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UNIVERSITY OF FRIBOURG

Abstract
Faculty of Science and Medicine

Department of Biology

Master of Science in Bioinformatics and Computational Biology

Anticipating the chemical compositions of organisms across the tree of life.

by Marco VISANI

This study is centered on Natural Products (NPs) - specific chemicals synthesized

by living organisms. These NPs hold significant importance in various domains,

notably medicine, agriculture, and ecology. A primary resource for our research is

the LOTUS database, which catalogues a vast array of NPs and their occurrence.

Yet, a gap exists: there are no existing model to predict the occurrence of these NPs

across different species.

In our initial strategy, the occurrence of natural products was viewed as a collec-

tion of observations and their associated variables. Although simple, this strategy

immediately showed its limits when dealing with the complex nature of NPs. We

switched to an advanced graph-based method after seeing the necessity for a more

thorough strategy to accurately represent the intricate interactions governing NPs

expression. When considering species in a phylogeny or molecular pathways, the

graph-based method perceives data as a network of connected entities, offering a far

more logical and natural way of thinking. By employing this better methodology,

we have developed a more effective approach for investigating the intricate world

of Natural Products. We hope that this strategy will open up new research directions

and possibly result in ground-breaking NP-related findings.
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1 Introduction

1.1 Natural Products: Definition and Roles

Natural Products (NPs) are chemical entities biosynthesized by living organisms [1].

NPs are metabolites, which can be arranged along a gradient of specialisation from

core metabolites, which perform fundamental tasks and are present in a variety of

organisms, to specialised metabolites, which are much more restricted in occurrence

across the tree of life. Natural product research is interested in the underlying struc-

tural features of naturally occurring molecular entities, their effects on living organ-

isms, and even the study of chemically mediated interactions across entire ecosys-

tems. Through the course of this work, we will use Rutz et al.’s definition of Natural

Product as any chemical entity found in a living organism [2].

1.2 The Importance of Natural Products

Because of their distinct chemical structures and activities, specialised metabolites

form the basis of current therapeutic treatments [3]. They are relevant to a variety

of industries, including agriculture [4], food industry [5], cosmetics [6], and other

fields, in addition to human and veterinary medicine. These natural goods are inex-

tricably related to renewable resources and add great value in our economy.

Understanding the complexities of their biological functions and structural char-

acteristics is essential to understanding how ecosystems work. These complexities

influence a variety of aspects, from the impact on individual organisms to the overall

chemically mediated interactions within an entire ecosystem.

Several fundamental aspects of chemistry such as stereochemistry, optical activ-

ity, regioselectivity, and chirality, have also been advanced in the field of NP re-

search. Their complexity has lead to the development of cutting-edge tools that can

replicate natural processes to manage bioregulation mechanisms and solve practical

problems [7].

Even though they are complex and challenging to describe, the role of natural

products in therapeutic uses and ecosystem functionality cannot be overstated. Cur-

rent developments aim to unlock this potential more efficiently, emphasizing the

ongoing advancements across all sectors associated with natural products.
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Chapter 1. Introduction 2

1.3 The LOTUS Database and Current Efforts

In recent years, efforts have been made to report the constituents of metabolic net-

works or occurrences of molecules in selected taxa [8]. A significant resource is the

LOTUS database [2], which currently lists over 438’072 molecule-species pairs. The

LOTUS initiative aims to consolidate and share structure-organism pair informa-

tion via an open platform, which has the potential to make advancements in NPs

research. This process involved the harmonization, curation, validation, and open

dissemination of referenced structure-organism pairs. Furthermore, LOTUS data’s

embedding into the vast Wikidata knowledge graph facilitates new biological and

chemical insights. The contemporary bioinformatic capabilities offered by the LO-

TUS initiative have the potential to reshape knowledge management, analysis, and

interpretation of data in natural products research [2]. Despite this, no generic solu-

tion has been devised to predict metabolomes across the tree of life.

1.4 Project Description and Objectives

The goal of this project is to develop such a model and to train it using large-scale

metabolomics and other occurrence data.

For this research, we consider two primary sources of information : 1) The LO-

TUS database, which lists reports of metabolites present in particular species which

have been confirmed by peer-reviewed scientific literature. 2) Data derived from

mass spectrometry (MS) analyses.

LOTUS’s inherent value stems from its strong data integrity. Indeed, most of the

time, to be present in LOTUS, a compound must have been extracted and character-

ized from a living organism, ensuring its data validity. However to ensure such data

quality, a lot of resource and effort are required (isolation, purification, structural

determination). Currently, only 0.008% of all potential occurrences in the database

are represented by the 438’072 occurrences that have been archived in LOTUS.1 A

thorough knowledge of the genuine presence or absence matrix of molecules across

the evolutionary spectrum is still difficult given the pace of academic research.

In contrast, mass spectrometry (MS) provides a quicker and more practical ap-

proach of molecular detection. Coupled to computational mass spectrometry tools,

such untargeted approaches allows to detect and annotate thousands of NPs in a sin-

gle run. However, this increased effectiveness comes with restrictions. In particular,

MS shows limitations when trying to identify molecules with previously uniden-

tified structural configurations. Moreover, the putative annotation of NPs is MS

diminishes the degree of confidence in assigning a compound to a specific species,

presenting a trade-off between throughput and confidence.

