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Abstract

This paper aims to provide information on previous basic research by charophyte experts

mainly  in  the field  of  reproduction,  dormancy,  and germination of  oospores.  Therefore,

published  information,  the  author’s  PhD  thesis  and  further  new  results  have  been

combined  to  summarise  the  state  of  knowledge  for  Characeae  of  permanent  and

temporary water bodies.  The understanding and integration of  evolutionary,  systematic,

and ecological knowledge enables the successful establishment of laboratory cultures as

well as axenic cultures. The combination of ecological field monitoring and species-specific

background knowledge led to the new cultivation method of ECO-IN-VITRO-CULTIVATION

as shown for Chara hispida.

This paper is dedicated to two experts of the Characeae research who passed away too

early. Tim Steinhardt, the best oospore lab colleague and Andrzej Pukacz with whom I had

the talk of transferring field ecology into my Chara cultures during my visit in Poznań, when

you wanted to teach me the use of all my properties.
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Introduction

Reproduction, one of the most fundamental processes of life is also one of the most critical

steps for aquatic non-seeded plants or algae, such as the submerged living, multicellular

charophytes,  which  have  evolved  by  sexual  or  asexual  modes  of  reproduction.  While

sexual  reproduction  depends  not  only  on  optimal  environmental  conditions  for  the
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formation and fusion of male spermatozoids with a female oogonium, asexual reproduction

relies  on  fragmentation  and  specialised  vegetative  algae  parts  such  as  reserve

accumulation roots or nodal cells (Schubert et al. 2016,Holzhausen et al. 2022). The latter

one is a short-term mechanism and is usually characterised by a lower level of resistance

to environmental factors and a limited survival time. Nevertheless, asexual reproduction is

common  in  charophytes.  It  has  been  demonstrated  for  several  species  in  limnic  and

brackish  habitats  (e.g. Steinhardt  and  Selig  2007,  Skurzyński  and  Bociąg  2011, 

Holzhausen et al. 2017). Recent studies from North America suggest that vegetative parts

of Nitellopsis obtusa may also form a perennial reservoir (Pokrzywinski et al.  2020). In

contrast, oospores produced by sexual reproduction show a long-term reservoir in aquatic

sediments. They are predicted to have a longer and higher survival rate combined with an

increased resistance to drought and mechanical stress (Casanova 1994, Rodrigo et al.

2010, Stobbe et al. 2014). However, essential factors such as

1. vital material,

2. dormancy breakage or

3. optimal germination conditions

are required for colonisation after long- and short-distance transport, recolonisation after

disturbance and maintenance of populations. But, the knowledge of fundamental molecular

processes is limited, the underlying gene regulation and the transcription factors involved

are  unknown,  a  reliable  differentiation  between  the  processes  of  dormancy  and

germination is controversial within the group of charophytes. Because of their applied and

evolutionary interest, to maintain long-term cultures without decay of oospore fertilisation

and  to  understand  the  reproduction  and  appearance/disappearance  of  Characeae  in

aquatic  systems,  it  is  particularly  important  to  elucidate  the  environmental  factors  and

molecular pathways behind these processes.

Thus, this review consists of available and relevant information on

1. environmental influences on gametangia formation and fertilisation,

2. dormancy,

3. germination induction of vegetative and generative units,

4. biomolecular studies and

5. the resulting ECO-in-vitro cultivation method based on ecological data on Chara

hispida.

1. Formation of gametangia and fertilisation

1.1 Sexual reproduction

The fusion of male and female gametangia and the subsequent maturation of the zygote is

called  sexual  reproduction.  This  mode  of  reproduction  is  described  for  mostly  all

charophyte species, even if the frequency of gametangia and oospore formation varies as

can be seen in the enormous amount of available literature. Both gametangia, the male
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antheridia and the female oogonia were produced by the formation of short shoots from the

nodal cell of branchlets (Schubert et al. 2016, Schubert et al. In press). Over the last 150

years, various authors published descriptions of cell development and formation of both

gametangia. Due to the amount of considered aspects, not all of them can be considered

here in detail. More than that, the plethora of techniques for gametagial studies range from

simple  descriptions  over  schematic  drawings  to  high-resolution  figures  of  microtome

sections. Table  1 summarizes  available  microtomic/microscopic  studies  of  antheridia,

oogonia  and rhizoids.  The full  plethora  of  studies  on  internodal  cells  were  excluded (

Sundaralingam 1954, Fetzmann 1957, Barton 1965a, Barton 1965b, Nagai and Rebhuhn

1966, Pickett-Heaps 1966, Shen 1967c, Barton 1968, Vouilloud et al. 2015).

 

1.1.1 Male antheridia

The majority of detailed gametangial studies have dealt with male spermatozoids and have

considered  the  morphology,  cell  division  or  phylogenetic  relationship  of  charophyte

spermatozoids to bryophytes or Pteridophyta (Belajeff 1894, Mottier 1904, Karling 1926, 

Karling 1927,  Sasaki  1935a,  Sasaki  1935b,  Satô 1954,  Eggmann 1966,  Pickett-Heaps

1967a, Pickett-Heaps 1967b). However, almost all comparisons are based on similarities in

structure and form. In contrast to numerous evolutionary studies on the genetic regulations

of male and female traits in bryophytes or pteridophytes, only a few studies are available

for charophytes such as the presence of the MIKC-type MADS box gene in oogonia and

antheridia of Chara globularis (CgMADS1), suggesting the presence of these genes before

diversification (Tanabe et al. 2004). These genes are thought to be involved in the control

of sex-specific haploid cell differentiation and stress response (Qiu et al. 2023).

