can be linked to the following indicator
(EUROSTAT 2022):

C.24 Agricultural factor income

Agricultural factor income represents the value generated by a farm business including all
factors of production, which makes it a suitable indicator for evaluating the impact of
changes in subsidies like AEM on farm income. It is also used for the EU reporting on the
United Nations’ Sustainable Development Goals.

Model specifications in each case study

1) Mulde, DE

Location

Mulde River Basin, Saxony, Germany, which serves as one of the five BESTMAP case study
regions.

Scale of Analysis

Spatial extent: 12.34771, 13.69364, 50.3809, 51.64169 (xmin, xmax, ymin, ymax, CRS=
WGS84)

Spatial resolution: field scale
Temporal extent: 2016 - 2019
Temporal resolution: year

Boundary: natural


https://git.ufz.de/bestmap/bestmap-food-and-fodder
https://ec.europa.eu/eurostat/cache/metadata/en/sdg_02_20_esmsip2.htm
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Data

Spatially explicit information on agriculture in the Mulde case study region was obtained from
the InVeKoS database, which is part of the EU-wide Integrated Administration and Control
System (IACS) (SMEKUL, 2020). The InVeKoS dataset used in this study consists of
pseudonymised information on farm business, crop type and AEM implemented at the field
parcel level for the years 2016-2019. Standard output coefficients at NUTS2 level were
obtained from EUROSTAT (2021). The coefficients were multiplied by field parcel area in
order to obtain the standard output per parcel. Where available, yield data were used in
order to spatially weight the standard output within each NUTS2 region. At this aim, annual
yield data of the predominant arable crops (wheat, maize, barley, rapeseed, sugar beet) was
obtained from WOFOST predictions (Hristov et al., 2020) and amended with grassland yield
information from LfULG (2001). In order to model cover crop effects, we compiled
information on Koeppen-Geiger climate zone, soil texture, and cover crop type applied per
field. The effect of flower strips on crop yield was estimated based on the findings of
Albrecht et al. (2020). Relative changes in grassland yield induced by AEM aimed at
maintaining permanent grasslands were implemented based on yield data from Kesting &
Riehl (2014). For land use conversion and buffer areas, we accounted for changes in the
cultivation area of the respective crop.

Model

Grassland yield

Grassland yield of non-AEM fields was assumed to depend on grassland type and
biophysical site conditions. We used yield estimates for temporary grassland, meadows,
pastures, and mowed pastures by LfULG (2001) for the different agricultural structure areas
(ASA) of the case study. ASA have been defined by LfULG (2012) as regions of similar
agri-environmental characteristics.

Cover crops

Cover crop effects based on soil texture, main crop, cover crop, and climate were estimated
according to Jian et al. (2020). We used the SoilHealthDatabase consisting of more than 200
original studies comparing crop yields with and without cover crops. For each observation,
the response ratio was calculated as the natural logarithm of the quotient of the yield with
and without cover crops. Then, we calculated grouped mean response ratios aggregating all
observations by the climate zone of the experiment location (A, B, C, D according to
Koppen-Geiger classification), soil texture (coarse, medium, fine), cash crop (vegetables,
soybean, wheat, maize, corn-soybean-wheat rotation, corn-soybean rotation, others), and
cover crop (grasses, legumes, others). The percent yield change induced by cover crop
cultivation was derived from the mean response ratio (RR) using the following equation:

Yield Effect (%) = (exp(RR) — 1) * 100

In the German case study, cover crop effects were only modelled for maize as the
subsequent cash crop as this was the predominant cropping sequence and soybean and
vegetables are not commonly grown crops in the region. An overview of the inputs and
outputs of the model is given in Table 1.

Table 1: Overview of the data used to model cover crops effects on maize yields in the
Mulde. N: Number of observations, RR: response ratio, SD: standard deviation, SE:
standard error, CV: coefficient of variation, C: temperate climate zone according to
Koeppen-Geiger.
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Climate  Soil Cash Cover N RR SD SE CV (%) Yield
Zone Texture  Crop Crop Effect

(%)

Grass 18 0.007 0.068 0.016 976.178 0.696
coarse

others 128 0.758 0.718 0.063 94.68 113.412

C Maize

Grass 36 0.043 0.269 0.045 631.778 4.343
medium

others 59 0.155 0.472 0.061 304.086 16.799

Maintaining permanent grasslands

For the effect of the maintaining permanent grasslands AEM on food and fodder production,
we took into consideration the reduction of grassland yield due to lower mowing frequency
and fertilisation. According to findings from Kesting & Riehl (2014), we defined the fodder
yield of grassland fields with AEM to be 58% of the yield of non-AEM fields.

Buffer areas and fallow land

Buffer areas, flower strips and fallow land are unproductive types of land use, thus affecting
cultivation area and total production rather than crop yield per area. Based on the
meta-analysis by Albrecht et al. (2020) showing ambiguous and partly negligible effects of
flower strips on crop yields, we assumed no effect of buffer areas on yields of adjacent fields.
When removing the buffer areas in the no AEM scenario, we assumed that the respective
fields would yield the median standard output coefficient of the fields of the same farm.

Land-use conversion

Land-use conversion from agricultural to non-agricultural land as well as conversion from
arable to permanent grassland was considered as a change of cultivation area.

Assessment

Performance statistics
The baseline yield model of arable crops was validated using annual yield statistics at the
NUTS3 level (DESTATIS, 2016-2019). Table 2 lists the coefficients of determination (R?) and

root means square errors (RMSE, dt/ha) of each year.

Table 2: Overview of the agreement of the WOFOST baseline yield model with yield
statistics. R?: coefficient of determination, RMSE: root mean square error [dt/ha].

Year R? RMSE
2019 0.13 126.59
2018 0.008 134.33
2017 0.19 124 .54

2016 0.49 114.79
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Uncertainty analysis

For the uncertainty analysis of the cover crop model, we computed the number of
observations, standard deviation, standard error and coefficient of variation of the response
ratios per group (Table 1). In 3 of the 4 groups, the standard deviation was larger than the
mean response ratio, resulting in coefficients of variation well above 100%. This indicates a
high uncertainty of the predictions.

2) South Moravia, CZ

Location

South Moravia, Czech Republic, which serves as one of the five BESTMAP case study
regions.

Scale of Analysis
Spatial extent: 16.893 17.919, 48.792, 49.189 (xmin, xmax, ymin, ymax; CRS= WGS84)
Spatial resolution: field scale
Temporal extent: 2015 - 2019
Temporal resolution: year

Boundary: administrative

Data

Spatially explicit information on agriculture in the case study region was received from the
Ministry of Agriculture of the Czech Republic (MZ) in January 2020. The IACS/LPIS dataset
used in this study consists of pseudonymised information on farm business, crop type and
AEM implemented at the field parcel level for the years 2015-2019. Additionally, information
on EFA (Ecological Focus Areas) implemented at the field parcel level received by the MZ in
February 2022 was added to each year. Standard output coefficients at NUTS1 level were
obtained from EUROSTAT (2021). The coefficients were multiplied by field parcel area in
order to obtain the standard output per parcel. Where available, yield data were used in
order to spatially weight the standard output. Annual yield data of the predominant arable
crops (wheat, maize, barley, rapeseed, sugar beet, sunflower) was obtained from WOFOST
predictions (Hristov et al., 2020) and amended with grassland yield estimations received by
the Research Institute of Soil and Water Conservation (VUMOP) in March 2022. The
grassland yield data (TTP) was created by the Czech University of Life Sciences Prague
(CZU) and VUMOP as part of the project ReStEP (Regional Sustainable Energy Policy) in
2014 (VUMOP, 2015). The data contains grassland yield predictions for three scenarios of
nitrogen input (0, 60 and 120 kg per hectare) for all czech BPEJ (rated soil-ecological units).
BPEJ data was obtained in March 2022 (SPU, 2022). We used the grassland vyield
estimations to implement relative changes in grassland yield induced by AEM aimed at
maintaining grasslands. In order to model cover crop effects, we compiled information on the
Koeppen-Geiger climate zone and soil texture per field parcel. The IACS/LPIS data does not
provide information on cover crop types, therefore this could not be considered in the
analysis. The effect of flower strips on crop yield was estimated based on the findings of
Albrecht et al. (2020). For land-use conversion and buffer areas, we accounted for changes
in cultivation area of the respective crop.

Model
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Grassland yield

Grassland yields were estimated based on model results from the project ReStEP (CZU &
VUMOP, 2014). Based on calculations performed by the online plant process calculator
(KTBL, 2022), we used the scenario of 120 kg of nitrogen input per hectare for grassland
yields of non-AEM fields. Based on findings by Dellar et al. (2019), yields of temporary
grasslands in continental Europe are expected to be twice that of permanent grasslands.

Cover crops

The two types of cover crops in the Czech Republic are i. mixture of at least two allowed
crop types, and ii. undersowing of clover and grasses. They can be used in two temporal
versions: summer cover crops are sown until 31 July and left on field until 24 September;
winter cover crops are sown until 06 September and left on field until 31 October (SZIF,
2016). The EFA dataset only provides information on whether cover crops were used on a
field or not, but it does not specify the type or temporal version of the cover crop. In the
Czech case study, cover crop effects were only modelled for maize and wheat as the
subsequent cash crops as these were the predominant cropping sequences.

Maintaining permanent grasslands

The effects of maintaining permanent grasslands AEM were estimated based on the allowed
maximum of nitrogen input for each measure. Nitrogen inputs include nitrogen fertilisation
and N input by livestock. In total no more than 160 kg N/ha/year are permitted. AEM with no
further nitrogen input restrictions are assigned to the scenario of 120 kg nitrogen input per
hectare from the grassland yield estimations, AEM with livestock and no allowed N
fertilisation are assigned to the scenario of 60 kg nitrogen input per hectare and AEM with no
livestock and no allowed N fertilisation are assigned to the scenario of 0 kg nitrogen input
per hectare.

Buffer areas and fallow land

Buffer areas, flower strips and fallow land are unproductive land uses, thus affecting
cultivation area and total production rather than crop yield per area. Based on the
meta-analysis by Albrecht et al. (2020) showing ambiguous and partly negligible effects of
flower strips on crop yields, we assumed no effect of buffer areas on yields of adjacent fields.

Land-use conversion

Land-use conversion from agricultural to non-agricultural land as well as conversion from
arable to permanent grassland was considered as a change in cultivation area.

Organic farming

The effect of organic farming on yield of crops and pastures was estimated based on a
review of scientific literature. Meta-analyses by Seufert et al. (2012) and Ponisio et al. (2015)
have shown that organic farming yields are on average 80% of conventional yields on a
global scale. According to the Czech Ministry of Agriculture, organic farming yields mostly
range between 50 and 75% of conventional yields (MZ, 2021). The yield gaps are different
for different crops like cereals (56-72%), legumes (70%), potatoes (59%), oil crops (27%)
and fodder crops (44%) (MZ, 2019). Redlichova et al. (2021) confirm these findings from a
monetary perspective, estimating production of cereals and oilseeds under organic
management to be on average 53% of that in conventional farming. Based on this evidence
we estimated organic yields to be 36.5% lower than conventional yields for all crops except
cereals (36%), legumes (30%), potatoes (41%), oil crops (73%) and fodder crops (56%).
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3) Catalonia, ES

Location
Catalonia, Spain, which serves as one of the five BESTMAP case study regions.
Scale of Analysis

Spatial extent: 0.1557295, 3.338699, 40.51405, 42.8691 (xmin, xmax, ymin, ymax; CRS=
WGS84)

Spatial resolution: field scale
Temporal extent: 2015-2019
Temporal resolution: year

Boundary: administrative

Data

Spatially explicit information on agriculture in the case study region was obtained from
Generalitat de Catalunya-Ministry of Agriculture, Livestock, Fisheries and Food-Department
of Rural Department (2020). The IACS/LPIS dataset used in this study consists of
pseudonymised information on farm business, crop type and AEM implemented at the field
parcel level for the years 2015-2019. Annual yield data of the predominant crops at the
municipality level was also provided by Generalitat de Catalunya-Ministry of Agriculture,
Livestock, Fisheries and Food-Department of Rural Department (2020).

In order to model cover crop effects, the effect of flower strips on crop yield was estimated
based on the findings of Albrecht et al. (2020). For land-use conversion, we accounted for
changes in cultivation area of the respective crop.

Model

Cover crops/Integrated farming

Cover crops are mainly applied as part of integrated farming practices in olive plantations
and orchards. We assumed that this practice does not change crop yield as studies have
shown that yields of integrated farming do not deviate from those of conventional farming
(Katayama et al., 2019; Morugan-Coronado et al., 2020).

Maintaining permanent grasslands

The AEM directed at maintaining permanent grasslands in the Spanish case study do not
prescribe any management restrictions. Instead they are designed in a way to encourage
farmers to keep grasslands in production and prevent woody plant encroachment. Therefore
we assumed that the yield of these parcels is equal to grassland parcels without an AEM.

Buffer areas and fallow land

Buffer areas, flower strips and fallow land are unproductive types of land use, thus affecting
cultivation area and total production rather than crop vyield per area. Based on the
meta-analysis by Albrecht et al. (2020) showing ambiguous and partly negligible effects of
flower strips on crop yields, we assumed no effect of buffer areas on yields of adjacent fields.
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Organic farming

The effect of organic farming on yield of crops and pastures was estimated based on a
review of scientific literature. Meta-analyses have shown that organic yields are typically
lower than conventional ones but with a high variation among crops and study locations. De
Ponti et al. (2012), Ponisio et al. (2015), and Smith et al. (2019) all found that organic yields
are on average about 80% of conventional yields, both globally and in Mediterranean
Europe. Seufert et al. (2012) reported a 75% vyield of organic compared to conventional
agriculture, however, the gap is notably smaller regarding developed countries (80%) and
fruit cultivation (97%). In Spain, organic yields are generally lower than conventional ones
but with a few exceptions (e.g. rainfed fruit trees) (Alonso & Guzman, 2010). Taking into
account this evidence, we estimated the yield of organic crops to be 20% lower compared to
their conventional counterparts except for tree species where we assumed organic yields to
be equal.

4) Humber, U.K.