1Currently LOTUS has 36′800 species, and 148′190 molecules.
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Chapter 1. Introduction 3

By integrating these two sources of information and using an appropriate model,

we want to anticipate the complete chemical composition of organisms across the

tree of life.
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2 Theoretical introduction

In the early stages of our research, we did not utilize a graph-based approach. We

started our work treating the data as a collection of observations and their covari-

ates rather than recognizing the inherent graph-based structure of molecules and

organisms. This initial approach, while more straightforward, failed to fully capture

the intricate complexity and interconnected nature of our dataset. Recognizing the

limitations of such naive methods, we transitioned to the application of graphical

models, specifically focusing on graph neural networks and collective classification

techniques (see below). By treating our data as a graph, we aim to better encapsulate

the nuanced relationships and dependencies between species, molecules, and their

respective attributes.

In discrete mathematics [9], a graph is a collection of elements, known as vertices

or nodes, and their connections, known as edges or links. Edges represent the con-

nections or affiliations between pairs of these points, whilst vertices serve as discrete

points or units. For example, in biology, a graph can show the complex network of

connections between proteins in a cellular system. Each protein is represented by

a node, and the functional or physical relationships between them are denoted by

edges [10]. Figure 2.1 shows an example of such graph.

Figure 2.1: Graph representation of the interactions of AKT1S1, a sub-
unit of mTORC1 in Homo sapiens. Each protein is represented by a
node, and the physical relationships between them are denoted by
edges. The edges’ thickness indicates the confidence that two proteins
are linked. The image was downloaded from STRING [11] queried
for mTORC1 in Homo sapiens.
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Chapter 2. Theoretical introduction 5

Often, these nodes carry specific attributes (also known as features). For exam-

ple, nodes in a graph could represent cities around the world. The attributes of

these cities might include population size, geographic location, or average tempera-

ture. However, obtaining these features can be challenging due to obstacles in data

collection, inherent complexity, or, in some cases, privacy concerns [12]. To miti-

gate this, graph-based semi-supervised learning, also known as node classification,

is employed to predict missing labels for some nodes given known attributes (i.e.
features). This strategy has been effective in a myriad of applications, including

predicting molecular functions and categorization of substances [13, 14].

Link prediction is also a fundamental task in graph theory, aiming to forecast

the likelihood of a potential relationship or edge between two nodes within a net-

work. In the context of social networks, as highlighted by Liben-Nowell and Klein-

berg [15], the challenge is to determine which interactions are likely to emerge in the

future based on the current network topology. The underlying hypothesis is that the

inherent structure of the network contains valuable information about future inter-

actions. Various measures of node "proximity" or similarity within the network can

be employed to make these predictions, and some nuanced measures (e.g. SEAL de-

veloped by [16]) have been found to outperform more direct ones (e.g. Adamic–Adar

index [17]).

Graph neural networks (GNNs) [18] have been frequently employed for semi-

supervised learning or for link predictions, also in the context of molecular net-

works [19]. Initially, GNNs synthesize the features and graph structure in the vicin-

ity of each node into a single vector representation. Then, this representation is

individually used for the classification of each node. The benefits of using GNNs

include automatic differentiation, enabling end-to-end training and straightforward

sub-sampling schemes for handling extensive networks. However, the use of GNNs

hinges on the assumption that node labels are conditionally independent given all

features. Moreover, these networks do not leverage correlations between training

and testing labels during inference, and due to the complexities of their transforma-

tions and aggregation functions, the derived models can be challenging to interpret.

Alternatively, collective classification (CC) [20] provides an interpretable approach,

utilizing graphical models that directly exploit label correlation for prediction. One

such model used within our research is Markov networks also known as Markov

Random Field (MRF). MRFs model the joint distribution of all node labels within a

conditional random field and predict an unknown label with its marginal probabil-

ities. This method makes use of label correlation during inference, which involves

conditioning on the training labels. However, the increased interpretability and con-

venience of collective classification comes at a price. The models are learned by max-

imizing the joint likelihood, rendering end-to-end training extremely difficult. This,

in turn, restricts the capacity and versatility of the model [12].

Below, we introduce the three models we have developed. Components of the
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naive model were retained for modelling the probability of the data in the RMF

model (refer to Sections 2.1.1 and 2.2.1. We believe that the RMF model holds the

most promise among our developments; however, implementation and testing are

still underway and constitute our current work in progress.

2.1 Naive approach

Our objective is to infer the presence or absence of metabolites across a collection

of samples, which are differentiated by T discrete dimensions such as species, tis-

sue type, and environmental conditions or any other arbitrary dimension. For any

compartment c, let τt(c) = 1, . . . , nt indicate the compartment index along axis

t = 1, . . . , T. For convenience, let us further denote by τM(c) and τS(c) the metabo-

lite and species of that compartment.

We denote xc the presence (xc = 1) or absence (xc = 0) of a metabolite τM(c) in

compartment c and let x = (x1, . . . , xC) be the full vector xc across all compartments

c = 1, . . . , C with C = ∏t nt.

We will assume that similarities across any of the axes of compartmentalization

is reflected in the patterns of presences and absences in x. For instance, closely re-

lated species may share a similar set of metabolites and metabolites related in their

synthesis may share a similar distribution across species. To model such similari-

ties, we assume that the probability P(xc = 1|µc, εc) with which metabolite τM(c) is

present in compartment c is given by

logit P(xc = 1|µc, εc) =
T

∑
t=1

µ
(t)
τt(c)

+ εc (2.1)

where µc = (µ
(1)
τ1(c)

, . . . , µ
(T)
τT(c)

) is a vector of axis specific intercepts and εc is nor-

mally distributed with mean 0 and co-variance

cov(εc, εc′) = ∑
t

β
(t)
τt(c)

+ ∑
t

β
(t)
τt(c′)

+ ∑
t

Ft

∑
f=1

αt f σt f

(
τt(c), τt(c′)

)
. (2.2)

Here, the β
(t)
τt(c)

are positive intercepts specific for the compartment index τt(c)
along axis t, the σt f , f = 1, . . . , Ft, are the Ft known covariance matrices between

entries along axis t, and the αt f are positive scalars.