The development of the two flagellated spermatozoids is well known within this group of

algae (Varley 1834, Thuret 1840). A brief historical overview of investigations is given by

Vouilloud et al. (2012). In the 19  century, different authors studied the cell development of

all three cell types (scutum, manubrium, capitulum) in detail (e.g., Varley 1834, Braun 1852

, Pickett-Heaps 1967a), a corresponding summary can be found in Schubert et al. 2016, 

Schubert et al. In press. Intercellular streaming was only observed in the manubrium and

capitulum, but never in external scutum cells (Braun 1852). In applied science, antheridia

size is part of almost all species descriptions and has been used for species determination

e.g., for Tolypella species (Holzhausen et al. 2023). However, the developmental stage,

environmental  conditions,  the  reproduction  mode,  and  plant  position  can  influence

antheridia sizes, which requires standardised and regional considerations necessary (Ernst

1918,  Kwiatkowska  et  al.  1996,  Calero  and  Rodrigo  2022). Fig.  1 shows  the  typical

development of antheridia which changed from green to light yellowish-green to an orange

flabelliform dehiscent antheridium, followed by the release of thousands of spermatozoids

and the attachment to oogonia. In 1967, Pickett-Heaps suggested a correlation between

the orange colour  and the accumulation of  plastoglobuli  as a source of  the increasing

carotenoid content (Pickett-Heaps 1967a).

th
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In  addition  to  morphology,  there  are  several  studies,  mainly  by  Kwiatkowska  and  co-

workers,  on  the  cell-to-cell  connection  via  plasmodesmata  and  the  process  of

endoreplication in C. vulgaris and/or C. tomentosa (Kwiatkowska et al. 1990). The type of

plasmodesmata (plugged, unplugged) correlates with the developmental stage and differs

in the cell  types connected and their internal substances (Kwiatkowska and Maszewski

1985, Kwiatkowska et al. 2003, Kwiatkowska 2003). Accordingly, the symplastic linkage

between  antheridia  and  thalli  is  higher  in  spring  and  summer  than  during  the  winter

dormancy (Shepherd and Goodwin 1992). Broken plasmodesmata therefore determine the

most mature state of antheridia and should be considered in further studies. Furthermore,

autoradiographic studies have shown the circadian translational activity within the different

cell  types  of  antheridia  (scutum,  manubrium,  capitulum,  spermatozoids),  including  the

protein  synthesis  activity  of  H-leucine  (Kwiatkowska  1991,  Kwiatkowska  et  al.  1995, 

Kwiatkowska et al. 1999, Kwiatkowska and Papiernik 1999). Studies on DNA methylation

were performed by Olszewska et al. (1997)

Cell  walls  of  C.  corallina antheridia  show  the  presence  of  cellulose  and  pectin

homogalacturon, whereas arabinogalactan proteins have only been indicated in epidermal

shields and anti-xyloglucan in the capitulum (Domozych et al. 2009). The expression of

PIN2-like auxin transporters in antheridial  filaments was shown by immunofluorescence

studies (Zabka et  al.  2016).  Studies on the effects of  gibberellic  acid are presented in

subsection V, biomolecular studies.

1.1.2 Female oogonia and fertilization

Compared to male antheridia, there are significantly fewer published studies on female

unfertilised gametangia, so-called oogonia. While the male gametangium of charophytes

(antheridia)  is  comparable  to  the antheridia  of  bryophytes,  the two female gametangia

differ. Charophyte oogonia are unicellular, ovoid and the fertilisation leads directly to the

zygote.  In  bryophytes,  however,  archegonia  are  multicellular  and  lageniform,  and

fertilisation leads to sporophyte development, with the formation of spores (Braun 1852).

Previous literature has concentrated on descriptions within general cryptogam overviews,

on developmental stages of cell divisions by microtome sections and on size variations

(e.g. De Bary 1871Covich and Tsukada 1969, Maier 1973, Sawa and Frame 1974, Leitch

1986, John et al. 1990, Leitch 1989, Leitch et al. 1990, Kwiatkowska et al. 1996). The cell

development of the female gametangium will not be discussed in detail here. Descriptions

can be found in Braun (1852), Sundaralingam (1954), Schubert et al. (2016), Schubert et

al. (In press). Microtome studies of female gametangia and included cell compounds are

listed in Table 1. Intercellular streaming was observed only in the multicellular basal node,

which give rise to the envelope cells, the unicellular internodal cell and the five envelope

cells. However, the intercellular streaming within the oogonium could not be observed in

detail (Braun 1852).