Location

Humber River Basin, United Kingdom, which serves as one of the five BESTMAP case study regions.
Scale of Analysis

Spatial extent: xmin: 418008.24, ymin: 353867.54, xmax: 542556.68, ymax: 507394.51

Spatial resolution: field scale

Temporal extent: 2015 — 2019

Temporal resolution: year

Boundary: natural
Data

Spatially explicit information on agriculture in the Humber case study region was obtained
from the Rural Payments Agency (RPA) of the UK Department for Environment, Food and
Rural Affairs. The IACS/LPIS dataset used in this study consists of pseudonymised
information on farm business, crop type and AEM implementation at the field parcel level for
the years 2015 to 2019. Standard output coefficients at NUTS1 level were obtained from
EUROSTAT (2021). The coefficients were multiplied by field parcel area in order to obtain
the standard output per parcel. Where available, yield data were used in order to spatially
weight the standard output. Annual yield data of the predominant arable crops (maize, sugar
beet, wheat, sunflower, winter rapeseed, spring barley, permanent grassland and temporary
grassland) was obtained from WOFOST predictions (Hristov et al., 2020) and amended with
grassland yield estimations from the literature (Qi et al., 2017; Morrison et al., 1980; Williams
et al., 2003). To model the effect of maintaining permanent grassland AEMs, data was taken
from the Agriculture and Horticulture Development Board (AHDB) that represented yield
change depending on three scenarios of nitrogen input. The effect of flower strips on crop
yield was estimated based on the findings of Albrecht et al. (2020). For land-use conversion
and buffer areas, we accounted for changes in cultivation area of the respective crop.

Model

Grassland yield
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Grassland yields were estimated based on literature (Qi et al., 2017; Morrison et al., 1980;
Williams et al., 2003). Qi et al. (2007) and Williams et al. (2003) values were based on an
average fertiliser input. Morrison et al. (1980) values were the overall mean of yield at 21
lowland locations in England and Wales. Means were then taken for both permanent and
temporary grassland.

Cover crops

On fields featuring catch and cover crops farmers are allowed to use any percentage of a
sown mix as long as there is a visible mix of at least two different crops (a minimum of one
cereal and one non-cereal): barley, oats and rye as cereal crops; phacelia, vetch, mustard,
radish and lucerne as non-cereal crops. However, the datasets used for identifying cover
crops only provided information on whether cover crops were present on a field or not, and
how much land they occupied, but no information on the species of cover crop was
available, therefore we did not model this AEM group.

Maintaining permanent grasslands

The effect of the maintaining permanent grassland AEM on food and fodder production is
associated with the lower fertilisation rates. As a result, on land that employs this AEM there
is a reduction in yield. Data from the Agriculture and Horticulture Development Board
(AHDB) focused on the yields from low-input perennial ryegrass, which is a commonly used
grass species in the UK. The yields derived from three scenarios of nitrogen application
levels, including 100, 200 and 400 kg N/ha. In the UK, we expect this land without the AEM
to have a nitrogen level of 92.4 kg N/ha (Redhead et al., 2018). With the AEM employed, the
nitrogen application rate is limited to a max. of 50 kg N/ha. Using the data from AHDB, we
therefore calculated the difference in yield as a result of the change in nitrogen levels. At a
rate of 100 kg N/ha, a yield of 5 t/ha was produced. Therefore, at 92.4 kg N/ha a yield of
4.62 t/ha is expected, and at 50 kg N/ha a yield of 2.5 t/ha is achieved, meaning the yield of
grassland fields with AEM is 45.89% of the yield of non-AEM fields.

Buffer areas

Buffer areas, flower strips and fallow land are unproductive land uses, thus affecting cultivation area
and total production rather than crop yield per area. Based on the meta-analysis by Albrecht et al.
(2020) showing ambiguous and partly negligible effects of flower strips on crop yields, we assumed
no effect of buffer areas on yields of adjacent fields.

Land-use conversion

Land-use conversion from agricultural to non-agricultural land as well as conversion from arable to
permanent grassland was considered as a change of cultivation area.

5) BaCka, RS
Location
BaCka Region, Serbia, which serves as one of the five BESTMAP case study regions.
Scale of Analysis
Spatial extent: 18.8194, 20.31623, 45.13434, 46.18879 (xmin, xmax, ymin, ymax; CRS= WGS84)

Spatial resolution: field scale
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Temporal extent: 2015 — 2019
Temporal resolution: year

Boundary: administrative

Data

We compiled geospatial (e.g. raster and shapefile data) information on agricultural land-use,
including “surrogate” management information since AEM do not currently exist in Serbia
(maintaining grasslands, buffer areas/flower strips, fallow land, organic farming) and type of crops
grown as well as spatially explicit yield data of agricultural crops and their standard output
coefficients.

Land-use data were extracted from the Copernicus portal. AEM “surrogates” were developed and
generated in-house from the available online information, Sentinel 2 data and spatial information
from Institute of Nature Conversation of Vojvodina Province (PZZP, 2021). The type of crops grown in
BaCka CS was extracted from the BioSense database AgroSens (https://agrosens.rs/) and yields data
from the Statistical Office of the Republic of Serbia (RZS, 2021).

Serbia does not have IACS/LPIS data. As a substitute for IACS/LPIS data, we used data from the
AgorSens platform (https://agrosens.rs/). Agrosens was developed by the BioSense Institute in order
to provide to farmers and agricultural companies in monitoring the growth of crops and planning of
the agricultural activities.

By merging data from different years, we identified 11000 parcels of 734 farmers that cover an area

of 2200 kmz, which is in total 27% of the entire BaCka region. For the parcels for which we did not
have information for consecutive years, we assigned values from an in-house crop classification
(wheat, corn, soyabean, corn and sunflower) database that BioSens generates for each year since
2013 (Lugonja, 2019.). The analysis was thus limited to these five crops, which cover over 93% of
parcels in the BaCka region (Census of Agriculture 2012).

Standard output coefficients are not available for Serbia. To fill the gap, during preparation of
the Farming System Archetypes (FSAs) for RS (see deliverable D3.5 - Farming System
Archetypes for each CS) standard output coefficients were calculated for the Backa region
for 2013, based on yield and price data from the Statistical Office of the Republic of Serbia
(RZS, 2021).

Model

Assumptions for Ba¢ka CS

Model assumptions: 1. All relevant effects of the AEM “surrogate” are included in the models, 2.
Current state and distribution of AEM “surrogate” do not affect baseline yield and standard output,
3. Organic farming effect on yield only depends on climate, soil texture and crop type, 4. Presence of
buffer areas, fallow land and maintaining grasslands do not affect yield and standard output of
neighbouring fields.

Grassland yield

Grassland yield of non-AEM fields was assumed to depend on grassland type and biophysical site
conditions. We used vyield estimates for permanent grasslands and pastures by the Institute of


https://agrosens.rs/
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Nature Conversation of Vojvodina Province (Vasin et al., 2010) for the different agricultural areas in
Vojvodina. Means were then taken for meadows and pastures.

Maintaining permanent grasslands

The “surrogate” for the maintaining permanent grasslands AEM was derived from the Nature
Conservation of Vojvodina Province data (PZZP, 2021). These areas were designed in a way to
encourage farmers to keep open grassland and pasture, prevent vegetation succession towards
woody encroachment and disable land-use conversion. Also, there is non-fertilization practice in
BaCka, and in Serbia as a whole, for meadows and pastures. We assumed that the yield of these
parcels is equal to grasslands of non-surrogate-AEM fields.

Buffer areas

Linear elements were used as AEM “surrogates”. They were derived from Sentinel 2 images (which
were available for the peak of the vegetation season in 2019) and processed on Google engine. An
NDVI time series was generated, and a threshold selected to detect permanent vegetation locations
along roads and arable fields in the BaCka CS region. Identified areas were then used as “surrogates”
for buffer areas and flower strips in arable fields. The “surrogate” file for fallow land was developed
within the agricultural field zones from Sentinel 2 images by developing and applying an in-house
algorithm for ploughing detection. We determined areas where in three consecutive years no
ploughing activity was detected. The developed binary files were masked with permanent grassland
maintenance and grassland maps.

Organic farming

The effect of organic farming on yield of crops and pastures was estimated based on a review of
scientific literature. Meta-analyses have shown that organic yields are typically lower than
conventional ones but with a high variation among crops and study locations. De Ponti et al. (2012),
Ponisio et al. (2015), and Smith et al. (2019) all found that organic yields are on average about 80% of
conventional yields. Seufert et al. (2012) reported a 75% yield of organic compared to conventional
agriculture, however, the gap is notably smaller regarding developed countries (80%) and fruit
cultivation (97%). In Serbia, organic yields are generally lower than conventional ones in the range of
10-40% (Mirecki, 2011). Considering the published data, we estimated the yield of organic crops to
be 20% lower compared to their conventional counterparts.
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Carbon sequestration model factsheet

BESTMAP carbon sequestration model
2022-05-25
The structure of this factsheet is largely based on the ODMAP (Overview, Data, Model,

Assessment and Prediction) protocol developed by Zurell et al. 2020
doi/full/10.1111/ecog.04960

Overview
Authorship

Contact: Fanny Langerwisch (fanny.langerwisch@upol.cz)
Model name

Model of the effect of agro-environmental measures on soil organic carbon.
Model objective

Main objective of the model is to estimate how the adoption of agro-environmental measures
(AEM) affects soil carbon sequestration on field level / within landscapes (see Figure 1 for a
conceptual workflow of the model).

soil characteristic

- pH SOC base map [t/ha] S0C [t/h
- clay content curren Lo, estimated SOC [t/ha]
- bulk density arable land 1/0 alternative now
scenarios
elevation srefp el les - no AEM
climate - soil improving 3

- soil neutral

- annual precipitation Esildistir /g

- average min temperature
- average max temperature AEM adoption

abiotic conditions LPIS information

Figure 1: Conceptual figure of the workflow of the carbon model.
Model output

The model output consists of maps of soil organic carbon per field/parcel, under the current
land-use patterns and AEM implementation and under alternative-now scenarios.

Data specifications
Response data type: soil organic carbon (SOC [t/ha]).

Predictor types: geospatial data (raster and polygons) on soil characteristics, climates, crops
and adopted AEMs (agri-environmental schemes and ecological focus areas).


mailto:fanny.langerwisch@upol.cz
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Hypotheses

We hypothesise that SOC is sensitive to the crop type and to the adoption of AEM. We also
hypothesise that underlying SOC (SOC,,s), Which is only driven by abiotic factors (e.g.
climate, clay content), is affected by the above mentioned land-use interventions and AEM
interventions (SOCIu an SOCecurr, respectively). To test our hypothesis we compared the
simulated SOC under the current AEM implementation (SOC,,,) with a second scenario in
which no AEM is implemented.

Assumptions

Model assumptions: (1) The soil organic carbon depends on abiotic conditions and is altered
by land cover and land use. (2) Current amount of soil carbon is in equilibrium, i.e. the soil
already contains organic carbon, there is no general building-up of soil organic carbon
assumed. (3) There is no dependence of SOC on soil management (ploughing/mulching
etc). (4) SOC is affected differently by different crop groups (soil-improving, soil-disturbing
and neutral crops). (5) The rotation of each parcel over several years can be depicted by the
crops rotated on all parcels per farm. This can be used to identify a ‘pseudorotation’, which
indicates the coverage with soil-improving and soil-disturbing crops. (6) The effect of the
AEM ‘maintaining permanent grassland’, ‘buffer stips’ and ‘land-use conversion to
permanent grassland’ are similar to the effect of growing ‘permanent grassland’ on the
parcel.

Algorithms and workflow

We calculated the soil organic carbon base for each parcel/pixel only depending on abiotic
conditions, such as climate and soil characteristics (clay, pH, bulk density, elevation, annual
precipitation, average min. and max. temperature, see Eq.1).

SOCb =-e (intercept + elevxc.elev + clayxc.clay + pHxc.pH + BDxc.BD + precxc.prec + TminxcTmin + TmaxxcTmax)
ase
(Eq.1)

The coefficients for this calculation (Table 1) were extracted from LUCAS observation points
making use of a quasi-poisson generalised linear model. (about 8,400, Further information
and data accessibility of the LUCAS data can be found at
http://esdac.jrc.ec.europa.eu/projects/lucas). For our study we included only the 8,554 points
classified as arable, which were also by Quemade et al. 2020., also used in the DayCent
model (Box 1), Quemada et al. 2020) making use of a quasi-poisson generalised linear
model.

The model led to an R?=0.902. The deviance residuals were distributed the following: Min=
-9.7610; 1Q= -0.6710; Median=0.0440; 3Q=0.7073, Max=10.5140.

Table 1: Coefficients used in Eq.1 to calculate the SOC basemap.

Input variable Coefficient Value and significance
- intercept 8.938178™
elevation (elev) c.elev -0.000077™
clay content (clay) c.clay -0.009685™
soil pH (pH) c.pH -0.022066™
bulk density (BD) c.BD -3.162275™
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mean annual precipitation (prec) c.prec -0.000097™
mean maximal temperature (Tmax) | c.Tmax -0.014182™
mean minimal temperature (Tmin) c.Tmin 0.013269™

In a second step, we used the baseline SOC (SOC,,.) and adapted it according to the land
use to calculate the SOC,,. On arable parcels, we assumed that SOC is altered by different
crops. We grouped soil-disturbing crops, such as potatoes and sugar beet, which reduce the
SOC, soil-improving crops, such as legumes, which increase the SOC, and neutral crops,
which do not affect the SOC. This grouping was done for each case study separately. The
parameters for the effects were extracted from literature. The parameters can be adapted to
case study conditions. Additionally, we adapted the SOC (SOC, on permanent grassland)
for parcels under permanent grassland management, assuming an increase in SOC based
on Poeplau & Don (2015). Also this parameter can be adapted locally. We assumed SOC to
remain unaltered in the remaining parcels, i.e. non-arable and non-permanent grassland
parcels.