In Figure 2.2, a graphical representation illustrates the probabilistic association of

a metabolite’s presence within a particular species, predicated upon its mean preva-

lence across a phylogeny (denoted by the black vertical line at x = 2.5). Consider, for

example, a metabolite ubiquitously observed across various taxa. If a distinct clade

within the phylogenetic tree lacks this metabolite, the likelihood of its occurrence in

species phylogenetically proximate to this clade diminishes — as indicated by the

dashed leftmost red line.
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Figure 2.2: Illustration of the proposed model on a logistic function
given by Equation (2.1). The black vertical line at x = 2.5 denotes the
mean presence of a metabolite in the system. Flanking this, the two
red dashed lines depict potential shifts in this average presence due
to the influence of covariates, denoted as εc in Equation (2.1).

2.1.1 Data sources

We consider two types of data informative about X : i) presence-only reports of

specific NPs in specific species as available through the LOTUS database and ii)

presence-absence data obtained with mass-spectrometry (LC-MSMS).

LOTUS

As previously stated, LOTUS database [2] lists known occurrences of metabolites in

species. Let Lms = 1 denote a known occurrence of metabolite m in species s, while

Lms = 0 denotes that no evidence for such an occurrence has been reported, either

because the metabolite m is truly absent in species s or because of a lack of research

effort. For a particular data set d = 1, . . . , D, let ξd = {ξd1, . . . , ξdu} denote the sets of

distinguished compartments. We then define the presence of (x(ξdu) = 1) or absence

(x(ξdu) = 0) in set ξdu, u = 1 . . . , U, as

x(ξdu) = min

(
1, ∑

c∈ξdu

xc

)
. (2.3)

Let us further denote by Rsm the probability of discovery of metabolite m in

species s such that

P(Lms|x(ξ(m, s)), Rms) =



0 if x(ξ(m, s)) = 0 and Lms = 1,

1 if x(ξ(m, s)) = 0 and Lms = 0,

Rms if x(ξ(m, s)) = 1 and Lms = 1,

1− Rms if x(ξ(m, s)) = 1 and Lms = 0,

(2.4)
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Chapter 2. Theoretical introduction 8

where ξ(m, s) is the set of compartments relevant for metabolite m and species s,

i.e. all compartments c for which τM(c) = m and τS(c) = s.

To quantify the research effort Rms of a particular entry Lms, we will rely on two

measures, the total number of relevant papers published for metabolite m (Pm) and

for species s (Qs), such that

Rms = 1− e−γPm−δQs (2.5)

with positives scalars γ and δ. In Figure 2.3 we show a Directed Acyclic Graph

(DAG) of the proposed model.

x

µ α, β

djL

εjR

Figure 2.3: In the Directed Acyclic Graph (DAG) representing the
naive model, the variable x denotes the binary state of a molecule’s
presence or absence within a designated species and, µ signifies the
mean presence of the metabolite along a specified axis. Both α and
β denote the axis-specific intercept and a positive scalar constant,
respectively. The parameter R stands for the dedicated research ef-
fort given to find x while L indicates the presence or absence of x
within the LOTUS database. The term dj characterizes the jth itera-
tion of mass spectrometry executed for the particular species. Finally,
εj quantifies the affiliated error rates, as elaborated in Equation (2.6).

Mass spectrometry

Let dsj = (dsj1, . . . , dsjM) be the presence-absence vector of each metabolite m ob-

tained with mass-spectrometry run j = 1, . . . , Js performed on species s. Assuming

a false-positive and false-negative error rates ε01 and ε10, respectively, we have

P(dsj|x, ε01, ε10) = ∏
m

[
xsm

(
ε

1−dsjm
10 (1− ε10)

dsjm
)
+ (1− xsm)

(
ε

dsjm
01 (1− ε01)

1−dsjm
)]

(2.6)

Equation (2.6) has not been developed further. For our most recent approach of

modelling MS data, refer to Section 2.2.1.
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2.2 Random Markov Field

As previously stated, our objective is to infer the occurrence or absence of metabo-

lites across a collection of samples, which are differentiated by discrete dimensions

such as species, tissue type, and environmental conditions or any other arbitrary di-

mension. We hypothesize that the distribution pattern of these metabolites is moder-

ated by shared characteristics within each dimension. For instance, metabolites can

exhibit a similar distribution across phylogenetically close species, or if their synthe-

sis pathways are interrelated. To quantitatively represent such similarities, we use a

Markov random field approach [21, 22].

Let D denote the total number of dimensions. Without any loss of generality, we

assume the first dimension corresponds to the metabolite. Each dimension, denoted

by d = 1, . . . , D, consists of a set Ed of discrete entities (e.g., individual species along

the species dimension). We model similarities between entries of dimension d using

a Markov process along a known tree Td consisting of Nd = Ed ∪Rd ∪ Id nodes, of

which the entries Ed are leaves, connected to the set of roots Rd through a set Id of

internal nodes. We thus have Ed ∩Rd = ∅, Ed ∩ Id = ∅ andRd ∩ Id = ∅. For every

node n ∈ Nd, n /∈ Rd that is not a root, we denote p(n) ∈ Nd its parent node and

b(n) ≥ 0 the length of the branch connecting it to its parent.