In  1971,  Anton de Bary  described the development  of  the female gametangium up to

fertilisation by male spermatozoids (De Bary 1871. Using a Brückean magnifying glass, he

was able to observe in detail not only the cell development of the surrounding envelope
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cells but also the formation of a tube-like channel, which results from a difference in the

lateral diameter of the five narrowed apical parts of the spiral cells to the lateral diameter of

the basal parts, which are located at the apex of the oocyte. Masses of spermatozoids rest

near the area of the five tube-like channels, fixed by the gelatinous intercellular compound

of the five narrowed channels, formed between two apical parts, allowing the intrusion of

spermatozoids as a dense bundle formation to move to the intercellular part above the

oocyte. In contrast, the intercellular part is only traversed by a narrowed channel, which

ends in a widened funnel shape at the apex of the oocyte. A scattered membrane structure

allows individual spermatozoids to pass through the apex. The zygote is develops, followed

by the formation of a thickened cellulose layer and a thickening and change in the colour of

the spiral  cells.  It  is thought,  that the absence of this layer is associated with infertility

although simultaneously the same amount of amylum is present.

The fusion of  male  spermatozoids  and female  oogonia  is  one of  the  most  fascinating

processes in charophyte development. The molecular signalling pathways involved during

fertilisation or meiosis are still unknown. The exact time of meiosis is still unknown. For a

summary  see  Schubert  et  al.  2016,  Schubert  et  al.  In  press.  Five  different opposing

hypotheses have been proposed for the exact time point of meiosis in charophytes: (I) just

before the germination of the oospore (Oelkers 1916), (II) in the early cell stages of the

antheridia  and  oogonia  (Tuttle  1924,  Tuttle  1926),  (III)  during  the  development  of  the

protonema filament  (Gonçalves  da  Cunha 1936,  Gonçalves  da  Cunha 1942)  and  (IV)

immediately after the fertilisation (Shen 1967b, Shen 1967c). Although hypotheses (I) and

(IV) are almost identical, both have been listed because of gaps in the descriptions of cell

movement  and  the  resting  phase  before  germination.  In  1899,  Goertz  described  the

observation of a possible delayed fertilisation by the protrusion of starch into the neck of

the female gametophyte (V, Goetz 1899). Despite a comparison with Vaucheria, no further

evidence is found in the literature Oltmanns 1895). The myth of meiosis is not well known,

mainly due to complications in microtome sectioning. The high starch content of oogonia

and oospores makes the procedure difficult.  The establishment of methods for ultrathin

sectioning of all developmental stages (from oogonia formation to the released oospore) is

one of the most important prerequisites for solving this mysterious process.

Cultivation and field studies have shown that the process of fertilisation may be dependent

on  environmental  conditions  such  as  temperature,  light,  or  salinity.  Cultivation  or

germination conditions, as well as species-specific growth behaviour, should be considered

when comparing existing literature. For example, Karling 1924 compared the maturation of

oospores  under  different  light  conditions.  Whereas  in  greenhouses  (high  temperature

during the day, low temperature at night) the oospores matured, in climatic chambers (high

temperature during the day and night) the oogonia remained in an unfertilised state. The

same has been proposed for C. braunii (Sato et al. 2014, Holzhausen et al. 2022). The

same  is  true  for  C.  aspera with  respect  to  light  and  salinity.  The  highest  rate  of

gametangiogenesis  was found under  natural  ecological  conditions.  Greater  variation  in

conditions compared to the natural ecological status resulted in stress responses such as

reduced gametangia numbers or cell death (Blindow et al. 2003). In this context, tracer

studies  on the polarity  and concentration  of  photoassimilates  in  vacuolar  saps (sugar-
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phosphates,  sucrose,  malate,  amino  acids)  of  C.  vulgaris,  C.  hispida and  C.  corallina

showed that

1. differences in sap composition differences are caused by seasonal changes and

reproduction (MacRobbie 1962, Barr 1965, Winter et al. 1987),

2. apices are sinks in sterile and fertile plants (Schulte et al. 1994),

3. gametangia are sinks during reproductive periods (Schulte et al. 1994),

4. a higher activity of 1,5-bisphosphate carboxylase (RuBPCase) and a fourfold higher

ferricyanide-dependent oxygen evolution in branchlets than in internodes (Ding et

al. 1991b), and

5. differences between growing and overwintering periods (Shepherd and Goodwin

1992),

6. intercellular transport occurs via plasmodesmata (e.g. Leitch et al. 1990) and

7. the  intercellular  transport  is  determined  by  the  rate  and  concentration  of

cytoplasmic streaming and a possibly unclear “intrinsic regulatory process” (Ding et

al. 1991a).

Assuming that the rate of cytoplasmic streaming depends not only on general seasonal

changes but also on the exact environmental conditions, the differences in oospore sizes,

as reported by different authors, could probably be explained by the number of cell-cell-

connections between branchlets and oogonia and the associated rate of sucrose uptake

and starch storage, respectively (Holzhausen 2016). Comprehensive analyses combining

phenological and cytological studies, molecular mechanisms and environmental data over

several years including the open question of chloride uptake by oogonia could resolve this

open question.

1.2 Asexual reproduction

Asexual reproduction by vegetative parts of plants is common in aquatic plants and algae.

For reviews about this, see e.g., (Lovett Doust and Lovett Doust 1988, Barrat-Segretain

1996, Barrat-Segretain et al. 1998, Barrat-Segretain and Bornette 2000Cecere et al. 2011, 

Agrawal 2012). Within the Characeae, vegetative reproduction is a widespread feature in

all genera. However, there is one exception, Chara canescens, which is the only species

that is unable to reproduce vegetatively and is therefore dependent on the formation of

oospores for reproduction (Krause 1997). In addition to its unique position, this species can

reproduce parthenogenetically or sexually through dioecious populations, and it has been

shown  that  females  of  parthenogenetic  and  sexually  reproducing  populations  are

genetically distinct (Schaible et al. 2009a, Schaible et al. 2009b, Nowak et al. 2019) and

differ in chromosome numbers (Ernst 1917) .