The last step was the modification of SOC depending on the currently applied AEM (SOC,,,)
and alternative-now scenarios (SOC,;). Here, we apply parameters for each of the following
AEM groups: (1) cover crops, (2) organic farming, (3) maintaining permanent grassland, (4)
buffer stips and land-use conversion (5) to permanent grassland and (6) to forest. The
difference between SOC,,, and SOC,, is the different distribution of AEM, where SOC,,,
represents the current AEM adoption and SOC,; any alternative AEM adoption. The
parameters for this calculation are extracted from the literature and can be further adapted to
local conditions. The parameters to calculate SOC,, (p.lu.xxx) and SOC,, and SOC,
(p.aem.xxx) are listed in Table 2.

Calculation of SOC,, and SOC_,, (as well as SOC,;) with the following equations.
SOC,, = SOCy,e * (1+p.Ju.xxx) (Eq. 2)
SOC,,, = SOC,, x (1+p.aem.xxx) (Eq.3)

Eq.3 is applied to calculated SOC_,; as well as SOC,.

Table 2: Parameters used for the adaptation of the baseline SOC according to different land
use and AEM application.

Parameter name Value Source

p.lu.soilimproving 0.35 Wau et al. 2016, Gregorich et al. 2001, Guan et al. 2016

p.lu.soildisturbing -0.1 Goidts & van Wesemael 2007
p.lu.permgrass 0.45 Poeplau & Don 2015, Gregorich et al. 2001
p.aem.covercrops 0.1 Crystal-Ornelas et al. 2021, Poeplau & Don 2015,

Abdalla et al. 2019

p.aem.organic -0.05 Lorenz & Lal 2016, Mondelears et al. 2006, Gattinger et
al. 2012
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p.aem.maintgrass 0.45 Poeplau & Don 2015, Gregorich et al. 2001

p.aem.buffer 0.45 Poeplau & Don 2015, Gregorich et al. 2001

p.aem.luconvgrass | 0.3 Poeplau & Don 2015, Ledo et al. 2020, Martens et al.
2003, Gregorich et al. 2001

p.aem.luconvforest | 0.45 Poeplau & Don 2015, Gregorich et al. 2001, Martens et
al. 2003

The resulting maps of SOC under different AEM implementation scenarios, including a “no
AEM” scenario and several different AEM implementations (varying spatial arrangements of
one or multiple AEM types) were used to estimate the effect of each agro-environmental
measure.

Uncertainty analysis

We conducted an uncertainty analysis of the SOC basemap calculation (SOC,..), in which
we changed the values of all input variables (see Table 1) by +/-5% and +/-10%. The effect
of changes in the bulk density (BD) was highest, which is in line with our expectations and
with empirical evidence since the coefficient for BD (cgp) was the biggest. The effect of
variation in clay content and maximal temperature were small, while elevation, precipitation
and minimal temperature had a negligible effect.

Additionally, we did a sensitivity analysis of the SOC,4,x and SOC,, by changing the
parameters listed in Table 2.

Model validation

Validation of SOC base map (SOC,..) and current SOC (SOC,.,) was done with
observations from SOILGRIDS 250m organic carbon stock. Case study specific validation is
possible with regional data.

Software
R version 4.1.2 ‘Bird Hippie’' (2021-11-01) R Core Team (2021).

Code availability: the R code used for the preparation of the variables and for fitting the
model is available here: https://qit.ufz.de/bestmap/bestmap-carbon-sequestration

Linking the model outputs to indicators
The model results can be linked to the following policy indicators:

C41 - Soil organic matter in arable land

The indicator consists of 2 sub-indicators: i. the total estimate of organic carbon content in
arable land; ii. the mean organic carbon content. The indicator is expressed as an estimate
of the total SOC stocks in topsoil (0-20) of EU Member States. The mean SOC concentration
per Member State is calculated for orientation purposes (European Commission 2021). The
outputs of the carbon sequestration model can be linked to the first sub-indicator of the
indicator C41.


https://git.ufz.de/bestmap/bestmap-carbon-sequestration
https://agridata.ec.europa.eu/Qlik_Downloads/InfoSheetEnvironmental/infoC41.html
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Model specifications in each case study

1) South Moravia, CZ

Location
South Moravia, Czech Republic, covering parts of Jihomoravsky kraj and Zlinsky kraj.
Scale of Analysis
Spatial extent: latitude 16.893 to 17.915, longitude 48.792, 49.172
Spatial resolution: field size (average 0.06km?, min 0.000001km?, max 3.05km?)
Temporal resolution: 2019

Boundary: administrative (field level)

Data

As spatially explicit information for South Moravia, we received the IACS/LPIS data for the
years 2015 to 2019 from the Ministry of Agriculture of the Czech Republic. These data
include crop type, agri-environmental schemes (AES) - all as cover per parcel, as well as
user ID and parcel ID. The user ID is used to identify farms (one user represents one farm)
We also received information about the ecological focus area (EFA) schemes for 2019. For
the model we used the latest 2019 data.

The parameters estimating the effects of the different land use, including AEM, on SOC and
their sources are reported in Table 2. These can further be adapted using regional or
CS-specific data.

Geospatial information on climate, topography, soil characteristics was extracted from
European-wide datasets (Table 3).

Table 3: Overview of the geospatial data used in the CZ model.

Variable Unit of Source Original
measure resolution of
dataset
Bulk density g/cm? European Soil Database Derived data, | 1km
European Soil Data Centre (ESDAC)
Clay content in the glkg Clay content, SoilGrids 250m
upper 30 cm
pH in the upper 30 cm | [-]*10 pH water, SoilGrids 250m
Elevation m EU-DEM v1.1, Copernicus Land 25m
Monitoring Service
Annual precipitation mm/y Multiannual precipitation (yearly sum), | ~4km (1/24th
Climatologies 1981-2010 TerraClimate | degree)
Minimum temperature |°C Multiannual minimum temperature ~4km (1/24th
(average), Climatologies 1981-2010 degree)



https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
https://soilgrids.org/
https://soilgrids.org/
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://www.climatologylab.org/terraclimate.html
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TerraClimate

Maximum temperature | °C Multiannual maximum temperature ~4km (1/24th
(average), Climatologies 1981-2010 degree)
TerraClimate

crop types ha IACS/LPIS for year 2019, Ministry of shapefile
Agriculture of the Czech Republic

AEM application ha of IACS/LPIS for year 2019, Ministry of | shapefile

(separately for each | cover per | Agriculture of the Czech Republic
AEM group, i.e. buffer | fieid parcel

areas, cover crops,
land-use conversion
to grassland/to forest,
maintaining
permanent grassland,
organic farming)

Model

To initialise the soil organic carbon (SOC) we conducted two steps. First, we used
coefficients retrieved from an analysis of LUKAS observation points (about 8400, also used
in the DAYCENT model, Quemada et al. 2020). The analysis showed the dependence of
SOC on elevation, pH, clay content, bulk density and climate. To initialise the case study
SOC basemap, we used case-study specific data for the above mentioned variables,
extracted from European wide available data (Table 3).

We applied two types of alternative-now scenarios, namely noAEM and oneAEM. For the
alternative-now scenario noAEM we exchanged the AEM on the parcel with the dominant
crop. This means that instead of assuming any AEM on the parcel we only allowed the
dominant crop on the parcel.

Variable pre-selection

Variable pre-selection: Explanatory variables were chosen to reflect environmental
conditions likely to impact the soil organic carbon. These are climatic conditions
(precipitation and temperature) and soil characteristics (such as pH, bulk density or clay
content). The same set of variables are used in all case study areas.

Model settings

The baseline was the SOC only considering the abiotic conditions. We added the effect of
the current grown crops (no AEM), and the current AEMs, additionally we calculated the
SOC under the adoption of the AEM ‘cover crops’ on all arable parcels.

Model outputs

Estimated SOC [t/ha] for each parcel under current land use and AEM adoption, without any
AEM and with a potential AEM distribution.

Uncertainty / Sensitivity

There are several aspects of the model that can incorporate uncertainty. To assess the
uncertainty of the model input we conducted a sensitivity analysis of the input parameters to
the SOC basemap. We change the values for each of the input variables by +/- 5% and
+/-10%.


https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
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The following table shows the results for the change of 10%. The figures show the SOC
values calculated with the changed input over the SOC calculated with the original values.
One can clearly see that elevation, minimum temperature and precipitation lead to the
smallest changes, while bulk density leads to the largest. Changes in clay content, pH and
maximal temperature lead to intermediate values.

The strong reaction to changes in bulk density is correlated with the importance of this
variable in the SOC calculation. Table 4 shows the coefficients with which each variable
contributes to the model and the relative changes in the SOC.

Table 4: Relative change of SOC under the different changes of variables.

coef -10% -5% +/-0% +5% +10%
elev -0.0001 -0.2201 -0.1100 0 0.1098 0.2195
clay -0.0097 -2.8645 -1.4220 0 1.4018 2.7837
pH -0.0221 -1.4879 -0.7412 0 0.7357 1.4660
BD -3.1623 -563.8194 -24.0078 0 19.3393 34.9221
prec -0.0001 -0.6431 -0.3210 0 0.3200 0.6390
Tmin 0.0133 -0.5841 -0.2916 0 0.2908 0.5807
Tmax -0.0142 -3.6798 -1.8233 0 1.7906 3.5491

The change in SOC is linear to the size of the coefficient (both In-transformed).

2) Catalonia, ES

Location
Catalonia, Spain, which serves as one of the five BESTMAP case study regions.

Scale of Analysis

Spatial extent: 0.1557295, 3.338699, 40.51405, 42.8691 (xmin, xmax, ymin, ymax; CRS=
WGS84) (Approximately 32 000 ha).

Spatial resolution: field parcel
Temporal extent: 2019

Boundary: administrative

Data

As spatially explicit information for Catalonia, we received the IACS/LPIS/Single Declaration
data for the years 2015 to 2019 from the Ministry of Climate Action, Food and Rural Agenda
- Department of Agriculture- of the Generalitat de Catalunya. The Single Application (DUN
in Catalonia) is the annual declaration that the titleholder who disposes of a productive
agricultural area has to compulsorily report to carry out certain procedures, among which
stand out the application for community grants (CAP). Since 2005, following the
recommendations from the INSPIRE Directive, it is possible to freely consult and view LPIS
data from Catalonia. The request of LPIS data caused that in the year 2012 the Department
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of Agriculture set out the FREE and OPEN access to the database from Generalitat’s public
data portallts publication promotes the use of new technologies, it drives the creation of new
tools and uses for the agricultural sector and, at the same time, it makes possible its analysis
through “Big Data” procedures. In parallel, it accomplishes the national and community
regulation obligations and recommendations in the field of transparency and reuse of public
management data for the citizens. In May 2019, the Department of Agriculture was the only
European administration that was currently providing free and open access to all this data.

These data include crop type, agri-environmental schemes (AES) and ecological focus areas
(EFA) schemes (all as cover per parcel), as well as user ID and parcel ID. For the model we
used the latest 2019 data. Geospatial information on climate, topography, soil characteristics
was extracted from European-wide datasets (Table 5). The parameters estimating the effects
of the different environmental variables on SOC and their sources are reported in Table 2.
These can further be adapted using regional or CS-specific data should this become
available for future updates of the model.

Table 5: Overview of the geospatial data used in the ES model.

Climatologies 1981-2010 TerraClimate

Variable Unit of Source Original
measure resolution of
dataset
Bulk density g/cm? European Soil Database Derived data, | 1km
European Soil Data Centre (ESDAC)
Clay content in the a/kg Clay content, SoilGrids 250m
upper 30 cm
pH in the upper 30 cm | [-]*10 pH water, SoilGrids 250m
Elevation m EU-DEM v1.1, Copernicus Land 25m
Monitoring Service
Annual precipitation mm/y Multiannual precipitation (yearly sum), | ~4-km (1/24th

degree)

Minimum temperature | °C

Multiannual minimum temperature
(average), Climatologies 1981-2010
TerraClimate

~4-km (1/24th
degree)

Maximum temperature | °C

Multiannual maximum temperature

~4-km (1/24th

(separately for each

per field
AEM group, i.e. buffer

parcel

Agriculture of the Czech Republic

(average), Climatologies 1981-2010 degree)
TerraClimate
crop types soil IACS/LPIS for year 2019, Ministry of shapefile
improving, | Agriculture of the Czech Republic
soil
neutral,
soil
disturbing
AEM application % of cover [ IACS/LPIS for year 2019, Ministry of shapefile



https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
https://soilgrids.org/
https://soilgrids.org/
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
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areas, cover crops,
land-use conversion
to grassland/to forest,
maintaining
permanent grassland,
organic farming)

Model

The carbon sequestration model for the ES CS was run with the same specifications as in
the CZ CS; check the above CZ section for details on the variable pre-selection, model
outputs, uncertainty/sensitivity analysis.

3) Humber, UK

Location

Humber River Basin, United Kingdom, which serves as one of the five BESTMAP case study
regions.

Scale of Analysis

Spatial extent:-1.723979, 0.1374987, 53.05964, 54.46706 (xmin, xmax, ymin, ymax; CRS=
WGS84)

Spatial resolution: field parcel
Temporal resolution: 2019

Boundary: administrative (field level)

Data

As spatially explicit information for the Humber,, we received the IACS/LPIS data for the
years 2015 to 2019 from the Rural Payments Agency. These data include crop type,
agri-environmental schemes and ecological focus areas schemes, as well as user ID and
parcel ID. For the model we used the latest 2019 data. Geospatial information on climate,
topography, soil characteristics was extracted from European-wide datasets (Table 6). The
parameters estimating the effects of the different environmental variables on SOC and their
sources are reported in Table 2. These can further be adapted using regional or CS-specific
data should this become available for future updates of the model.

Table 6: Overview of the geospatial data used in the UK model.