We denote X a Markov Random Field of which each variable x ∈ X represents a

unique combination of nodes from each dimension D, indicating the presence (x =

1) or absence (x = 0) of a metabolite. Let δd(x) ∈ Nd reflect the node of x in dimen-

sion d with δ1(x) indicating the metabolite of x, and let δ(x) = (δ1(x), . . . , δD(x)).
We only consider two sets of variables: 1) the set Y of variables representing an en-

try in each dimension such that for a variable y ∈ Y , δd(y) ∈ Ed for all d = 1, . . . , D,

and 2) the set Z of variables representing leaves in all dimensions except one such

that for a variable z ∈ Z , δk(z) ∈ Ik and δd(z) ∈ Ed for all d 6= k. We then have

X = Y ∪ Z and Y ∩ Z = ∅.

We suppose that the joint density of X can be factorized over a set of cliques C.

Each clique c ∈ C consist of a set of variables x1, x2, . . . ∈ X that represent the same

leaves in all but one dimension k. Specifically, for all x ∈ c, δd(x) ∈ Ed for all d 6= k
and δk(x) ∈ Nk, and for all xi, xj ∈ c, δ−k(xi) = δ−k(xj), where δ−k(x) denotes the

vector of nodes of x in all dimensions but k. For such a clique, we will refer to the

dimension ν(c) = k as its variable dimension and will denote by δ−ν(c)(c) the vector

of nodes in the fixed dimensions. By definition, δ−ν(c)(c) = δ−ν(c)(x) for every x ∈ c.

We will further denote by Ck ⊂ C the subset of cliques that share the variable

dimension k, i.e. ν(c) = k for all c ∈ Ck. Note that each clique is in exactly one subset

(Ck ∩ Cd = ∅ for all k 6= d) and cliques of the same subset do not share any variables

(c1 ∩ c2 = ∅ for all c1, c2 ∈ Ck). However, each variable x ∈ Y will be part of exactly

one clique from each subset: the clique c ∈ Ck for which δ−k(c) = δ−k(x). In contrast,
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Chapter 2. Theoretical introduction 10

each variable x ∈ Z will be part of exactly one clique: the clique c ∈ C for which

δ−ν(c)(c) = δ−ν(c)(x) and δν(c)(x) ∈ Iν(c).

The joint density of X factorizes as

P(X ) =
D

∏
d=1

∏
c∈Cd

φ(c), (2.7)

where we model the clique functions φ(c) using a Markov model along tree Td.

Let

Λc =

(
−µc1 µc1

µc0 −µc0

)
(2.8)

be the rate matrix for changes between states 0 and 1 along the tree. For each

node n ∈ Nd, n /∈ Rd that is not a root, the transition probabilities between parent

node p(n) and n are then given by

P(n) = exp(Λcb(n)). (2.9)

We assume the root state probabilities are given by the stationary distribution of

the Markov chain:

P∞ =

(
µc0

µc0 + µc1
,

µc1

µc0 + µc1

)
. (2.10)

The clique function φ(c)

φ(c) = ∏
x∈c,

(
I(x ∈ Rν(c))[P∞]x + I(x /∈ Rν(c))[P(δν(c)(x))]pc(x),x

)
(2.11)

where we used the shorthand x ∈ Rν(c) for δν(c)(x) ∈ Rν(c) to indicate whether

the node in the variable dimension of c of x is a root and pc(x) to identify the variable

z ∈ c for which δν(c)(z) = p(δν(c)(x)).
Figure 2.4 shows two examples of simple Markov Random Field. The Ising

model, as shown in Figure 2.4a is based on the idea that a node’s state depends

only on its close neighbours i.e. it is conditionally independent given the neigh-

bours’ states. On the other hand, our suggested model which resembles more to the

structure show in Figure 2.4b, includes more complex connections within a graph.

Indeed, we hypothesize that a node’s state not only depends on its direct neighbours

but also by remote connections and the architectural configurations of the trees T .

2.2.1 Data sources

We model the data sources similarly as in the naive model.
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(a) (b)

Figure 2.4: Two examples of a Markov Random Field model. (a) The
Ising model [23] characterizes nearest-neighbour interactions. In this
model, given the state of the grey nodes, the central black node be-
comes conditionally independent of all external nodes. (b) An ad-
vanced structural representation, incorporating higher-order interac-
tions beyond the traditional Ising model. Interactions extend beyond
immediate neighbours, encompassing higher-order relationships as
described by the trees T . Here, pink dots represent the roots R, in
white the internal nodes I and in black the leaves E . The purple
squares represent the Y and white squares the Z variables of our
model. Dashed rectangles represent examples of cliques. This il-
lustration was conceptualized based on insights and frameworks de-
rived from [24] and [25].

LOTUS

We model the probability of LOTUS similarly as in the naive model. However we

adapt Equation (2.3) as follows.

Let x(m, s) denote the variable in X for NP m and species s, which, in case X
contains additional dimensions, is obtained by collapsing:

x(m, s) = min

(
1, ∑

x∈X
I(δ1(x) = m) I(δ2(x) = s)x

)
. (2.12)

Probabilities of LOTUS and research effort remain the same as in Equations (2.4)

and (2.5).