In contrast to generative reproduction, there is a limited amount of literature on asexual

reproduction. However, only a few scientists (Braun 1852, Giesenhagen 1897, Migula 1898

Bharatan 1987, Sederias 2003, Skurzyński and Bociąg 2011, Pokrzywinski et al.  2020)

have studied this type of propagation in detail for species of the genera Nitellopsis, Chara, 

Lamprothamnium and  Paleonitella.  In  most  cases,  cell  division  in  nodal  cells  and  the

emergence of new shoots were mainly visualised by schematic representations, studies
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and visualisation  with  modern  microscopy  techniques  are  rare,  except  for  the  rhizoids

themselves (e.g. Braun et al. 1996, Braun et al. 1999). In 1896, Giesenhagen summarised

the differences between bulbils and modified root nodules, based mainly on the work of

Migula (Migula 1898) and his own results (Fig. 2A/B). However, Giesenhagen’s findings

are not entirely consistent with Migula’s, as Chara aspera root nodules are not unicellular,

and  Giesenhagen  gives  a  detailed  description  of  their  formation  and  cell  division  (

Giesenhagen 1897). These nodules are cells that store starch as a reserve reservoir (Fig.

2C). However, the different provisioning of individual root nodules, reflected in the different

sizes within the complex, has not been fully elucidated. The number of reserve reservoirs

is  species-specific,  with  more  than  four  being  described  as  unusual  in  Chara  aspera,

whereas  complexes  of  three  to  five  or  more  than  12  have  been  described  for

Lychnothamnus macropogon (Braun and Nordstedt  1882). Fig.  2C shows a network of

reserve reservoirs, with more than four being more common, as described by previous

authors. The nearest root node or the apical part of the reservoir cell is assumed to be

responsible  for  the development  of  new shoots.  In  his  study,  Bharathan describes the

same type of 'bulbils' for Chara hornemannii, C. aspera, L. papulosum and L. succinctum,

but in contrast to earlier studies, they are also referred to as bulbils and not as root nodules

(Bharatan 1987). Interestingly, the authors' own results have shown that sterilisation and

severance of  the  connecting  rhizoid  filaments  do  not lead to  the  development  of  new

shoots. So far, no signalling pathways are known for these connecting rhizoid filaments.

The study by Bonnot et al. (2019) showed that the Chara braunii ROOT HAIR DEFECTIVE

SIX-LIKE (Stevens and Parsley 2022) genes do not complement the rhizoid or root hair

development  in  mosses  and  land  plants,  initiating  a  completely  different  function.  In

contrast to this, the induction of germination by the root/shoot nodule complex is simple

and occurs within a few days under laboratory conditions (Giesenhagen 1897, Bharatan

1987, Blindow et al. 2009). In addition to modified root nodes, vegetative reproduction can

occur via modified shoot nodal cells. The ability of these cells to produce new shoots after

periods of drought, fragmentation or death of apical cells is well documented (Fig. 2D).

This ensures the growth of new populations under unfavourable conditions for oospores (

Casanova 1994, Casanova 1999, Blindow et al. 2009). Under the ontogenetic assumption

that the regeneration of fragmented node cells is based on the formation of side branches

or cone-like outgrowths (Giesenhagen 1897) as described for the strawberry-shaped root

nodules of C. baltica, a limited number of new thalli can be developed by a modified shoot

node. These are the same as lateral branches but reduced. Various studies (Braun and

Nordstedt 1882, Giesenhagen 1897, Schubert et al. 2016) have been published on the

structuring of shoot node cells, including cell  division (Fig. 2E-G). Interestingly, different

forms of overwintering structures can be observed: star-shaped modified shoot nodes in N.

obtusa (Fig. 2A/B), strawberry-shaped modified nodal cells in C. baltica or cardioid-shaped

modified root cells in C. fragifera. The existence of star-shaped bulbils in C. connivens, as

mentioned by Clavaud (Clavaud 1863,  Giesenhagen 1897),  is  not  fully  confirmed.  The

phenomenon of reduced, starch-filled bulbils acting as reserves can also be found in other

species such as C. baueri, C. foetida, C. fragilis, C. hispida or C. subspinosa. Bulbils have

also been described in Nitella species from the southern hemisphere (De Maisonneuve

1859, Casanova 1994, Casanova 1999). However, the formation and gene expression in

these  vegetative  cells  is  not  fully  understood,  although  a  correlation  with  distribution
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patterns  caused  by  landmass  separation  and  environmental  changes  has  been

hypothesised (Croy 1979).  This  is  supported by barcoding studies that  found adaptive

mutations of chloroplast and mitochondrial genes in different habitats (Kato et al. 2008, 

Schneider et al. 2015). The lack of multidimensional approaches, including field, laboratory,

microscopic  and  molecular  studies,  to  address  open  questions  about  vegetative

reproduction should be addressed in future studies.