Variable Unit of Source Original
measure resolution of
dataset
Bulk density g/lcm?® European Soil Database Derived data, | 1km

European Soil Data Centre (ESDAC)

Clay content in the g/kg Clay content, SoilGrids 250m
upper 30 cm

pH in the upper 30 cm [ [-]*10 pH water, SoilGrids 250m



https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
https://soilgrids.org/
https://soilgrids.org/
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Elevation m EU-DEM v1.1, Copernicus Land 25m
Monitoring Service

Annual precipitation mm/y Multiannual precipitation (yearly sum), | ~4km (1/24th
Climatologies 1981-2010 TerraClimate | degree)

Minimum temperature | °C Multiannual minimum temperature ~4km (1/24th
(average), Climatologies 1981-2010 degree)
TerraClimate

Maximum temperature | °C Multiannual maximum temperature ~4km (1/24th
(average), Climatologies 1981-2010 degree)
TerraClimate

crop types soil IACS/LPIS for year 2019, Rural shapefile
improving, | Payments Agency
soil
neutral,
soil
disturbing
AEM application % of cover | IACS/LPIS for year 2019, Rural shapefile
(separately for each | per field Payments Agency

AEM group, i.e. buffer | parcel
areas, cover crops,
land-use conversion
to grassland/to forest,
maintaining
permanent grassland,
organic farming)

Model

The carbon sequestration model for the UK CS was run with the same specifications as in
the CZ CS; check the above CZ section for details on the variable pre-selection, model
outputs, uncertainty/sensitivity analysis.

4) Mulde, DE

Location

Mulde River Basin, Saxony, Germany, which serves as one of the five BESTMAP case study
regions.

Scale of Analysis

Spatial extent: 12.34771, 13.69364, 50.3809, 51.64169 (xmin, xmax, ymin, ymax, CRS=
WGS84)

Spatial resolution: field parcel
Temporal resolution: 2019

Boundary: administrative (field level)


https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
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Data

As spatially explicit information for the Mulde, we received the IACS/LPIS data for the years
2016 to 2019 from the Saxon State Ministry for Energy, Climate Protection, Environment and
Agriculture (Sachsisches Staatsministerium fir Energie, Klimaschutz, Umwelt und
Landwirtschaft, SMEKUL). These data include crop type, agri-environmental schemes and
ecological focus areas, as well as a pseudonymised farmers” ID. For the model we used the
latest 2019 data. Geospatial information on climate, topography, soil characteristics was
extracted from European-wide datasets (Table 7). The parameters estimating the effects of
the different environmental variables on SOC and their sources are reported in Table 2.
These can further be adapted using regional or CS-specific data should this become
available for future updates of the model.

Table 7: Overview of the geospatial data used in the DE model.

Variable Unit of Source Original
measure resolution of
dataset
Bulk density g/em? European Soil Database Derived data, | 1km
European Soil Data Centre (ESDAC)
Clay content in the a/kg Clay content, SoilGrids 250m
upper 30 cm
pH in the upper 30 cm | [-]*10 pH water, SoilGrids 250m
Elevation m EU-DEM v1.1, Copernicus Land 25m
Monitoring Service
Annual precipitation mm/y Multiannual precipitation (yearly sum), | ~4km (1/24th
Climatologies 1981-2010 TerraClimate | degree)
Minimum temperature | °C Multiannual minimum temperature ~4km (1/24th
(average), Climatologies 1981-2010 degree)
TerraClimate
Maximum temperature | °C Multiannual maximum temperature ~4km (1/24th
(average), Climatologies 1981-2010 degree)
TerraClimate
crop types soil IACS/LPIS for year 2019, SMEKUL shapefile
improving,
soil
neutral,
soil
disturbing
AEM application % of cover | IACS/LPIS for year 2019, SMEKUL shapefile
(separately for each per field
AEM group, i.e. buffer | parcel
areas, cover crops,
land-use conversion



https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
https://soilgrids.org/
https://soilgrids.org/
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html

— ARPHAPreprints Author-formatted document posted on 26/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114653

108 | Page D3.3: Ecosystem service, biodiversity and socio-economic models

to grassland/to forest,
maintaining
permanent grassland,
organic farming)

Model

The carbon sequestration model for the UK CS was run with the same specifications as in
the CZ CS; check the above CZ section for details on the variable pre-selection, model
outputs, uncertainty/sensitivity analysis.

5) BaCka, RS

Location
Backa region, Serbia, which serves as one of the five BESTMAP case study regions.
Scale of Analysis

Spatial extent: 18.8194, 20.31623, 45.13434, 46.18879 (xmin, xmax, ymin, ymax; CRS=
WGS84)

Spatial resolution: field parcel
Temporal resolution: 2019

Boundary: administrative (field level)

Data

All spatial data used in the case study were reprojected in EPSG: 4326- WGS 84 and
clipped for the Balka region. Elevation data for the Backa region were taken from the
Copernicus Land Monitoring Service. EU-DEM v1.1 is available in Geotiff 32-bit format. It is
a contiguous dataset divided into 1000 x 1000 km tiles, at 25m resolution with vertical
accuracy: +/- 7 metres RMSE. GeoTIFF files are based on EPSG: 3035 (ETRS89-LAEA)
projection and for this model one tile was used.

Annual precipitation intake was provided by TerraClimate. All data have a monthly time
resolution and a spatial resolution of ~ 4 km (1/24 degrees). The data cover the period from
January to December 2019 in raster format. For each pixel, an average annual precipitation
raster map in mm was calculated using the raster calculator in QGIS. Data related to
maximum and minimum temperature were also downloaded from TerraClimate. As with
precipitation, the data is in raster form where each pixel has temperature values for all 12
months of the year. For the 2019 year, values were calculated using a raster calculator in
QGIS. Downloaded raster files are based on EPSG:4030 projection.

As there is no IACS/LPIS data for Serbia, the data collected within the AgroSens platform at
the Biosens Institute were used as input spatial data. Data on farmers and their parcels have
been collected since 2017, and 2019 was taken as the reference year for this case study.
These data include user ID, parcel ID, crop type and other, but are not available for the
entire area of Backa. In parallel, a land cover map was obtained from the land cover
classification map owned by the BioSense Institute. The data are based on Sentinel-2A
satellite images from 2019 with a spatial resolution of 10m and data collected in the field. A
total of 5 types of land cover have been identified on the map, with each parcel being
assigned the appropriate type of land.
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As a source of biophysical parameters, a system for global digital soil mapping was used,
which uses the most modern machine learning methods for mapping the spatial distribution
of soil properties around the world - SoilGrids. The maps are in the form of a raster with a
spatial resolution of 250 metres and for the needs of this model, maps of the following soil
properties have been taken: pH, bulk density, and clay content. Downloaded raster files are
based on EPSG: 4326 - WGS 84 projection.

Furthermore, for CS BacCka a remote sensing-based SOC map is available. This map is
generated from Sentinel-2 satellite data with 10 m spatial resolution. Several images were
collected in the winter periods between 2016 and 2020. Ground truth data collection of
~10000 soil samples of agricultural land across the broader region of Vojvodina were utilised
by machine learning algorithm, Random Forest regression, to learn mapping from satellite
data of bare soil and target variable - SOM. This map serves as a validation for the baseline
map created by the biophysical modelling approach.

Model

The carbon sequestration model for the RS CS was run with the same specifications as in
the CZ CS; check the above CZ section for details on the variable pre-selection, model
outputs, uncertainty/sensitivity analysis. Additionally, the remote sensing-based SOC map
available for Backa was used as validation for the baseline SOC map obtained as output of
the model.
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Water quality factsheet

BESTMAP Nutrient Delivery Ratio model
2022-05-16
The structure of this factsheet is largely based on the ODMAP (Overview, Data, Model,

Assessment and Prediction) protocol developed by Zurell et al. 2020
doi/full/10.1111/ecog.04960

Overview
Authorship
The model is authored by the Natural Capital Project:

https://naturalcapitalproject.stanford.edu/

This instance of the model was run by: Dr. Arjan Gosal (a.gosal@leeds.ac.uk), Rosemary
Wool (r.wool@leeds.ac.uk), Dr. Marek Bednar (marek.bednar@upol.cz) and Dr. Sanja Brdar
(sanja.brdar@biosense.rs).

Model name

INVEST Nutrient Delivery Ratio: https://naturalcapitalproject.stanford.edu/software/invest

Model manual

A comprehensive manual is available online:
https://invest-userguide.readthedocs.io/en/latest/ndr.html

Model objective

The InVEST Nutrient Delivery Model (NDR) is designed to map nutrient sources, from
watershed to stream. It allows nutrient retention by natural vegetation in relation to surface
water quality to be investigated (Sharp et al., 2018).

Model processes

The following summary is abridged from the comprehensive InVEST
documentation on the NDR model. The approach the NDR model utilises is
one of simple mass balance by the movement of nutrients through space (see
Figure 1). Rather than use details of the nutrient cycle, the NDR model
instead uses long-term, steady state flows through empirical relationships
(Sharp et al., 2018). Nutrient loads are associated with different land (or crop)
types with nutrient delivery ratios computed for nutrient transport by
surface flow (with the option for subsurface flow in the model). Surface flow
is calculated using a delivery factor, which represents ability to transport
nutrients without retention for downstream pixels and a topographic index
(Sharp et al., 2018).


https://naturalcapitalproject.stanford.edu/
mailto:a.gorsal@leeds.ac.uk
mailto:r.wool@leeds.ac.uk
mailto:marek.bednar@upol.cz
mailto:sanja.brdar@biosense.rs
https://naturalcapitalproject.stanford.edu/software/invest
https://invest-userguide.readthedocs.io/en/latest/ndr.html
https://invest-userguide.readthedocs.io/en/latest/ndr.html
https://invest-userguide.readthedocs.io/en/latest/ndr.html
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Figure 1. Conceptual representation of the nutrient delivery in the Nutrient Delivery Ratio
model (source: Sharp et al, 2018). The model is run assuming that the subsurface
component is zero, as per Redhead et al. (2018).

Model output

The model provides spatial outputs. The first is a vector shapefile with the following
attributes; the total nutrient loads in each watershed (i.e. the sum of the nutrient contribution
from all land cover types), the total subsurface nutrient loads in each watershed, and the
total nutrient export from each watershed. The second output is a raster tif file showing how
much load from each pixel eventually reached the stream in kg/pixel. The model resolution
of the output raster is the same resolution of the DEM provided as the input, and therefore
this resolution will vary depending on the specific input data for different areas. The outputs
of the model will be extracted at the farm-level in place of using the sub/watershed
catchments that are outputted from the native model.

Data specifications

Geospatial information including digital elevation model (DEM), land use/land cover map
(LCM), crop map, nutrient runoff proxy, watersheds delineated from a digital elevation model,
and a biophysical table containing several different values on nutrients loading relating to
each land use type (see Table 1).

Table 1. Description of Nutrient Delivery Model inputs.

Data type

Input

Description

Spatial

Digital elevation
model (DEM)

Raster dataset with an elevation value for each pixel, given
in metres

Land use/land
cover (LULC)

Raster of land use/land cover type for each pixel, where
each unique integer represents a different land use/land
cover class

Nutrient runoff
proxy

Raster representing the spatial variability in runoff potential,
which in this case is annual precipitation

Watersheds

Shapefile delineating the boundary of the watersheds within
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the case study area

Non-spatial Biophysical A table containing information corresponding to each land
table use class in the LULC raster, including nitrogen/phosphorus
load, maximum retention efficiency, the distance after which
it is assumed that a patch of a particular LULC type retains
nutrient at its maximum capacity, and the proportion of
dissolved nutrients over the total amount of nutrients

Assumptions

This model has high-sensitivity to inputs, therefore errors in the biophysical table have a
large effect on predictions. This includes the outputs of the model being highly sensitive to
the small number of input parameters.

Algorithms and workflow

See the model specification and details of the algorithm at:
https://invest-userguide.readthedocs.io/en/latest/ndr.html

Model validation

This instance of the model is not validated, but has been validated in previous research for
the UK: https://www.sciencedirect.com/science/article/pii/S0048969717320909

Uncertainty estimation

Uncertainty was ascertained using the results of Redhead et al (2018) study which validated
the NDR model using regression models. We used the x solved trendline equation x =
(y-b)m (where b is intercept, and m is slope). Intercept and slope values were taken for 25m
resolution values, with the intercept being 0.31 for both N and P, and slope 0.67 and 0.49 for
N and P respectively. We then calculated the Mean Absolute Percentage Error for each
model instance.

Software

The Nutrient Delivery Ratio model as part of the INVEST Software Platform developed by the
Natural Capital Project (Sharp et al., 2018). The model was run using the GUI version of
INVEST (version 3.9.0), though the steps can also be replicated using the INVEST Python
package (version 3.9.2), which is outside the scope of this document (this additional method
can be explored here and at the Python Package Index; PyPi). Many of the inputs are spatial
in nature (see Table 1 and Model specifications section), these inputs were manually
processed using GIS software, for example QGIS (https://qqis.org/).

Linking the model outputs to indicators

The outputs of this model (N and P export) are related to Gross Nutrient balance for nitrogen
and phosphorus. The InVEST NDR model does not account for emissions into the
atmosphere, and is limited to the retention in land/crop types to fresher water systems;
‘pollution swapping’ is not considered. Therefore this model contributes towards the gross
calculation of nutrient balance, but does not have the function to calculate it independently.


https://invest-userguide.readthedocs.io/en/latest/ndr.html
https://www.sciencedirect.com/science/article/pii/S0048969717320909
https://naturalcapitalproject.stanford.edu/software/invest
https://invest.readthedocs.io/en/latest/index.html
https://pypi.org/project/natcap.invest/
https://qgis.org/
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Model
Model settings

Apart from the spatial model inputs, there are a variety of model input values that were kept
constant in the model unless specified elsewhere. These were set at values according to
those from Redhead et al. (2018): Threshold Flow Accumulation (1000), Borselli k
Parameter (2), Subsurface Critical Length (200), and Subsurface Maximum Retention
Efficient (0.8).

Assessment

Validation has been carried out by Redhead et al. (2018) for the UK. The model was found to
perform well for relative magnitude of nutrient export, though absolute values of modelled
nutrient export showed large percentage differences from validation data (Redhead et al.,
2018).

Model specifications in case study

1) Humber, U.K.
Location

Humber River Basin, United Kingdom, which serves as one of the five BESTMAP case study
regions.

Scale of Analysis

Spatial extent: xmin: 418008.24, ymin: 353867.54, xmax: 542556.68, ymax: 507394.51
Spatial resolution: 25 m

Temporal extent: Single year, with data inputs ranging between 2016 — 2019.
Temporal resolution: annual

Boundary: watersheds covering case study area.