Mass spectrometry

Ultra High Performance Liquid Chromatography coupled to fragmentation Mass

Spectrometry (LC-MSMS) is the analytical workhorse for the molecular characteri-

zation of complex biological matrices. Coupled to computational mass spectrometry

tools, such untargeted approaches allows to detect and putatively annotate thou-

sands of NPs in a single run. These analysis are fundamental in our project as they

will allow us to complete the currently patchy overview offered by LOTUS. How-

ever, the resulting data is complex and requires careful processing to be informative
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as it is high-dimensional, noisy and incomplete. We here propose a model that builds

on previous work regarding the Liquid Chromatography (LC) process [26, 27], the

establishment of virtual mass spectrometers [28–30] and the integration of LC and

MS dimensions in the NP annotation process [31,32], yet is simpler and more stream-

lined to render it computationally feasible for the large scales considered here.

Suppose Di is an LC-MSMS profile obtained from a sample representing a spe-

cific vector ξ = (ξi2, . . . , ξiD), ξid ∈ Ed of leaves in all dimensions except NPs one,

such as, for instance, a sample representing a specific tissue of a specific species. We

will calculate the probability of the LC-MSMS data Di given X . Let x(ξi) ⊂ X de-

note a slice through X relevant for Di, i.e. consisting of all variables that represent a

leave in the metabolite dimension and the specific leaves ξ in each other dimension

such that for all x, x′ ∈ x(ξi), δ1(x) ∈ N1, δ1(x) 6= δ1(x′) and δd 6=1(x) = δd 6=1(x′) =
ξid ∈ Ed. We will develop an NPs-flavored Virtual Metabolomics Mass Spectrometer

(ViMMS) building on the original implementation [28]. It will be fed by an in sil-

ico spectral database of the last LOTUS contents (ISDB-LOTUS) and informed by

prior expert knowledge regarding the classes of analytes lost in the reductionist and

stochastic metabolomics approach here formed by extraction, liquid chromatography
and mass spectrometry fragmentation stages. The NPs-ViMMS will allow the genera-

tion of theoretical metabolomics datasets for any given input (D′i), these will be then

be compared to experimental results (Di).

To compare the resulting LC-MSMS profileD′i toDi, we will then take advantage

of MEMO (MS2 BasEd SaMple VectOrization), a method we recently established for

the computationally efficient comparison of large sets of samples based on their LC-

MSMS profiles [33]. The first step is to extract fragment ions and neutral losses from

each MSMS spectrum binned from the detected features in so-called “documents”

using Spec2Vec [34]. Then, for a given sample, all the documents created are ag-

gregated based on word occurrences to form a fingerprint (a MEMO vector). The

MEMO strategy exploits the advantages of LC, namely its separation power (thus

simplifying the chemical complexity of the sample being analyzed and allowing

resolution of isomerisms) while avoiding the disadvantages of RT-based alignment

since MEMO vectors contain only mass spectrometry information. Here we’ll im-

plement a stochastic comparison of MEMO vectorsM(D′i) andM(Di) using a per

entry error rate ε to be inferred from the data.

2.3 Graph Neural Network

The low-dimensional representation of nodes within large graphs plays a critical

role in various domains of scientific research and industrial applications, such as

bioinformatics, social networks, and content recommendation systems. The utiliza-

tion of these embeddings has proven effective in diverse prediction tasks, including

clustering, node classification, and link prediction. However, traditional methods
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for generating these embeddings have predominantly focused on the transductive
setting, requiring all nodes to be present during training and thus limiting general-

ization to unseen nodes or entirely new subgraphs [35, 36].

GraphSAGE (SAmple and aggreGatE) [37] was presented as a solution to this

challenge, offering a general inductive framework that leverages both node feature

information and topological structure. Unlike transductive approaches, which rely

on matrix factorization and are constrained to fixed graphs, GraphSAGE is designed

to efficiently generate embeddings for previously unseen nodes.

The novelty of GraphSAGE lies in its ability to learn a function that generates

embeddings through the sampling and aggregation of features from a node’s local

neighbourhood. It utilizes a set of trainable aggregator functions that encapsulate

information from different search depths (hops), away from a given node. By simul-

taneously learning the topological structure and distribution of node features in the

neighbourhood, GraphSAGE accommodates feature-rich graphs as well as graphs

lacking specific node features.

The applicability of GraphSAGE extends beyond simple convolutions, embrac-

ing a framework that generalizes Graph Convolutional Networks (GCNs) for the

task of inductive unsupervised learning [38]. Unlike traditional methods that op-

timize embeddings for each node, GraphSAGE’s inductive approach promotes ef-

ficiency and adaptability, allowing for an easy alignment of newly observed sub-

graphs with pre-existing node embeddings.

GraphSAGE is particularly well-suited for the task of predicting which molecule

is present in which species due to its robust inductive learning framework that gen-

eralizes to unseen nodes and subgraphs. In the context of biological data, such as

molecular structures and species interactions, GraphSAGE’s ability to leverage both

the topological structure and node feature information offers a powerful means to

understand the complex relationships within a graph. Its approach of sampling and

aggregating features from a node’s local neighbourhood enables the capture of intri-

cate patterns and structural properties that can be essential in identifying molecular

presence across species. Furthermore, the inductive nature of GraphSAGE allows for

the efficient generalization across different phylogenies, facilitating the prediction in

entirely new or evolving graphs.