1.3 Rhizoids

Charophyte rhizoids function similarly to terrestrial plants, mainly for anchoring but also for

absorbing  nutrients,  which  are  often  associated  with  microorganisms.  The  cell

development of rhizoids has been studied by different authors. Detailed descriptions of cell

development,  including cell  thickening can be found in the literature (e.g.,  Braun 1852, 

Zacharias 1890, Linsbauer 1927, Shen 1967a, Sievers et  al.  1991, Braun and Sievers

1993) .

In general, rhizoids consist of two cell walls, a single-layered outer cell wall and a multi-

layered inner cell wall. The components pectin and cellulose are described for both. The

outer layer of Tolypella intricata f. humilior also contains mucilage (Fridvalszky 1958). This

exudate  and  polysaccharide-  and  glycoprotein-rich  coating  is  also  known  from

ecophysiological  studies of  Lamprothamnium papulosum.  A correlation between salinity

and the thickness of the mucilage secretion was observed (Shepherd et al. 1999). There

are no further studies on rhizoid mucilage or oospore-mucilage. Functional characteristics

of  mucilage  on  charophyte  rhizoids,  especially  as  hydraulic  bridges  related  to  nutrient

supply and desiccation tolerance, are not known. In land plants and hydroterrestrial algae,

mucilage has been shown to act as a barrier to pathogens and harmful metals, to protect

root tips and to penetrate the soil (Herburger et al. 2022). In addition to mucilage, vesicles

containing BaSO , which act as gravity-sensing statoliths, are located on the outer cell wall

(Hejnowicz and Sievers 1981, Braun and Sievers 1993). The apical part of the rhizoids

contains the stationary cytoplasm and the nucleus, whereas the basal part contains the

mobile cytoplasm, including the cytoplasmic streaming.

The  main  focus  of  research  using  charophyte  rhizoids  as  model  cells  is  gravitropism.

Positive gravitropism, or downward growth, is observed in charophyte rhizoids. The first

study was done by Zacharias (Zacharias 1890). He showed that the rhizoid tip cells also

grew downwards when the rhizoid position was changed. 100 years later, it was clear that

the actin cytoskeleton of Chara globularis and Chara foetida, which is controlled by actin-

binding proteins,  plays an important  role  in  the mechanism of  gravitropism and in  the

polarised perception of charophytes (Sievers 1967, Braun and Limbach 2006). A central

role  in  the  apical  rhizoid  zone  is  supported  by  immunolocalisation  studies  of  actin

polymerisation factor and profilin. Negative gravitropism is described for protonematal cells

in contrast to rhizoids.

Further studies on gene expression as described above are not available for charophytes.

However, Sandan's studies of C. braunii (C. coronata) and Nitella flexilis showed that root
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development was enhanced by IAA-K solution as opposed to pure tap water or Knop's

solution (Sandan 1955).

2.  Dormancy and germination induction 

In  both  permanent  and  temporary  water  bodies,  the  time  between  fertilisation  and

germination is extended by a period of dormancy to increase the possibility of a period of

low  competition  and  successful  population  establishment,  although  subsequent

reproductive capacity is not guaranteed (Casanova and Brock 1990, Vleeshouwers et al.

1995). The adaptive seed trait of a metabollically inert state germination capacity as well as

physiological  processes such as mobilising resources and activating/deactivating genes

leading  to  morphological  changes  and  subsequently  germination  are  complex  and

unknown so far. According to Baskin and Baskin (1985), the physiological, morphological,

and physical state

1. at the time of maturation and

2. at the time of germination must be considered and combined with environmental

habitat conditions at

3. the time of seed state changes and

4. during the maturation and germination process.

However, many classification systems have been established because there is no single

definition of dormancy (Bewley and Black 1982). The distinction between developmental

time, i.e., primary, and secondary dormancy, is the simplest and most convenient. While

primary  dormancy  is  induced  during  development  and  maturation  (e.g.  Crocker  1916, 

Hilhorst  1995,  Hilhorst  1998,  Finch-Savage  and  Leubner-Metzger  2006),  secondary

dormancy is induced only after release from the mother plant and requires the loss of

primary  dormancy.  Interestingly,  although  not  yet  confirmed  by  molecular  studies,  the

hypothetical physiological dormancy model for terrestrial seeds (Hilhorst 1998) also seems

to  apply  to  charophytes.  This  combined  model  describes  the  regulation  of  secondary

dormancy by temperature and the subsequent triggering of germination by the availability

of nitrate, light, and gibberellic acids. Fig. 3 shows the modified model of Hilhorst (1998)

and implies  that  dormancy and germination  are  directly  correlated  with  the  amount  of

phytochrome receptors  present.  These red  (R)  and far-red (FR)  receptors  act  as  light

sensors  in  several  plants/algae  (Inoue  et  al.  2019),  which  are  mainly  located  in  the

nucleolus. Several germination studies have identified that germination is triggered by the

supply of gibberellic acid (Sederias and Colman 2007, Holzhausen et al. 2022), although

evolutionary studies have shown that the gibberellic acid pathway has evolved in mosses (

Nishiyama  et  al.  2018).  Further  studies  are  needed  to  determine  whether  chemical

precursors could explain this phenomenon. In addition, endogenous gibberellic acid has

been measured in  studies  on Chara tomentosa and Chara vulgaris (Kaźmierczak and

Rosiak 2000, Kaźmierczak 2001, Chowdary 2014). Fertilisation was not found to be related

to endogenous gibberellic acid content, but to sex. While the concentration in sterile shoots

increases towards the apex,  the concentration in  fertile  shoots declines from the apex

downwards. In contrast, the levels in male plants exceed those in female plants.
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The induction of germination itself is a signal for the end of the resting phase (dormancy)

and for the presence of favourable environmental conditions for growth. Sensors are used

to  provide  signals  on  temperature,  light,  nutrient  availability,  and  hydration  status.