Coordinate reference system: EPSG 27700

Two distinct models were run; (a) without the agri-environmental measures, (b) with
agri-environmental measures, to investigate the change in nutrient retention for nitrogen (N)
and phosphorus (P). The second model was designed to reflect a range of currently
implemented AES within the Humber catchment. These were grassland management (N
only), cover crops (N only), conversion to permanent grassland, woodland creation (between
2005-2016), and fallow land. Both models featured the same spatial data, but the biophysical
tables contained differing values to account for the changes in nutrient loads for land with
and without AEMs.

For the spatially explicit data, the DEM and LULC data was predominantly sourced from the
UK Centre for Ecology & Hydrology (UKCEH) through the data provisioning platform Edina
Digimap. Another LULC, which detailed information on crop type, was sourced from the
Basic Payment Scheme (BPS) provided by Rural Payments Agency (RPA). Where various
temporal resolutions were available for each layer the year 2019 was selected, otherwise the
closest annual period to 2019 was chosen. The annual precipitation data was sourced from
the UK Met Office, with the 2019 data used in this model. All layers were initially re-projected
to be in EPSG 27700.

The DEM, entitled UK CEH Integrated Hydrological Digital Terrain Model, was a 50 m grid
interval DEM created in 2016. The raster was resampled to 25 m to match the LCM2019
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data. Sinks were identified and filled for the Digital Elevation Model to correct for any errors
in the data. This was done using the ‘Fill Sinks (Wang & Liu)’ algorithm in QGIS Desktop
3.4.14 (Wang & Liu, 2006). The new filled sink layer was then used as the DEM input for the
model. Watersheds were delineated from the filled DEM using the ‘Channel network and
drainage basins’ algorithm using a Strahler order value of 5 in QGIS. The accuracy of
watershed delineation is highly dependent on the quality of the DEM, therefore this specific
DEM was chosen in part because of the extensive work that had been undertaken to ensure
that the DEM would portray realistic hydrological behaviour. The delineation revealed three
drainage basins within the case study area, and a new shapefile was created featuring only
these. A buffer of 10 km was added around these watershed boundaries, which then
functioned as the extent to which all other spatial inputs were clipped (including the filled
DEM).

The model was run using a landcover input map that was created using both the UK CEH
Land Cover Map (LCM) 2019 and the crop maps from Basic Payment Scheme database
2019. The UK CEH LCM featured broad habitat types based off of UK Biodiversity Action
Plan (BAP) Broad Habitats classifications. The habitats were categorised using satellite
imagery from 2019 and included 21 different habitats. The Basic Payment Scheme database
map provided crop-level information that was provided by farmers. Some parcel types were
excluded from this model run owing to their incongruity with the focus of this model (e.g.
animal shelters, farm building, fallow, buffer areas). The database of the remaining 75
different crop types were joined to a parcel shapefile and parcels that did not contain any
BPS crop information were removed. To create the final input map, the following layers were
mosaiced in this priority order; fallow parcels, conversion to grassland, grassland
management, cover crops, woodland creation, BPS crops, and the LCM layer. As multiple
agri-environmental schemes can exist on the same field parcel of land, the schemes were
applied in a priority order in the construction of the land use input maps into the model, with
the schemes higher in the list overriding implementation of any other schemes that are
applied to parcel lower in the list. This map was then clipped to the extent of the buffered
watershed boundary.

The annual precipitation data was sourced from the HadUK-Grid collection of gridded
climate variables from the UK Met Office. This data was based on a number of stations that
were placed around 40 km apart on average, and then interpolated across the area. This
data was available at a resolution of 1000 x 1000 m, and was clipped to the extent of the
buffered watershed boundary.

Besides load and retention efficiency, the biophysical values were kept as their defaults (as
described in the section on model settings). The load and retention efficiency values were
sourced from Redhead et al. (2018), which featured an in-depth literature review. The data
found by Redhead et al. (2018) had undergone sensitivity analysis and validation to evaluate
the model. Redhead et al. (2018) provided nutrient load and retention efficiency for
agriculture (amongst other general habitat types) as a single figure in the paper, however we
were provided with further load values from Redhead (Pers Comms) for additional crop
types. These load values were used for land without AEMs in both of our NDR models.
Where there were disparate crop types (e.g. there was one category for beet, whilst
Redhead et al. (2018) had two categories for beet, including sugar and fodder), averages
were found between the two.

As previously mentioned, the difference between the two models (without and with AEMs)

was the nutrient load values. Therefore, any land that featured AEMs had an adjusted
nitrogen and/or phosphorous load and these differed across models:

1. Cover crops. Model (a) fields were given a value of 35.24 kg/ha for N, and 1.52 kg/ha

for P (based on arable and horticulture values from Redhead et al., 2018), with model
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(b) reduced by 18.32 kg/ha for N and 0.79 kg/ha for P (based on 48% average
reduction in NO; leaching with cover crops (Stevens and Quinton, 2009)).

2. Maintaining grassland. Model (a) had an N value of 92.43 kg/ha for all crop types
identified as grassland (JW Redhead 2021, personal communication; Defra, 2021),
and model (b) had an N of 9 kg/ha (based on low input permanent grassland (GS2
scheme) requirements of N not being increased is the rate is less that 9 kg/ha (Defra,
2022)). As the reduction of P was not that high in the UK (e.g. no increase to
phosphate if the current rate is less than 23 kg/ha (Defra, 2022)), it was excluded.

3. Buffer areas. Buffer areas were not included due to a range of factors; variety in
published estimates of the impact on N and P, agricultural land drains, and pollution
swapping. A wide range of variability exists between published studies, Kay et al.
(2009) in a review of agricultural stewardship measures relating to water pollution
problems found the effect of buffer zones on total nitrogen varied between 100%
reduction to a 217% increase, with soluble phosphorus varying between a 30%
decrease to 475% increase. In addition, land drains (also known as field or tile
drains) are widely installed in the UK to prevent waterlogging (Chapman et al., 2004).
These drains will reduce the efficiency of buffer areas to prevent loss of N and P.
Insufficient data was available on the locations and usage of land drains in the case
study. Buffer areas can also result in ‘pollution swapping’, a process whereby a
mitigation measure reduces a pollutant, but increases a different pollutant (Stevens
and Quinton, 2009). For example, riparian buffer zones can be effective at removing
NO; from groundwater and overland flows, but there is a likelihood of high N,O
emissions from the buffer zones (Stevens and Quinton, 2009). Organic areas were
not included due to a lack of information on the empirical practices of organic farmers
in reducing N and P.

4. Organic farming. No use of easily soluble mineral fertilisers but natural fertilisers and
manure allowed. Assumed no change to N and P.

5. Land use conversion to permanent grassland. Model (a) had an N of 92.43 kg/ha and
P of 21.43 kg/ha for all crop types identified as grassland (JW Redhead 2021,
personal communication; Defra, 2021), and model (b) had all fields marked as under
the conversion to permanent grassland schemes changed to an N of 10.42 kg/ha and
P of 0.63 kg/ha (based on improved grassland values from Redhead et al., 2018).

6. Land use conversion to forest. Model (a) all woodland parcels had a value of 35.24
kg/ha for N, and 1.52 kg/ha for P (based on arable and horticulture values from
Redhead et al., 2018), with model (b) values changed to N of 8.7 kg/ha and P of 1.8
kg/ha (based on mean values of broadleaf and coniferous woodland from Redhead
et al., 2018).

7. Fallow land. Model (a) all fallow parcels were given a value of 35.24 kg/ha for N, and
1.52 kg/ha for P (based on arable and horticulture values from Redhead et al., 2018),
with model (b) changed to N of 3.33 kg/ha and P of 0.15 kg/ha (based on values of
heather from Redhead et al., 2018).

The resulting output export maps for N and P as rasters were then used to extract the total N
and P respectively using dissolved polygons of the farms by running zonal statistics in
ArcMap.

2) Mulde, Germany
Location

Mulde River Basin, Saxony, Germany, which serves as one of the five BESTMAP case study
regions.
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Scale of Analysis

Spatial extent: xmin: 12.34771, ymin: 50.3809, xmax: 13.69364, ymax: 51.64169
Spatial resolution: 20 m

Temporal extent: Single year, with data inputs ranging from 2015 - 2020.
Temporal resolution: annual

Boundary: case study area

Coordinate reference system: CRS WGS84

Two distinct models were run; (a) without the agri-environmental measures, (b) with
agri-environmental measures, to investigate the change in nutrient retention for nitrogen (N)
and phosphorus (P). The second model was designed to reflect a range of currently
implemented AEM within the Mulde region. Both models featured the same spatial data, but
the biophysical tables contained differing values to account for the changes in nutrient loads
for land with and without AEMs.

All spatial data for the German CS were initially re-projected to be in EPSG 3035. The DEM
for the Mulde region was created using two sources, including DGM20 provided by the
Saxony state and the Copernicus Land Monitoring Service EU-DEM v1.1. The DGM20 and
EU-DEM v1.1 had a pixel size of 20 m and 25 m respectively, and were representative of the
years 2020 and 2015 respectively. Two DEMs were used owing to the lack of spatial
coverage in the DGM20. This was processed by clipping both of the digital elevation models
to the Mulde CS region, and then filling their sinks (using the ‘Fill Sinks (Wang & Lui)
algorithm in QGIS). The filled DEMs were then merged together, making sure that the
DGM20 would take priority over the EU-DEM and that the EU-DEM would function only to fill
in any areas that the DGM20 did not cover.

The land cover map was sourced from the APIC land cover classification map of Germany’s
agricultural area (Preidl et al., 2020). This data had a resolution of 20 m and was based on
Sentinel-2A imagery from 2016, which identified a total of 19 land cover types. Additionally,
IACS/LPIS data were provided for the years 2016-2019 by the Saxon State Ministry for
Energy, Climate Protection, Environment and Agriculture (Sachsisches Staatsministerium flr
Energie, Klimaschutz, Umwelt und Landwirtschaft - SMEKUL), and provided spatially-explicit
information on AEM application in the Mulde River Basin.

The precipitation data originated from Deutscher Wetterdienst (https://www.dwd.de/), the
German Meteorological Service. The spatial file had a resolution of 1 km and was
representative of the rainfall in 2019. The data used for the watershed boundaries was
obtained from the Hydrological basins in Europe from FAO. The LCM, precipitation map and
watershed boundaries were all clipped to the German CS outline.

Data for the biophysical table was taken from three sources; Diingeverordnung (2017),
Déhler (2009) and Gebel et al. (unpublished). Déhler (2009) provided data on phosphorus
loads for some land cover types, whilst Dingeverordnung (2017) and Gebel et al.
(unpublished) had values for nitrogen loads for various crop and habitat types. A
combination of these three were used to ensure that all land cover types had an N and P
load that was as relevant as possible. Retention values were then extracted from Redhead
et al. (2018) as this input was less likely to vary across case study regions. The remaining
biophysical values were kept as their defaults, as described in the section on model settings.

The same methodology as the UK CS was utilised when assessing the differences in

nutrient load across both models. The change in nitrogen and phosphorous load was,
however, dependent on local agriculture policies:

1. Cover crops. No use of pesticides allowed after harvest of the main crop until the end

of the application year, and no use of mineral N fertiliser on some catch crop AEMs.


https://www.dwd.de/
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As a result, N only from sources such as atmospheric deposition, livestock waste etc.
whilst P also derived from fertiliser.

2. Maintaining grassland. No use of pesticides or N fertilisers in majority of cases. As a
result, N only from sources such as atmospheric deposition, livestock waste etc.
whilst P also derived from fertiliser.

3. Buffer areas. No use of fertilisers or pesticides. Therefore, both N and P only from
sources such as atmospheric deposition, livestock waste etc.

4. Organic farming. No use of easily soluble mineral fertilisers but natural fertilisers and
manure allowed. Assumed no change to N and P.

5. Land use conversion to permanent grassland. No information provided on
adjustments to nutrient application in the policy documentation. Did not utilise in
model.

6. Land use conversion to forest. No information provided on adjustments to nutrient
application in the policy documentation. Did not utilise in model.

7. Fallow land. No use of fertilisers or pesticides. Therefore, both N and P only from
sources such as atmospheric deposition, livestock waste etc.

3) Catalonia, Spain
Location
Catalonia, Spain, which serves as one of the five BESTMAP case study regions.

Scale of Analysis

Spatial extent: xmin: 0.1557295, ymin: 40.51405, xmax: 3.338699, ymax: 42.8691
Spatial resolution: 5 m

Temporal extent: Single year, with data inputs ranging from 2007 - 2019.
Temporal resolution: annual

Boundary: case study area

Coordinate reference system: CRS WGS84

Two distinct models were run; (a) without the agri-environmental measures, (b) with
agri-environmental measures, to investigate the change in nutrient retention for nitrogen (N)
and phosphorus (P). The second model was designed to reflect a range of currently
implemented AEM within the Catalan region. Both models featured the same spatial data,
but the biophysical tables contained differing values to account for the changes in nutrient
loads for land with and without AEMs.

As with Germany, all spatial input data was re-projected to be in EPSG 3035 for the Catalan
CS. The DEM was sourced from the Cartographic and Geological Institute of Catalonia
(IGCG). The model is based on 2007 elevation and has a resolution of 5 m. The data was
originally in multiple tiles so once these were all merged together, the ‘Fill Sinks (Wang &
Lui)’ algorithm was run to fill any sinks present.

The LCM used was USOS Cobertes provided by the Government of Catalonia. The land
cover types were classified in 2017 and had a resolution of 10 m. There were a total of 25
land cover types covered in this LCM. Information on AEM application were available from
the IACS/LPIS data for the years 2015 to 2019 from the Ministry of Climate Action, Food and
Rural Agenda - Department of Agriculture- of the Generalitat de Catalunya.

The annual precipitation input was provided by the Meteorological Service of Catalonia. It
displayed the rainfall of 2019 in raster format at a resolution of 1000 m. Lastly, the watershed
boundaries were sourced from the Government of Catalonia in vector format for 2017. The
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filed DEM, LCM, precipitation and watersheds were then individually clipped to the outline of
Catalonia.