HinSAGE [39], a derivative of GraphSAGE, has been specifically designed to

handle heterogeneous graphs, where nodes and edges can be of various types. De-

veloped by CSIRO’s Data61, HinSAGE adeptly extends the foundational principles

of GraphSAGE to contexts where the graph’s heterogeneity introduces additional

complexities. Unlike homogeneous graphs where the relation between nodes is

more uniform, heterogeneous graphs present varying relationships and patterns,

which HinSAGE is explicitly tailored to capture. By learning distinct embeddings

for different types of nodes and relations, HinSAGE can uncover nuanced relation-

ships within complex networks. This makes HinSAGE especially valuable for tasks
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such as predicting links within a bipartite graph, where one set of nodes represents

species and another molecules.
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3 Methods

3.1 Naive model

Prior to the application of our actual data, a series of simulations were executed to

evaluate the feasibility of estimating the entire set of parameters from the informa-

tion contained within our dataset. Specifically, the variables µ were generated by

sampling from a normal distribution with mean value of 0 and variance of 1. Mean-

while, the parameters α, β, γ, and δ were each modelled using distinct exponential

distributions, where individual values for the rate parameter λ were attributed to

each. In order to replicate the observed phenomenon, the number of papers per

entry in x were synthetically constructed by drawing from a Poisson distribution.

Additionally, the variables σ were simulated by drawing from a Wishart distribu-

tion [40].

As elaborated in Section 2.1, the simulation process was initiated by drawing

probabilities that x = 1 from the expit function, as defined in Equation (2.1). Sam-

ples were then drawn from a Bernoulli distribution, where the probability parameter

was informed by the previous expit function. The probabilities of LOTUS were con-

structed in accordance with Equations (2.4) and (2.5). A condition was imposed such

that if x for any given pair was 0, then the corresponding probability was explicitly

set to 0. This removed the possibility of having papers in the simulated LOTUS

when the actual value of x was 0.

The probabilities of LOTUS were then employed as parameters for another Bernoulli

sampling, generating binary outcomes that determined the number of papers asso-

ciated with each pair. Specifically, if the result was 0, the number of papers for that

particular pair was set to 0. Conversely, if the result was 1, the number of papers

for that pair was assigned based on random Poisson values that had been drawn

previously in the simulation process.

This systematic approach resulted in the production of a simulated x and a corre-

sponding simulated LOTUS. This led to the occurrence of certain pairs that appear-

ing empty, even though the molecule was indeed present within the species. All

codes are available on GitHub.
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3.2 Random Markov Field

Due to time constraints of the thesis, test and simulation for this model were not

performed. The beginning of the implementation is available both on Bitbucket and

GitHub.

3.3 Graph Neural Network

The LOTUS database was aggregated to include only unique pairs of molecules and

species. Once aggregated, the data was randomly partitioned into two subsets: 70%

allocated for training and 30% for testing.

Graphs were systematically constructed for both the training and testing subsets

using the software library NetworkX v3.1 [41]. In these graphs, individual nodes

were designated to represent each molecule and species. When a specific species-

molecule pair was identified in the LOTUS database, a directed edge was drawn

between the two corresponding nodes. This procedure led to the creation of a bi-

partite graph, with directed edges labeled as "has" from species to molecules and

"present in" from molecules to species.

The species’ features were defined by extracting their phylogenetic information

through the GBIF API [42, 43]. Molecules’ features were composed of the com-

binaiton of their classification data from Classyfire [44] and their Morgan Finger-

print [45], encoded using a 128-bit representation and a radius of 2.

In the preprocessing stage, features corresponding to both species characteristics

and molecules’ Classyfire properties were transformed through binary encoding.

This transformation was essential to represent these categorical attributes as numer-

ical values, thus making them suitable as features for the nodes within the graph.

In the case of the molecules, the two different sets of features, namely the binary-

encoded Classyfire attributes and the Morgan Fingerprint, were concatenated to

form a unified feature vector.

The model training was carried out using the Stellargraph library [39]. Two dis-

tinct models were trained to handle different relationships within the graph; one was

tailored to the edges labeled "has" and the other to the edges described as "present

in".

The HinSAGE models were configured with two layers, comprising 1024 neu-

rons in each layer. The first layer was designed with a neighborhood sampling size

of 3, enabling the model to encapsulate the local structural information, while the

second layer utilized a sampling size of 1, thus focusing on immediate neighbors.

By employing this hierarchical structure, the models could capture different scales

of locality in the graph.
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Furthermore, the HinSAGE models were implemented with a mean aggregator

function, which served to combine the features of the neighboring nodes, thus gener-

ating a representative feature vector for each target node. A dropout rate of 0.3 was

applied to mitigate the risk of overfitting, and "elu" and "selu" activation functions

were utilized in the respective layers.The number of layers, neurons per layer, hops,

dropout rate, and activation functions were all chosen based on a comprehensive

grid search for optimal parameters.

We moved forward by attempting to anticipate every potential species-molecule

combination found in LOTUS. This analysis resulted in a total of 5.45 · 109 pairs. All

codes are available on Github.
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4 Results and Discussion

4.1 Naive model

In the preliminary stages of our research, we recognized the necessity to understand

the behaviour of our model prior to applying it to the actual dataset. To achieve this,

we carried out a series of simulations to assess if the model’s parameters could be

accurately estimated based on these synthetic data.

Specifically, we simulated 100 molecules and 10 species in alignment with the

theoretical framework described by Equations 2.4 and 2.5.