Competitive conditions,  on the other  hand,  are undetectable and represent  a 'trial  and

error'  approach.  Individual  factors,  although  not  always  fully  distinguishable,  are

considered in the following subsection.

The induction of germination itself is a signal for the end of the resting phase (dormancy)

and for the presence of favourable environmental conditions for growth. Sensors are used

to  provide  signals  on  temperature,  light,  nutrient  availability,  and  hydration  status.

Competitive conditions,  on the other  hand,  are undetectable and represent  a 'trial  and

error'  approach.  Individual  factors,  although  not  always  fully  distinguishable,  are

considered in the following subsection.

2.1 Biogeography

The origin of the material (spores/plants/sediments), although neither an abiotic nor a biotic

factor,  is  of  crucial  importance.  This  concerns both  the biogeographical  origin  and the

occurrence in permanent or temporary biotopes. In addition to morphological differences

between regions (Brzozowski and Pełechaty 2020, Holzhausen et al. 2023), there are also

programmed physiological  differences caused by  climates.  Most  studies  with  oospores

have  been  carried  out  on  Nitella  and  Chara species  from  permanent  water  bodies

belonging to the zonobiomes III (sub-tropicalal arid climates of sub-deserts and deserts;

Pott 2005) and VIII (boreal zone, Table 3). In contrast, most studies on germination use

sediments from zonobiome VI, especially from the Baltic Sea (Table 4), while studies on

oospore germination are rare.

Studies of  Chara species from permanent  waters  in  the northern hemisphere are less

common. And most studies to date have focused on secondary dormancy, and only a few

acquire primary dormancy by leaving the mother plant (Forsberg 1965a, Shen 1966) and

on differences  in  the  degree  of  dormancy  (Sederias  and  Colman 2009),  see  Table  2.

Collectively, these studies have shown that

1. species-specific differences exist  due to different temporal and spatial  offsets of

charophytes (Casanova and Brock 1990, Bonis and Grillas 2002) and

2. freshly extracted oospores have a higher dormancy level than those extracted from

sediments, which may be explained by the inhibitory effect of abscisic acid (e.g.

Takatori and Imahori 1971, Casanova and Brock 1996),

which is gradually reduced during sediment storage (Sabbatini et al. 1987, Sederias and

Colman  2007,  Penfield  and  King  2009).  The  most  effective  method  for  breaking  the

dormancy of different species of Nitella and Chara is listed in Table 2.

Field studies have shown that charophytes of permanent waters emerge mainly in spring

or summer, in their so called “temporal window” (Stross 1989). However, some species

prefer  autumn  or  biennial  germination  periods.  The  German  Charophyte  Monograph
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“Armleuchteralgen.  Die  Characeen  Deutschlands”  (Arbeitsgruppe  Characeen

Deutschlands) and the forthcoming European Monograph (International Research Group of

Charopytes,  http://www.sea.ee/irgcharophytes/)  provide  a  good  overview  of  species-

specific ecological niches. In contrast to this, the germination of oospores in temporary

water  bodies  is  dependent  on  fluctuations  in  the  water  level.  Adaptions  to  these

unpredictable variations include short or annual life cycles for C. braunii, C. canescens, 

Tolypella or  Nitella species  ( Casanova  and  Brock  1990,  Brock  and  Casanova  1991).

Although interannual differences cause a high variability of initial environmental conditions

on germination and composition of aquatic plant assemblages, simulation studies have

shown the effects of the human influence (Rodríguez-Merino et al. 2017). Therefore, it will

be necessary to harmonize economic, agricultural and recreational use in order to protect

endangered charophyte species as done for T. salina from mediterranean salt marshes (

Lambert et al. 2013).

2.2 Temperature

The influence of temperature on oospores has been considered by several authors, both

on dormancy breakage (Table 2) and on germination of oospores. The temperatures used

for germination approaches with oospores or sediments are summarised in Table 3 and

Table 4. In most cases, oospores or sediments were pre-treated for days or weeks using

cold  temperatures  between  4°C  and  10°C.  In  most  cases,  spores  or  sediments  were

pretreated for days or weeks at 4-10 °C to mimic natural vernalisation. Despite conflicting

results,  the  most  effective  method  for  breaking  dormancy  and  subsequently  inducing

germination appears to be cold treatment of oospores followed by irradiation with long-

wave  light.  There  are,  however,  species-specific,  and  biogeographical  differences.  For

example, the dormancy of freshly extracted oospores (primary dormancy) of Chara vulgaris

was broken by low temperatures, whereas for the germination of Nitella furcata from New

Zealand storage at room temperatures is preferred (de Winton et al. 2000). The origin of

the samples and the associated climatic conditions appear to be of critical importance. The

evaluation of the available data shows that a correlation between conditions for dormancy

breakage and zonobiome can  be  made (Table  2).  For  example,  almost  all  species  in

zonobiome  V  (warm  temperate  zonobiome)  can  be  broken  out  of  dormancy  by  pre-

treatment at 15°C, whereas species in zonobiome VI require a cold storage phase.