Values for the biophysical table were sourced from the Ministry of Agriculture, Fisheries and
Food of the Government of Catalonia. Information on the amount of phosphorus and
nitrogen applied to various land cover types were provided for the year of 2016. These
values were used for the N and P load, and included nutrient application in the form of
mineral fertiliser, manure, other organic fertilisers, droppings of grazers, seeds, biological
fixation and atmospheric deposition. An overall value was available for inputs minus outputs,
however as we were only interested in the nutrient inputs for load we calculated the nutrient
balance without the outputs which left us with input values. Retention values were then
extracted from Redhead et al. (2018) as this input was less likely to vary across case study
regions. The remaining biophysical values were kept as their defaults, as described in the
section on model settings.

The same methodology as the UK CS was utilised when assessing the differences in
nutrient load across both models. The change in nitrogen and phosphorous load was,
however, dependent on local agriculture policies:

1. Cover crops. Fertiliser is allowed, however there are limits to the amount and this is
highly dependent on the type of crop. Some crops see a reduction in N application
(from without AEM to with AEM) whilst others see an increase. Almost all see a
reduction in P application.

2. Maintaining grassland. No use of herbicides. Therefore, both N and P from sources
such as fertiliser, atmospheric deposition, livestock waste etc. so there is very little to
no effect on N and P load.

3. Buffer areas. No AEMs for ES CS.

4. Organic farming. No use of easily soluble mineral fertilisers but natural fertilisers and
manure allowed. Assumed no change to N and P.

5. Land use conversion to permanent grassland. No AEMs for ES CS.

6. Land use conversion to forest. No AEMs for ES CS.

7. Fallow land. No data was available.

4) South Moravia, Czech Republic

This instance of the model was run by: Dr Marek Bednar (marek.bednar@upol.cz)
Location

South Moravia, Czech Republic, which serves as one of the five BESTMAP case study
regions.

Scale of Analysis

Spatial extent: xmin: 16.893, ymin: 48.792, xmax: 17.919, ymax: 49.189 (xmin, xmax, ymin,
ymax; CRS= WGS84)

Spatial resolution: 5 m

Temporal extent: Single year, with data inputs ranging from 2016 - 2019
Temporal resolution: annual

Boundary: case study area

Coordinate reference system: CRS WGS84

All spatial data for the Czech CS were reprojected to the WGS1984 UTM Zone 31N
coordinate system. For the DEM, the DMR4G altitude model with a resolution of 5 m was


mailto:marek.bednar@upol.cz

— ARPHAPreprints Author-formatted document posted on 26/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114653

120 | Page D3.3: Ecosystem service, biodiversity and socio-economic models

used, which was processed throughout the Czech Republic by generalising lidar data. This
DEM was selected as the river network that was generated based on Flow Accumulation
was more representative of the actual state in comparison to alternative DEMs as it had a
finer resolution and therefore displayed subtle elevation changes more clearly. Data on water
bodies from the DIBAVOD database processed at HEIS VUV T.G.M. were used for reference
and comparison. The Threshold flow accumulation (input parameter of the NDR model) of
3000 showed the best correspondence.

Precipitation data were derived from the maximum daily precipitation totals with a repetition
period of 20 years, which are available in the form of OGS_WMS from the CVUT in Prague
website (CVUT, 2022). WMS data were stored in the form of a raster, then georeferenced
and smoothed.

For the land cover input the KVES (consolidated layer of ecosystems) was used for the
study. At the time of modelling, this was the most accurate nationwide vector spatial data
basis in the Czech Republic. This layer was converted to a raster with a resolution of 5m
(following the elevation model), and displayed a total of 35 land cover classes. Information
on AEM application on the field parcels was extracted from the IACS/LPIS data, which were
made available for the years 2015-2019 by the Ministry of Agriculture of the Czech Republic.

The area of the CZ case study is located in the Morava and Dyje river basins. When creating
the hydrological area for the watershed input, the hydrologically closed unit was selected
based on the 3rd and 4th order river basins. For the needs of the model, it was necessary to
slightly limit the area of interest due to the hydrological units, as some of its peripheral parts
already belong to other hydrological units and their incorporation would significantly expand
the area studied by us. The hydrologically closed unit thus covers 96% of the CZ CS. Three
sub-basins belonging to the corresponding sections were considered:

1. 4-17-01 Dyje from Svratka to the estuary

2. 4-13-02 Moravia from OlSava to Myjava

3. 4-13-01 Dfevnice and Moravia from Dfevnice to OlSava

Lastly, another important source for the calculation of nutrient outflow was the table of
biophysical parameters, where for each KVES item the corresponding value of N and P load
was determined, as well as N and P efficiency based on multiple sources concerning the
position of the Czech Republic. Nevertheless, some parameters from KVES could be traced
mainly to the works of Harmackova & Vackar (2015). Another source was the work of
Redhead et al. (2018), Bangshuai et al. (2021) and also the InVEST spreadsheet with a list
of sources and parameters. The statistical yearbooks of the Czech Republic for 2019 were
used for setting up parameters for arable land. However data was more difficult to source for
specific arable land types as the values change according to the sowing procedure.
Individual N and P flows are not monitored in the Czech Republic at the level of individual
crops, only yearly information on the total amount of nutrients for a larger administrative unit
and region is available. As a result, N and P loads were derived from these regional values
for 2019. N and P data at a finer spatial resolution are available from a farmer survey, in
which crop-specific amounts of fertilisers were surveyed for a sample of farmers. These
values may be useful within a specific area for further future improvements of the model at
the local level, but they have not yet been taken into account in this instance of the CZ
model.

For the second model, four of the AEM groups were taken into account:
1. Cover crops. No data available.
Generally Fertiliser is allowed, however there are limits to the amount and this is
highly dependent on the type of crop.
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2. Maintaining grassland. Fertilisation and limits vary according to the type of grass. For
animal husbandry, there are limits per unit of livestock. Nitrogen fertilisers are not
permitted in specially protected areas. N load value reduced.

3. Buffer areas. They usually consist of a mixture of seeds, including buckwheat, millet,
cabbage and other crops, such as cereals or white lupine. The biobelt remains on the
soil throughout the year (from spring sowing to ploughing the following spring).
Fertilisation does not occur in these areas, therefore N and P load values reduce.

4. Organic farming. The structure of the landscape is mostly preserved, only organic
fertilisers are used, and the total amount of N and P is reduced by 20-30%. The limits
differ, e.g. in the case of organic grape production, the total amount of fertilisers
applied must not exceed 96 kg N/ha, and not more than 150 kg N/ha within three
years. It also depends if livestock is available. N load saw a reduction in value when
this AEM is present.

5. Land use conversion to permanent grassland. This AEM is usually located near
watercourses where fertilisation is prohibited, therefore N and P load had reduced
values.

6. Land use conversion to forest. No AEMs for CZ CS.

7. Fallow land. No data available.

In general, any AEM applied in the Czech Republic is subject to strict conditions regarding
the use of nitrogen fertilisers, which cannot be applied in case of unfavourable soil
conditions, on arable land with a slope higher than 10 ° and TTP with a slope higher than 12
°, near watercourses.

As part of the evaluation, 15 variants of the landscape structure, with different spatial
implementations of one or multiple AEMs, were subsequently processed in various
combinations of individual measures, including the variant without AEMs. The results are, of
course, dependent on the number of measures in the given sub-basin, but in general it
follows that the application of AEMs, such as maintaining grassland and organic farming,
reduces the total amount of N and P nutrients drained by about 10%. Further local models
taking into account individual crops and AEMs will be developed as the project goes.

5) BaCka, Serbia

This instance of the model was run by: Dr. Sanja Brdar (sanja.brdar@biosense.rs),
Predrag Lugonja (lugonjap@biosense.rs) and Miljana Markovié
(miljana.markovic@biosense.rs)

Location

BaCka Region, Serbia, which serves as one of the five BESTMAP case study regions.

Scale of Analysis

Spatial extent: xmin: 18.8194, ymin: 45.13434, xmax: 20.31623, ymax: 46.18879
Spatial resolution: 25 m

Temporal extent: Single year, with data inputs ranging from 2015 - 2019.
Temporal resolution: annual

Boundary: case study area

Coordinate reference system: EPSG:4326 - WGS84

Two distinct models were run; (a) without the agri-environmental measures, (b) with
agri-environmental measures, to investigate the change in nutrient retention for nitrogen (N)
and phosphorus (P). The second model was designed to reflect “surrogateAEM”, as AEMs
do not currently exist in the Backa region. Both models featured the same spatial data, but
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the biophysical tables contained differing values to account for the changes in nutrient loads
for land with and without surrogate AEMs.

All spatial layers were re-projected in EPSG: 4326 - WGS 84 and clipped to the outline of the
Backa CS region.

Elevation data was sourced from the Copernicus Land Monitoring Service. EU-DEM v1.1 is
a contiguous dataset divided into 1000 x 1000 km tiles, at 25m resolution with vertical
accuracy of +/- 7 metres RMSE. It is available in Geotiff 32 bits format and based on EPSG:
3035 (ETRS89-LAEA) projection. One tile was used for the Backa region, and data was
representative of 2015.

Annual precipitation data were derived from the TerraClimate dataset using Google Earth
Engine (GEE). TerraClimate provides data of ~4 km (1/24 degrees) spatial resolution and
monthly temporal resolution. Image Collection ‘TerraClimate: Monthly Climate and Climatic
Water Balance for Global Terrestrial Surfaces, University of ldaho’ was imported in GEE
script and filtered for the period from 1st of January to 31st of December 2019. Also, the
Backa region was used for filtering as the area of interest. The band ‘pr’, which refers to
precipitation accumulation in mm, was selected and the function sum was applied in order to
sum up values per each pixel for all 12 months of the year. The final step was the extraction
of the data in raster format, based on EPSG:4030 projection.

The land cover map was obtained from the crop classification map produced by the
BioSense Institute. Using Sentinel-2A satellite images from 2019 with a spatial resolution of
10m, vegetation indices and ground truth data collected on-site, crop classification was
generated by applying a machine learning algorithm: Random Forest classifier. The final
result was a classification map with 5 types of main crops: wheat, soybean, maize, sunflower
and sugar beet.

Watershed boundaries were sourced from the Hydrological basins in Europe from FAO as an
ESRI shapefile. The case study area of Backa belongs to the major Danube hydrological
basin and three sub-basins: Duna, Drava and Tisza.

Source of local biophysical parameters of nitrogen and phosphorus nutrient loads (Load_n,
Load_p) for the crops in the crop classification map were extracted from the internal
BioSense database of agricultural production collected from field books of farmers and
companies in the Backa region through non-disclosure agreements and averaged per crop
type. Obtained values are furthermore verified with advisory recommendations for farmers
on local agricultural portals (Agro Info Net, 2022; Poljomarket, 2019; AgroKlub, 2022a,b).

For the second model, “surrogate” AEMs were used since AEMs do not currently exist in
Serbia:

1. Cover crops. No “surrogate” AEMs for RS CS.

2. Maintaining grassland. The “surrogate” for the maintaining grasslands AEM was derived
from the Nature Conservation of Vojvodina Province data (PZZP). These areas were designed
in a way to encourage farmers to keep open grassland and pasture, prevent vegetation
succession towards woody encroachment and disable land use conversion. There is
non-fertilization practice in BaCka for meadows and pastures; hence N and P loads are set to
zero in the model.

3. Buffer areas. Linear elements were used as AEM “surrogates”. They were derived from
Sentinel 2 images (which were available for the peak of the vegetation season in 2019) and
processed on Google engine. An NDVI time series was generated, and a threshold selected to
detect permanent vegetation locations along roads and arable fields in the RS CS region.
Identified areas were then used as “surrogates” for buffer areas and flower strips in arable
fields. There is no fertilisation of these areas.



— ARPHAPreprints Author-formatted document posted on 26/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114653

D3.3: Ecosystem service, biodiversity and socio-economic models 123 | Page

4. Organic farming. No use of easily soluble mineral fertilisers, but organic fertilisers and
manure allowed. Assumed no change to N and P.

5. Land use conversion to permanent grassland. No “surrogate” AEMs for RS CS.

Land use conversion to forest. No “surrogate” AEMs for RS CS.

7. Fallow land. The “surrogate” file for fallow land was developed within the agricultural field
zones from Sentinel 2 images by developing and applying an in-house algorithm for
ploughing detection. We determined areas where in three consecutive years no ploughing
activity was detected. The developed binary files were masked with grassland maintenance
and grassland maps. There is no fertilisation of these areas.

o
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Socio-economic effects model factsheet

BESTMAP viable farm income model
2022-11-04
The structure of this factsheet has been influenced by the ODMAP (Overview, Data, Model,

Assessment and Prediction) protocol developed by Zurell et al. 2020
doi/full/10.1111/ecog.04960

Overview
Authorship

George Breckenridge, Guy Ziv, Arjan Gosal, Anne Paulus, Katharina Schneider, Tomas
Vaclavik, Stephanie Roilo.

Contact: g.ziv@leeds.ac.uk

Model name
Model of the socio-economic effects of the adoption of agri-environmental schemes.
Model objective

The main objective of the model is to estimate how the adoption of agri-environmental
schemes (AES) affects the estimated total income per farm (per worker) in different case
studies across Europe.

Model output

The model output comprises the estimated change in total income between
adoption/non-adoption of AES scenarios, by calculating the change in estimated Farm Net
Value Added (FNVA) for a given year per farm. These results can then be aggregated.

Location

European BESTMAP areas (see Ziv et al., 2020). Example ‘case study’ regions: South
Moravia, Czech Republic; Catalonia, Spain; Mulde, Germany; Humber, UK. No model/results
for Serbia as no FADN available for this region.

Assumptions

1. All relevant impacts of AES adoption on production area / crop selection / yield are
accurately assessed in the food and fodder standard output modelling. All inputs from
dependencies on the food and fodder model are complete, accurate and not erroneous.

2. Between the scenarios of AES adoption/non-adoption, there is no change in the other
components involved in calculating FNVA aside from the Value of Agricultural Production
and Pillar Il (AES) payments. So e.g. national subsidies, VAT, intermediate consumption,
farm taxes (exc. income), depreciation etc. remain equal.


mailto:g.ziv@leeds.ac.uk
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Outline of model algorithms and workflow

Output from the BESTMAP food and fodder model at the farm-level contains estimates for
net crop income for AES non-adoption, and for real-life AES adopters, an adjusted estimated
net crop income for the scenario of AES adoption. Building on top of this, the viable farm
income model presented here harnesses field-level IACS/LPIS’ data information to estimate
the amount of CAP AES subsidy income to add on top for the AES adoption scenario, to
create an estimate for unstandardised Farm Net Value Added (FNVA) for each farm across
the adoption scenarios (for those farms which adopt AES in real life).