For the parameter estimation process, we employed Markov Chain Monte Carlo

(MCMC) techniques to accurately estimate the parameters γ and δ. The results of

this estimation process were consistent and close to our simulated values, demon-

strating the effectiveness of the approach.

Furthermore, we utilized Gibbs sampling to estimate the variable x. This method

too yielded satisfactory results, corroborating the validity of our model in this aspect.

However, the challenges encountered during the modelling and simulation pro-

cess were primarily centred around the convergence of the axis-specific intercepts µ.

This crucial component, detailed in Equation 2.1, resisted precise estimation through

our initially chosen techniques. During this period of reevaluation, the idea of seeing

our data as a graph emerged, adding a new dimension to our perspective. Persist-

ing with our original data treatment no longer seemed intuitive. Given the inherent

structure and relationships in our dataset, transitioning to a graph-based approach

felt more logical and natural. As a result, the inability to accurately estimate µ and

the allure of a graph-centric methodology prompted us to explore alternative mod-

els and techniques, seeking a better alignment with the intrinsic characteristics of

our data. To reproduce our simulations, codes are available on GitHub.

4.2 Random Markov Field

Due to the time constraints of the thesis, we were unable to implement, test, and

simulate this model. However, we have designed the model (see Section 2.2), and

its implementation is our current focus. We would like to emphasize that so far, this

is the best model we currently possess.
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4.3 Graph Neural Network

Using unseen edge data to assess the models, the performance measures showed

that each model had varying degrees of accuracy. Particularly, the 0.92 accuracy

was demonstrated by the model that was trained to predict the "present in" relation-

ships. The model that attempted to predict the "has" associations, in contrast, had

an accuracy of 0.8.

For evaluating the accuracy of the models, a probability value of 0.5 was used

as the cutoff for assessing whether metabolites were present or absent. As a result,

probability above this cutoff were classed as a presence, denoted as x = 1, and

values below this cutoff were classified as an absence, denoted by x = 0.

Figure 4.1: kPCA visualization of sampled species across primary bi-
ological domains. Archaea were not sampled due to lack of data.

After predicting the entirety of the LOTUS database, we randomly sampled a

dozen species from each primary biological domain, excluding Archaea 1. Each of

these species was associated with 148′190 probability values. A kernel Principal

Component Analysis (kPCA) was then carried out to identify potential variance be-

tween the domains. Kernel Principal Component Analysis (kPCA), as opposed to

classic Principal Component Analysis (PCA), became the preferred approach given

the high-dimensionality of our dataset. The advantages of kPCA over PCA are its

skill at handling large data dimensions and its ability to recognise non-linear cor-

relations between features that PCA’s linear assumptions might miss. This innate

ability makes sure that kPCA keeps the most important and complex relationships

within the data as well as reducing the dimensions of the data.

1Due to an insufficient number of species.
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A clear distinction between the biological domains can be seen by looking at

Figure 4.1. To explain these observed variances, two hypotheses have been postu-

lated. First, our Graph Neural Network (GNN) may be capable of distinguishing

the molecular signatures that are unique to each domain. Alternatively, it is possi-

ble that the kPCA is mostly displaying the chemical biases included in the LOTUS

database. Given that the LOTUS database organises its data according to triples

of molecules-species-papers, it is reasonable to think that a majority of researched

molecules, meriting scholarly publication, are specific to particular domains i.e are

specialized metabolites. This claim is supported by Rutz et al. [2], who note that a

significant majority (more than 90%) of the compounds included in LOTUS display

domain specificity. The patterns in the kPCA results that have been found may be

explained by such innate biases. Either of the previous hypothesis has to be sup-

ported by a more in-depth examination.

Figure 4.2: Probability distribution of cholesterol across species in
the LOTUS database. The species already associated with cholesterol
were removed before the calculations.

In Figures 4.2 and 4.3, we present the probability distributions of cholesterol and

erythromycin across the species present in LOTUS. Based on the literature [46, 47],

cholesterol is ubiquitously found. The predictions of our algorithm align with this

notion, indicating a prevalent cholesterol presence in most species. This predictive

consistency is attributed to the mechanics of GraphSAGE. Given that cholesterol

is related to 522 distinct species in the LOTUS database, the algorithm is expected

to recognise the broad distribution of cholesterol across a diverse range of species,

leading it to predict its prevalence in the majority of the additional species.

Erythromycin, on the other hand, has a fairly low representation in the database,
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being linked to only eight species. In particular, these links primarily concern bac-

teria from the Actinobacteria phylum. As a result, our model tends to predict a

low occurrence of erythromycin across species, as visualized in Figure 4.3. How-

ever, the accuracy with which it anticipates its presence is noteworthy. Key gen-

era such as Streptomyces are correctly identified, with minor discrepancies like Mi-

cromonospora, as detailed in Table 4.1. This highlights GraphSAGE’s capability in

discerning potential associations between molecules and species, even in scenarios

of sparse data.

Figure 4.3: Probability distribution of erythromycin across species
in the LOTUS database. The species already associated with ery-
thromycin were removed before the calculations.

While GraphSAGE has shown notable abilities in making nuanced predictions,our

ability to verify the occurrence of molecules in species has limitations. For instance,

in the case of Streptomyces diastaticus presented in Table 4.1, a lack of documentation

regarding its erythromycin production exists in the current literature. On the other

hand, the potential presence of this molecule in Streptomyces achromogenes is reported

in the research presented by [48].

A thorough analysis using mass spectrometry of the highlighted species becomes

necessary to confirm the reliability and effectiveness of our approach. This could

reveal new molecular species relationships and provide empirical support for the

hypothesised associations presented in Table 4.1.