2.3 Light availability

The growth,  the preferred reproduction modus and depth distribution of  charophytes is

determined by the availability of light and the underwater light climate (Barko and Filbin

1983,  Canfield  et  al.  1985, Küster  1997,  Middelboe  and  Markager  1997,  Sagert  and

Schubert 1999), but also by the germination of oospores. However, multiple interactions

with  ecological  factors  such  as  temperature  (e.g.  van  den  Berg  et  al.  1998)  or

phytoplankton biomass (Brunet et al. 2011) hamper the consideration of all levels of light.

Increasing  eutrophication,  characterised  by  an  increase  in  nutrient  concentration  and

associated phytoplankton growth, can also rapidly terminate the existence of charophytes.

A number of studies have shown that the reduced availability of light, caused by a high
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density of phytoplankton, can be a decisive factor in the decline of charophytes (Blindow

1992, Arthaud et al. 2012). In addition, light acts in a variety of ways. Photon flux density,

spectral composition or the duration of light exposure (periodicity) can all have important

signalling effects. For seeds, studies have also shown that the genetic basis, the position in

the sediment, the absorptive capacity of the coat and the state of dormancy play a crucial

role (Grime 1979, Grime et al. 1981, Pons 2000). Results are partly contradictory despite

the large number of studies on light-induced oospore germination. While several authors

have attributed a positive effect to the intensity and quality of the light, others have not

observed  any  effect  of  these  factors  on  the  germination  of  oospores  (Shen  1966,  de

Winton et al. 2004). This inconsistency may be due to biogeography, species specificity,

the  type  of  sample  material  used  (oospores  versus  sediment  sample,  fresh  oospores

versus oospores from diaspore banks) and the synergy thereof.  The results of existing

literature are summarized Table 3 and Table 4, divided into experiments with sediments or

only oospores separated from sediments. For example, Shen (1966) did not observe any

effect of light on the germination of C. contraria oospores, whereas Sabbatini et al. 1987

identified this factor as the breaking of dormancy. In this case, however, it is difficult to

derive  a  biogeographical  response,  because  Shen  does  not  specify  the  origin  of  the

oospores of C. contraria. Sabbatini et al.  1987 uses oospores from zonobiom III,  which

come from the dry areas of the temperate zone, characterised by strong annual rainfall

variations.  These  inter-annual  rainfall  variations,  combined  with  high  summer

temperatures,  initiate  the  positive  trigger for  light-induced  germination.  Similar

contradictions could be found for C. globularis. Proctor 1967 described a positive effect of

light, while de Winton et al. (2004) and Holzhausen et al. (2017) could not confirm this.

Furthermore, de Winton et al. (2000) demonstrated the germination capacity of C. australis

and C. globularis under dark conditions (< 0.5µmol photons/(s*m )). However, there are

differences in methodology, particularly in the origin which may explain the wide range of

response behavior  (Table  3).  In  any  case,  such  inconsistencies  highlight  the  need for

further  basic  research  on  charophyte  dormancy  and  germination  to  develop  reliable,

species-specific  protocols,  including  habitat  and  geographical  differences  (permanent

waters vs. temporary waters, zonobiomes) for continuous cultivation allowing the full life

cycle.

2.4 Nutrients and phytohormons

The chemical and physical properties of the substrate and medium, including invertebrates

and microbes determine the success or failure of charophyte germination and growth, in

addition to the main cues of temperature and light. This includes aspects such as:

• oospore sterilization agent and concentration (Forsberg 1965c, Sederias and

Colman 2007, Sederias and Colman 2009, Holzhausen 2019, Holzhausen et al.

2022

•  inorganic  media  (Forsberg  1965a,  Forsberg  1965b,  Forsberg  1965c,  Proctor

1967, Andrews et al. 1984, Wüstenberg et al. 2011)

2
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• content of organic material (Buljan 1949, Gumiński 1983, Smart and Barko 1984,

Kalin and Smith 2007, Pörs and Steinberg 2012, Holzhausen 2016, Holzhausen et

al. 2017, Holzhausen et al. 2022)

• cyanobacteria / phytoplankton (Casanova et al. 1998, Rojo et al. 2013a, Rojo et

al. 2013b, Fukushima and Arai 2015, Pełechata et al. 2016)

• nutrient concentration , e.g., phosphorus, sulfides or nitrates (Reid et al. 2000, 

Sederias and Colman 2009)

• pH value (Shen 1966, Kim and Mun 1997, Quanter 2020)

• phytohormones  (Sederias  and  Colman  2007,  Tarakhovskaya  et  al.  2007, 

Holzhausen et al. 2022)

• salt  concentration (Winter and Kirst  1990, Winter et  al.  1996, Shepherd et  al.