Also, FNVA is standardised by a measure of labour: Annual Work Units (AWU). AWU is
largely unavailable in IACS/LPIS’ and so the analytical concept was devised to harness it's
inclusion in FADN microdata (as ‘SE010’, ‘Total labour input’) to construct a regression
model which could be applied at the farm-level using substitute variables of
similar/equivalent meaning to estimate AWU per farm in ‘IACS/LPIS’. This estimate is
dynamic insofar as it responds to whether AES are being adopted or not for economic size.

To make this a reality, first FADN columns with all 0.0 values / NaN values were removed
from the analysis. Then, the sample of FADN farm records is weighted, by replicating rows to
as many whole farms they represent according to the weighting ‘SYS02’ field. Selected
area-based continuous variables in FADN on land use, in addition to particular categorical
variables of potential use in FADN on farm characteristics, are then declared. Continuous
variables are first put through an algorithm to eliminate multicollinearity (of absolute r > 0.8)
whilst preserving as many valuable variables as possible in bivariate relation to SE010. At
this point, remaining variables are input into a feature-selecting Lasso() regression model
against SE010, which aims to output the coefficients of insignificant terms as 0. Remaining
variables with coefficients not as 0 are then re-input into a multi-linear regression model
against SE010, with coefficients saved for later use.

For each farm, field-level data on land use and other information is then harnessed to find
alternative raw input values from ‘IACS/LPIS’, with these being substituted into the
FADN-derived regression model for ‘Total labour input’ in AWU. Once an estimate for AWU is
regressed for each farm, for each adoption scenario, this is then what the unstandardised
FNVA value is divided by, in order to create a standardised estimate for FNVA for each farm,
for each scenario of AES (adoption or non-adoption). De-identified farm-level results can
then be aggregated by region to indicate for a region the aggregate impact of AES adoption
on estimated farm incomes. Percentage change between AES adoption and non-adoption
on mean and median average will be a key indicator to assess whether AES subsidies offer
enough return to be worthwhile from a rational financial standpoint, all else being equal. It is
assumed throughout that other components of FNVA other than Value of Agricultural
Production and Pillar I/ll payments remain equal between AES adoption scenarios.

Linking the model outputs to indicators
The model results are linked to the following policy indicator (European Commission, 2022):
C.27 1.4 Supporting viable farm income / 1.5 Contributing to territorial balance: ‘Farm income

by type of farming, region, by farm size, in areas facing natural and other specific
constraints’
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Software

Software: Python v3.7.11 (Python, 2018), using Geopandas 0.9.0 (Jordahl et al., 2021),
sklearn 1.0.1 (cited as Pedregosa et al., 2011), matplotlib 3.4.3 (Hunter, 2007) and seaborn
0.11.2 (Waskom, 2021).

Code availability: Code to be made available via the UFZ GitLab repository.

Data availability: Data not publicly available or on request from authors. FADN microdata
access available from European Commission DG Agri subject to specific request.
IACS/LPIS’ data access available from national and regional governments subject to
specific request.

Data
Data sources and specifications

To calculate AES adoption impacts (in BESTMAP Food & Fodder Model which
pre-processes output file for input here):

e Geospatial (e.g. raster and shapefile data) information on agricultural land-use,
including management information like AES adoption (cover crops, buffer
areas/flower strips, land use conversion, maintaining grasslands) and type of crops
grown as well as spatially explicit yield data of agricultural crops of interest.

e Standard Output coefficients per crop per NUTS1 region, sourced from EUROSTAT
(2021): https://ec.europa.eu/eurostat/web/agriculture/data/ancillary-data.

To calculate socio-economic effects of pre-calculated AES adoption estimates, in each
BESTMAP case study region:

e ‘IACS/LPIS’ data containing field-level information on crop type, field area (.shp),
AES uptake at group level of detail (i.e. ‘cover crops’ / ‘maintaining grassland’ etc.).

e Output data from BESTMAP food and fodder model containing farm-level estimated
standard output values (in Euros) for overall income from crops, both for AES
non-adoption scenario (‘so’) and, where applied, for AES adoption (‘so_mod’). As
stated, in turn this calculation used NUTS1-specific EUROSTAT (2021) standard
output coefficients and scientific literature to achieve these estimates.

e FADN microdata on selected variables (mostly continuous and area-based) for 2017.
Full input selection (to be filtered for all-0s/NaN columns, weighted by ‘SYS02’, then
filtered for multicollinearity, then feature-selected using Lasso() regression model):
[[SEO05','SE025','SE030','SE035','SE041','SE042','SE046','SE050','SE054','SE055','SE065','S
EO071','SEQ73','SEQ74','SEQ75','/AGE','TF8','SEX",'/REGION','ALTITUDE','/ANC'].

e Expert judgement from agricultural academics on available AES schemes and their
typical/distinct payment rates for the BESTMAP region, in Euros per ha per year,
across these types/’groupings’ of AES: ‘cover crops’, ‘flower strips’, ‘maintaining
grassland’, ‘converting arable land to grassland’.

e Expert judgement from agricultural academics on crop type classification in given
local regions according to typical purposes of crops / crop classifications.
Judgements are applied for AWU regression parameterization from ‘IACS/LPIS’ data.


https://ec.europa.eu/eurostat/web/agriculture/data/ancillary-data
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Data specifications in South Moravia, Czech Republic

The application of the socio-economic model to the BESTMAP case study region of South
Moravia in Czech Republic used annual administrative data from 2017 at the field/farm
scale. IACS/LPIS’ data for South Moravia for 2015-2019 was sourced from the Ministry of
Agriculture of the Czech Republic, though only 2017 data was used for consistency. FADN
microdata for Czech Republic (FADN region 745) for 2017 was accessed from the
Directorate-General for Agriculture and Rural Development at the European Commission.

As crop type and AES uptake were arranged in a complex way in the Czech ‘IACS/LPIS’
data, further pre-processing completed by the BESTMAP food and fodder model team was
used in the implementation of the farm income algorithm. This involved the use of the input
file to the food and fodder model, detailing crop use at the field-level (otherwise usually taken
from the ‘IACS/LPIS’ file(s)), in addition to the routine use of the output file containing
information on the ordinary and adjusted standard output values according to AES uptake.

Location

South Moravia, Czech Republic, one of the five BESTMAP case study regions.

Scale of Analysis

Spatial extent: 16.893 17.919, 48.792, 49.189 (xmin, xmax, ymin, ymax; at CRS = WGS84)
Spatial resolution: field scale

Temporal extent: 2017

Temporal resolution: annual

Boundary: administrative

Model

Model algorithms and workflow

FNVA is a statistical definition of the indicator C.27 in the approved Context and Indicators
Impact guidelines for the new Performance Monitoring and Evaluation Framework (PMEF) of
the post-2020 EU Common Agricultural Policy (CAP), officially adopted in December 2021.

Farm Net Value Added (FNVA) is calculated by formula (European Commission, 2022: 54):

FNVA = Value of agricultural production + Pillar | and Pillar Il payments + any national subsidies + VAT balance
- intermediate consumption - farm taxes (excluding income taxes) - depreciation.

FNVA is standardised through Annual Work Units (AWU). FNVA is calculated per AWU ‘in
order to take into account the differences in the scale of farms and to obtain a better
measure of the productivity of the agricultural workforce” (European Commission, 2022: 54).

Our viable farm income model estimates the difference in Farm Net Value Added (‘FNVA')
between the scenarios of adoption / non-adoption of AES per farm in the European context.

The net contribution of AES adoption to FNVA is therefore deduced through calculating:

(Value of agricultural production + Pillar | and Pillar Il payments + any national subsidies + VAT balance
- intermediate consumption - farm taxes (excluding income taxes) - depreciation) with AES paymentsl/yield changes

(Value of agricultural production + Pillar | and Pillar Il payments + any national subsidies + VAT balance
- intermediate consumption - farm taxes (excluding income taxes) - depreciation) without AES payments/yield changes.


https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/pmef-context-impact-indicators_en.pdf
https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/pmef-context-impact-indicators_en.pdf
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Our estimation of FNVA is partial insofar as we do not incorporate FNVA components other
than Value of Agricultural Production and Pillar Il payments. We assume that other aspects
do not change between the scenarios of AES adoption and AES non-adoption.

First, we take the output of the BESTMAP food and fodder model, which for a given
BESTMAP case study region outputs a table of all unique farms and their associated
modelled standard output values (in Euros). These are values rather than coefficients as
they are understood here to represent the total modelled net income for an individual farm.
These are calculated both for AES non-adoption (‘so’) and, where applied, for AES adoption
(‘so_mod’), with the modelling for AES adoption capturing the changes in crop coverage and
respective yield implications in the calculations. This is the case though only on those farms
with which AES is applied in real-life: otherwise, the value of ‘so_mod’ is always equal to the
value for ‘so’. These modelled estimations of the Value of Agricultural Production component
of FNVA are derived from AES uptake information available in ‘IACS/LPIS’, as well as
EUROSTAT (2021) data on NUTS1 Standard Output coefficients.

Second, the value of Pillar Il payments is initially determined through research into local
Agri-Environmental Schemes (AES) using expert knowledge by local agricultural
researchers, in the case of the 5 BESTMAP Case Study regions (see Table 1 below).
Difficulties were experienced in reconciling the complex agri-environment scheme policy
landscape with this generalised schematic, although all values were based on expert
judgement and/or statistical summarisation. We then estimate the modelled Pillar Il
payments due (AES) by summing up the areas of modelled AES adoption (at the field level
from ‘IACS/LPIS’ data) multiplied by their researched payment rates per ha (Table 1).

Table 1: Data on AES payment rates per BESTMAP Case Study Region. Data Source:
Consultation with subject/country experts by/within BESTMAP.

BESTMAP | Flower strips Catch/cover crops Maintaining Grassland Conversion of arable
CS (inc. buffers) (/ha per annum) (/ha per annum) land to grassland
Region (/ha per annum) (/ha permanent)
UK (AB8): €615.59 (SW6): €130.20 (GS6, ~GS2/GS9): €207.86 | (SW7): €355.19
DE (AL5c): €835.00 (AL4): €78.00 (GLb5a): €330.00 -
Ccz (10.1.6): €591.00 | - (Not as AES in CZ) | (10.1.4 OSetfovani travnich | (10.1.5 Zatraviiovani
porostu): €180.00 orné pldy): €400.00 (no
permanent AES)
ES - (~AES_367): €95.92 | (~AES_363): €280.80 -
(variable so split by (~AES_368): €30.00
crop group in model)
RS ~€662.00 ~€287.00 ~€136.00 ~€551.00

Finally, we calculate an estimation for AWU from a model trained using FADN microdata.
Our model for the socio-economic indicator uses FADN microdata to determine a linear
regression model which can, for each given area, determine the variables from FADN which
best account for the variance in farm labour as expressed through Annual Work Units
(AWU). This FADN data is filtered to include only data from within NUTS2 and/or NUTS3
areas overlapping with the BESTMAP Case Study regions (see Ziv et al., 2020), unless the
overlap was clearly not meaningful and therefore would have likely distorted the results more
from including the NUTS region than from excluding it. With FADN data the weighting
estimated by the ‘SYS02’ column representing ‘farms represented’ was used at all stages
from collinearity analysis onwards to calculate appropriate relationships between variables in
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the FADN data. This was accounted for in practical terms by replicating the rows within the
FADN table as many times as the ‘rounded down’ integer value cast from SYS02.

In the first instance, FADN columns with entirely 0.0 values / NaN values were removed from
the analysis. Then, an algorithm was developed to automatically remove extreme levels of
multicollinearity, so as to address the assumption that variables are truly independent.
Variables were automatically removed if they had an absolute Pearson correlation coefficient
(‘r') greater than 0.8 with another independent variable and generated a lower relative R?
value when modelled as a single input variable against SE010 (Total Labour in AWU) in a
bivariate linear regression model. This process occurred for all (unique) sets of collinear
variables identified in the corr() correlation matrix until a list of unique ‘variables to remove’
were determined for that iteration. This entire process iterated until no unique sets of
collinear variables remained. The value of this approach beyond automatically removing all
variables with collinearities was that despite a higher computational demand, particularly
valuable explanatory variables could still remain in the model as (truly) independent entities
so long as they only presented collinearities with less individually-explanatory input variables
across the weighted FADN table.

For each case study area a feature-selecting Lasso regression model is then fitted which
runs by aiming to reduce as many variable coefficients as possible to 0, leaving only
significant features in the model. Continuous variables are normalized using
StandardScaler() and categorical variables are encoded using the OneHotEncoder() function
to ensure suitable incorporation into this first Lasso regression model. At this point, the
selected variables from each case study were then input as Fixed Effects into a Linear Mixed
Effects Regression (LMER) Model, with selected categorical variables included as the
declared Random Effects, in part to see if we can further improve the predictability of AWU
(as measured through AIC). Although this was a worthwhile methodological exploration, it
was ultimately determined that this farm income model would instead rely on the outputs of
re-running a statsmodel linear regression using the feature-selected variables from the
Lasso regression model output.

Having derived this statistical relationship to AWU from FADN variables, we can then return
exclusively to data from ‘IACS/LPIS’ in order to build a socio-economic indicator through
modelling change in Farm Net Value Added (FNVA) according to adoption/non-adoption of
AES, as standardised through Annual Work Units (AWU). By taking, wherever pragmatically
possible, variables of equivalent meaning from the ‘IACS/LPIS’ data to those selected in the
FADN model for AWU, we are then able to use the estimated model for predicting AWU
derived from FADN microdata and thenceforth deduce a more accurate estimate for AWU
per farm in the ‘IACS/LPIS’ data across European places in order to complete our
methodology for estimating (standardised) FNVA in both adoption scenarios. This estimate
of AWU for standardisation was ‘dynamic’ insofar as it responded, in some instances, to
changes in the adoption scenario when calculating proxy values from ‘IACS/LPIS’ to put into
the AWU regression. As such, on a given individual farm, the estimated AWU value used to
standardise estimations of FNVA was different according to if AES were being adopted.