An inherent bias in favour of specialised metabolites represents another impor-

tant constraint. Understanding the existence of basic metabolites like water fre-

quently does not attract academic curiosity and suffers from publication biases. Pre-

dictions are then difficult since the research output rarely associates such a chemical

with its related species. This is demonstrated by the LOTUS database, which only
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Table 4.1: Erythromycin was originally discovered in Saccha-
ropolyspora erythraea [49]. Here we show the top 10 species that are
associated to erythromycin according to our model. In most new
predictions, no evidence of erythromycin has been found in the lit-
erature. This highlights the importance of MS analysis in order to
quickly verify their presence.

Species Probability Presence

Streptomyces diastaticus 0.9944 Needs investigation
Streptomyces drozdowiczii 0.9939 Needs investigation
Streptomyces antibioticus 0.9928 Needs investigation
Micromonospora 0.9927 Needs investigation
Streptomyces achromogenes 0.9924 Potential presence [48]
Streptomyces griseus 0.9919 Needs investigation
Streptomyces griseosporeus 0.9912 Needs investigation
Streptomyces albogriseolus 0.9906 Needs investigation
Streptomyces varsoviensis 0.9899 Needs investigation
Streptomyces ansochromogenes 0.9898 Needs investigation

records six instances of water, leading to poor predicative results as seen in Fig-

ure 4.4.

Additional complexities exist that limit the effectiveness of our model. In the

training stage of GraphSAGE, the algorithm only samples negative edges from edges

that do not exist in the graph. This methodology could introduce potential anoma-

lies; certain molecules may in fact be associated with distinct species, but the al-

gorithm is predisposed to miss such associations. The algorithm’s indifference for

phylogenetic distances is a serious matter as well. Although evolutionary informa-

tion is encoded in the node features, the general architecture of the graph lacks it,

which unintentionally leaves out important information. This shortcoming might

affect the precision of inferring occurrences in particular phylogenies. Excluding

phylogenies from the graph presents an other challenge. As previously mentioned,

one of GraphSAGE’s strengths is that it doesn’t necessitate the inclusion of all nodes

during the training process, thereby facilitating the addition of new nodes and theo-

retically maintaining prediction quality. However, in our specific application, since

the context of each node is encoded within its features, introducing a new node

will result in a node with node edges (singleton). While this new node might share

features with existing nodes, its lack of connections diminishes the quality of edge

predictions. Such a node will be missing the crucial contextual information that the

algorithm relies upon for accurate predictions.

Lastly, the current model configuration does not factor in the research effort, as

delineated in Equation (2.4). This omission could lead to biases, potentially compar-

ing molecules with considerable documentation in a given species to ones with less

characterization in a relatively unknown species.
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Figure 4.4: Probability distribution of water across species in the LO-
TUS database. The species already associated with water were re-
moved before the calculations. This visualization sheds light on a
limitation of our model. It’s a reasonable expectation that water is a
ubiquitous component in a vast majority of species. However, with
only six mentions of water in LOTUS, our predictions seem to fall
short.
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5 Conclusion and Future Work

In the course of this work, we have demonstrated the viability of developing a model

to predict the chemical compositions of organisms across the tree of life. By employ-

ing an approach that structures molecules and species as graphs, we have been able

to make better predictions compared to the more basic model.

The application of a Graph Neural Network (GNN) employing the GraphSAGE

technique has proven effective as an initial strategy. Notably, this modest implemen-

tation already yields reliable results for well-characterized metabolites. Nonetheless,

several challenges emerged. Foremost among these is the technical issue of ignor-

ing phylogenies, which consequently ignores useful and available data. Addition-

ally, the methodology employed for encoding molecular features, specifically the

straightforward concatenation of Classyfire classification and Morgan fingerprint,

may not be the ideal representation of the molecule’s information.

Another significant constraint of the GNN is its inability to generalize its pre-

dictions. Indeed, given the sparse nature of the existing data, the algorithm might

struggle to accurately represent the true intricate relationships and dependencies

that exist between nodes within the graph. Its predictions may then lack substantial

significance. Simply extrapolating LOTUS with this methodology would result in

predictions of "obvious" edges without providing further insights. We thus believe

that this does not address the question at stake, i.e. predicting a species’ metabolome.

Additionally, the GNN currently cannot incorporate mass spectrometry data or fac-

tor in research efforts. Recognizing and reconciling those discrepancies are crucial

considerations in order to improve the GNN’s accuracy.

In contrast, given that both GNN and Markov Random Field address analogous

issues [12], our hypothesis is that MRF could yield more robust outcomes. The flex-

ibility of our model, allowing for multi-dimensional data integration, could poten-

tially ameliorate the molecule encoding challenge we encountered with GNN. In-

deed, given the current configuration of our model, the species phylogenies, the

existing Classyfire classification tree, and a tree for the Morgan fingerprint could

be integrated, forming three distinct trees. Furthermore, the proposed MRF model

could easily include mass spectrometry data, a task that the GNN is now unable to

handle. In addition, the model would interpret both LOTUS and mass spectrometry

data as noisy observations of X , which the current GNN is also incapable of doing.

To conclude, we believe that the MRF model has the potential to outperform the

current existing GNN. We hope that the development of such a model will catalyse
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advancements in metabolomics, ecology, and drug discovery. More work is required

but we want to believe that through this thesis, we have laid the foundations for

future development of such a model.
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