Once an AWU-standardised value for the Value of Agricultural Production is therefore
calculated for both adoption scenarios, the estimated percentage change in FNVA between
AES non-adoption and AES adoption is calculated per farm. Tabular outputs from the model
are at this point de-identified (assuming a sufficient sample of individual farms was input,
e.g. n >= 10) though they are also then typically aggregated as summary statistics to
indicate the overall effect of AES adoption on farmer incomes across a given geographical
region. All boxplot figures were generated using the matplotlib (Hunter, 2007) graphics
environment in Python, with both matplotlib and seaborn (Waskom, 2021) libraries used for
the histogram and scatterplot figures.


https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://www.statsmodels.org/stable/examples/notebooks/generated/mixed_lm_example.html
https://www.statsmodels.org/stable/examples/notebooks/generated/mixed_lm_example.html
https://www.statsmodels.org/stable/regression.html
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Assessment
Uncertainty analysis

Uncertainty is relatively high for this farm income model, as it is a result of the outputs of the
BESTMAP food and fodder model, as well as for being the outcome of the application of a
linear regression from one dataset within the available (‘best-fit’) fields from another.

In the first instance the regression model for SE010 ‘Total labour input’ (AWU) for CZE
shows excellent (R? > 0.85) but nevertheless not perfect performance, despite best efforts to
use a feature-selecting Lasso model to determine which variables should be included after
excluding multicollinear columns. This is inevitable but clearly represents uncertainty and the
model may be able to generate different levels of explainability in other European contexts.

The model specified below, from the Czech FADN region (n = 3,350 rows after weighting),
produced an Adjusted R? value = 0.862, the same as it's unadjusted R? value = 0.862:

SE010 = 0.7986 + 0.0097(SE005) + 0.1178(SE054) + 0.0212(SE071)

Here, the equal R? and Adjusted R? values (to 3 d.p.) and the large sample size indicate a
relatively low risk of overfitting for a regional agricultural study.

In the application of this regression model to ‘IACS/LPIS’ data, there is inherent uncertainty
introduced into the accuracy of the result, owing to the difficulty in accurately and
consistently estimating an FADN category using ‘IACS/LPIS’ fields. In some cases values
were unavailable, weren’t readily available, or had uncertain degrees of crossover between
categories and classifications.

As for measures to counter uncertainty, the uncertainty in the statistical model for AWU was
countered through repeated, iterative efforts to improve the regression scores, including the
Adjusted R? value. This included passing in a large number of both continuous and
categorical variables, using feature-selection techniques, and experimenting with running
more complicated models. In the case of classifications, avoiding unacceptable levels of
uncertainty was helped through referencing the May 2019 European Commission (2019)
Definitions for FADN wherever possible. Consulting regularly with local experts internal to
BESTMAP also reduced uncertainties arising from classification issues between data sets,
case study regions, and languages.

Model validation

Country-level EU data for validation assessments for farm income per AWU was identified to
be available as C.25/C.26 in the old CAP CMEF framework, the closest available metric.
These are currently available at:

1. https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriFactorincome.html
[Accessed 24/05/22]. C.25 in CMEF.

2. https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriculturalEntrepreneuri
allncome.html [Accessed 24/05/22]. C.26 in CMEF.

Although a model validation exercise wasn'’t systematically conducted, using these statistics
facilitates a qualitative evaluation of the model outputs, indicating that our model outputs in
the test case study are within the correct expected magnitude (~5 pre-decimal figures i.e.
€10 000s) for income per AWU in late-2010s EU agricultural settings.


https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriFactorIncome.html
https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriculturalEntrepreneurialIncome.html
https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriculturalEntrepreneurialIncome.html
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In some respects, it is actually unsurprising that our average Value of Agricultural Production
estimate value would present disparities to the value contained here as on top of being a
separate, new CAP indicator, not covered by the old CMEF indicator framework directly, our
modelling also did not incorporate many of the stated components deducting from the total
income figure in FNVA or similar metrics, including intermediate consumption, farm taxes
and asset depreciation (European Commission, 2022: 54).

Data from FADN in Total labour output (SE010) can be used similarly to indicate reasonable
bounds for estimating AWU at the farm level, with our model outputs appearing to roughly
align, indicating efforts to estimate AWU using ‘IACS/LPIS’ data were acceptably accurate.

Prediction

SOUTH MORAVIA, CZECH REPUBLIC
Investigating Biases from Spatial Exclusions: South Moravia, Czech Republic

Data from South Moravia posed challenges and presented potential biases. Firstly this was
owing to the relatively high number of records output from the food and fodder model which
were unable to determine standard output values for Czech farms. Unfortunately this meant
that in 446 of the 1104 unique farms in South Moravia results for farm income could not be
produced as the inputs were not available. In many other cases farms were not recorded as
adopting AES in ground-truth data and therefore could not be represented in our results,
which depend upon real distinction between the AES non-adoption and adoption scenarios
within the input data format. As such, only 257 (23.28% to 2 d.p.) farms could be included.

As stated, such exclusions in the South Moravia case study occurred in part due to
methodological choices and data issues in the food and fodder model, which was applied in
the Czech Republic to ensure consistency between BESTMAP case studies. Firstly, the use
of the WOFOST simulation predictions (Hristov et al., 2020) to generate yield predictions for
six crops (maize, sugar beet, wheat, sunflower, winter rapeseed, spring barley), in addition to
the Czech-specific ReSteP yield model for permanent and temporary grassland (VUMOP,
2015), meant that whilst many crop types were catered for, many were also left without the
yield information necessary for income modelling. Secondly, in the case of the Czech
Republic, an abnormal number of crop entries in the EUROSTAT data on standard output
coefficients contained 0/NaN values which also prevented Values of Agricultural Production
from being calculated with EUROSTAT (2021) coefficients.

To informally understand the biases these exclusions may introduce, the nature and spatial
patterns of fields for farmers with no income estimation were examined in Python and GIS
software. Firstly, a CSV file was created with the farm IDs of farms which were unable to be
included in the final results. This generated a file which could be joined - as a delimited text
layer - to the field-level South Moravia ‘IACS/LPIS’ shapefile in QGIS, with ‘not null rows’
highlighted for visual examination. It became immediately apparent that the majority of total
field area did not belong to this set of excluded farm IDs, despite this set of IDs representing
76.72% of all farms in the South Moravia case study region. This initial impression was
supported by statistical evidence that both the mean and median average field size was
lower for excluded fields (4.38 ha, 0.61 ha respectively) than for all fields in the region (6.01
ha, 0.91 ha respectively), and that 66.77% (2 d.p.) of total field area in South Moravia was
used in the final results. So, in conclusion, the fields attached to farmer IDs (‘ID_UZ’) whose
income cannot be estimated represent in fact the minority of fields, as well as
disproportionately representing smaller area fields. All this said, it is nevertheless true that a
slim majority of fields in South Moravia were excluded from the results due to being
associated with an excluded farmer: 53.84% (to 2 d.p.). Both the largest and the smallest
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fields were excluded from the analysis so the range of field sizes affected was as broad as
theoretically possible. Returning to the findings of the visual inspection, it was clear that
although many fields were scattered across the region, many also clustered together (as
may be expected given fields are excluded on the basis of a common owner, and usually
owned/managed locally in any case). Regions with higher than average presence of
excluded fields were overlaid across an OpenStreetMap (2022) base layer which illustrated
that clusters were not consistently found in urban centres. Although there was a degree of
spatial grouping amongst excluded fields, the same could not be said for the remaining
included fields, as they formed a larger part of the landscape, which was itself
discontinuously represented across space by the vector shapefile fields in existence.

As such, it is concluded that it is more likely than otherwise that the biases introduced by
these (involuntary) exclusions were disproportionately on groups of small holdings, and that
they didn’t prevent the majority of agricultural land (and for that matter, probably agricultural
income) from being represented in the farm income analysis. The results of this farm income
model application are therefore expected to be broadly representative of South Moravia. The
code for this investigation into spatial biases is included in the main code file as an appendix.

Results: South Moravia, Czech Republic

Results for the demonstrative implementation of the BESTMAP socio-economic model are
represented in Table 2, Figure 1 and Figure 2. They illustrate the FNVA value as
standardised per Annual Work Unit (AWU) for South Moravia, Czech Republic, using 2017
data, for those farms (n = 257) for which income for both scenarios could be modelled.

The results indicate that the aggregate impact of AES adoption in this region is a major
increase in net farm income, with a mean percent change of +67.72% (to 2 d.p.). This relates
to mean average Value of Agricultural Production figures of €12,325.00 for non-adoption of
AES, in comparison to €13,295.69 in the scenario of AES adoption. On average, therefore, it
can be deduced that the income from AES subsidies estimated by this analysis is more than
compensating sufficiently for the changes in land use and crop yield that are needed to fulfil,
or a consequence of, agri-environment scheme requirements. Interestingly, the median
average for non-adoption stands at the far lower level of €2,042.95, compared to €3,566.74
in the scenario of AES adoption.

The median average is many times closer to the minimum Value of Agricultural Production
figures (€17.22, €33.14) than it is to the maximum figures which stood at €89,290.60 and
€89,355.18 for non-adoption/adoption of AES respectively (see Table 2). A large range of
values for the Value of Agricultural Production were predicted here, even within the single
region of South Moravia, and despite the possible biases from excluding smaller holdings.
Similarly, a large range of estimated percent changes in Farm Net Value Added (FNVA) are
also predicted, ranging from a minimum value of -64.93% to a maximum value of +194.27%.

Given the major percentage increase, both in mean and median average terms, it was
investigated whether unrealistic farm receipts were driving this summary statistic, as
investigated by Figure 3. At various thresholds for inclusion on the basis of income levels in
the scenario of AES non-adoption it was recorded the mean average value of estimated
percent changes in FNVA, to examine this relationship between a selected sub-sample and
aggregate results. Figure 3 reports results of the mean average FNVA change upon AES
adoption statistic at the increasing thresholds of every €200 between €0 and €15,000. The
results evidence a strong non-linear relationship between the size of the farm before AES
adoption and the proportion of FNVA (income) increase reported overall (despite AES
subsidy payments being calculated per ha). The mean percent change drops to below +30%
once the lower half of the farms are excluded, as per the sequential Q1/Q2/Q3 grey lines



— ARPHAPreprints Author-formatted document posted on 26/10/2023. DOI: https://doi.org/10.3897/arphapreprints.e114653

134 | Page D3.3: Ecosystem service, biodiversity and socio-economic models

shown. These results indicate that the effect of AES adoption on income is highly associated
with levels of pre-AES adoption income, possibly due to similar levels of area being
dedicated to the AES schemes irrespective of the size of the farm, which would naturally
produce higher levels of proportionate income increase in farms with a smaller overall size.

Table 2: Aggregated summary statistics (all to 2 d.p.) for farm-level FNVA outputs,
generated using pandas.DataFrame.describe() (records with €0 for either AES scenarios
removed), South Moravia, 2017.

Summary statistics for 'Value of Agricultural Production' estimations in socio-economic model
South Moravia, Czech Republic, 2017 [Data: FADN, 'lACS/LPIS"
[€0 income farms removed]

Value of Agricultural Production (€)

No AES adoption =~ AES adoption |Percent change

summary records  count 257 257 257
average  mean 12325.00 13295.69 67.72

variance  std 22604.38 22394.46 59.26

percentiles  min 0% 17.22 33.14 -64.93
- 25% 864.13 1798.17 4.36

median 50% 2042.95 3566.74 78.09

- 75% 7608.46 9407.57 112.34

max 100% 89290.60 89355.18 194.27

Data Acknowledgements: FADN data in methodology for ESP (2017) from Directorate-General for
Agriculture and Rural Development, European Commission. TACS/LPIS' data (2017)
is from Ministry of Agriculture of the Czech Republic.

Figure 1: Boxplots of distributions for estimated FNVA, South Moravia, 2017.


https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.describe.html
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Boxplots of distributions for estimated 'Value of Agricultural Production’ values (€)
for Agri-Environment Scheme (‘AES') non-adoption and adoption scenarios.
South Moravia, Czech Republic, 2017 (n=257) [Data: FADN,"IACS/LPIS'].

[€0 income farms removed, outliers not displayed]
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Data Acknowledgements: FADN data in methedology for CZE (2017] from Directorate-General for Agriculture and Rural Development,
Eurapean Commissian. TACS/LPIS' data {2017) from Ministry of Agriculture of the Czech Republic.
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Figure 2: Histogram of distribution for farm-level percentage difference for FNVA between
AES non-adoption and AES adoption, South Moravia, 2017.

Proportion of farm sample (n = 257) exhibiting (approximate) estimate percent
difference in Farm Net Value Added ('FNVA', C.27 PMEF) from adopting AES.
South Moravia, Czech Republic, 2017 [Data: FADN, 'lACS/LPIS'].
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Data Acknowledgements: FADN data in methodology for CZE (2017) from Directorate-General
for Agriculture and Rural Development, European Commission.'|ACS/LPIS' data (2017)
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Figure 3: Scatterplot of relationship between sample inclusion threshold according to AES
non-adoption income, and the cohort’s respective mean average farm-level percentage
difference for FNVA between AES non-adoption and AES adoption, South Moravia, 2017.
[Data Acknowledgements: FADN for CZE (2017) from Directorate-General for Agriculture
and Rural Development, European Commission. ‘IACS/LPIS’ data (2017) from Ministry of
Agriculture of the Czech Republic.]

Filtering sensitivity: relationship between threshold for income from non-AES adoption for eligibility for inclusion
in the analysis and the respective cohort mean average for estimated percent change in FNVA upon AES adoption
South Moravia, Czech Republic, 2017 (Maximum n = 257) [Grey lines at Q1, Q2, Q3: AES non-adoption income]
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Threshold for inclusion in analysis: AES non-adoption estimated Value of Agricultural Production (€ per AWU)

Specifications for other BESTMAP case study regions are currently under development and
will in future be made available in the UFZ GitLab page (https./qit.ufz.de/).



https://git.ufz.de/
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