1999)

• substrate density, structure, and water content (Boedeltje et al. 2002, Matheson

et al. 2005, Porter 2007)

• antibiotics (Christian 2004)

• activity of benthic invertebrates (Kuczewski 1906, Fukuhara and Sakamoto 1987, 

Kotta et al. 2004, Hansen et al. 2011

• epiphytic associated microorganisms (Hempel et al. 2008, Kataržytė et al. 2017,

Rodrigo et al. 2021)

• beneficial growth promoting substances and phytopathogens (Wajih and Sinha

1980, Ghazala et al. 2004, Lusweti and Pili 2021)

Interestingly, studies have shown that pure inorganic medium inhibits oospore germination

(Imahori  and  Iwasa  1965).  This  was  strongly  supported  by  a  high  percentage  of

germination experiments (see Table 3). In most cases, the addition of organic compounds/

organic  material  was  critical  to  induce  charophyte  germination.  However,  this  also

increased the risk of unwanted contamination. However, there is a lack of studies on the

interaction  of  germination-promoting  micro-organisms.  For  terrestrial  plant  seeds  and

macroalgae,  promoting  seed  germination  and  growth  development  was  confirmed  by

producing phytohormones providing water and/or minerals, nitrogen fixation or pathogen

defence (Tsavkelova et al. 2007, Spoerner et al. 2012, Wichard 2015). For Characeae,

information on associated bacteria is rare (Hempel et al. 2008, Kataržytė et al. 2017), and

information  on  soil  microbes,  especially  in  the  rhizosphere  of  Chara meadows,  is

completely lacking.

For most of the above aspects there is a consensus in the currently available literature.

Discrepancies  and  partly  contradictory  results  exist  only  for  the  use  and  influence  of

sterilising agents. These range from combined alcohol and calcium hypochlorite to sodium

hypochlorite and hydrogen peroxide. The same applies to the concentration (1%-30%) of

substance used.  While  some authors  have not  been able  to  detect  any  effect  on  the

germination of oospores, others have reported an inhibition of germination after the use of

high concentrations of hydrogen peroxide (Forsberg 1965c, Holzhausen et al. 2022).
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2.5 Desiccation/ redox potential

Seeds  stored  in  sediments  show  long-term  viability,  whereas  seeds  stored  in  moist

conditions  may  lose  viability  over  time  (Villiers  1974).  Changes  in  desiccation/redox

potential  manipulation  have  also  been  observed  to  have  species-specific  treatment

responses Kalin and Smith 2007. Desiccation of Nitella cristata var.  ambigua oospores

increases germination, whereas no effect was observed for Nitella sonderi (Casanova and

Brock 1996). Dried oospores of C. canescens, C. contraria, C. evoluta, C. hydropitys, C.

globularis, C. rusbyana, C. sejuncta and C. zeylanica germinated after freezing (-20°C),

cold (3°C) and warm temperatures (24°C) over a period of up to four years in studies by

Proctor (1967). A high percentage of germination of C. canescens after six years of wet

storage (room temperature, dark) has been shown in own experiments.

Furthermore, a decisive effect of desiccation and salt concentration on germination has

been  shown  in  studies  of  the  germination  capacity  of  Tolypella  salina oospores  from

different  French salt  marsh sediments  (unpublished data).  A significant  increase in  the

number of seedlings after desiccation was observed when comparing germination rates of

wet and pre-dried sediments. These results suggest that targeted temporary desiccation

and reduction of digested sludge could allow for a continuous recolonisation of Tolypella

salina in France.

2.6 Seed size and burial depth

In addition to physiological triggers, morphological and geological factors have influence on

oospore germination. Only a small number of studies on this subject can be found in the

literature. The seed size of oospores and spores allows the availability of energy reserves

in the form of starch grains as a resource for the growth of the transparent seedling part (

Venable and Brown 1988, Casanova and Brock 1990, Casanova and Brock 1996). The

relationship between burial depth and ability to germinate was investigated by Dugdale et

al. 2001 using New Zealand oospores. Their results of highest germination rates up to 50

mm were confirmed by most germination studies of sediment samples. Interestingly, they

found a relationship between seed size and burial depth: Heavier C. globularis oospores

germinated from deeper sediment zones than lighter Nitella oospores. Those oospores

from deeper sediment layers can be considered as a potential internal oospore bank as

shown by restauration studies of so-called “ghost-ponds” (Alderton et al. 2017, Sayer et al.

2023). Mediation by soil invertebrates is only known for the seeds of e.g., Zostera marina (

Blackburn and Orth 2013) but not for charophytes although Kuczewski (1906) described

the supply of the water snail Limax paludosa for clear water cultivation vessels.

3. Growth and in-vitro cultivation

Charophytes have been cultivated for more than 100 years. In most cases, charophytes

were cultivated using laboratory-based or greenhouse-based techniques. Problematically,
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the epiphytic microorganisms grow independently of oxygen or the duration of cultivation.

Only a few authors (Kuczewski 1906, Karling 1924) have attempted to overcome these

problems by adding grazers such as snails or daphnia. A drastically reduced selection of

cultivation experiments and conditions can be found in Table 5. Due to a lack of information

on  cultivation  and  propagation  methods,  studies  involving  short-term  experiments  on

photosynthesis  are  not  listed.  Nevertheless,  they  may  provide  information  on  light

intensities applicable to cultivation methods. In recent decades, aquaculture and outdoor

mesocosms have been additionally used to grow and reproduce algal material, e.g., for

(electro-) physiological studies or regeneration of aquatic systems (e.g. Tazawa et al. 1979,

Tazawa  et  al.  1987,  de  Winton  et  al.  2000,  Beilby  et  al.  2006,  Rodrigo  et  al. 2010, 

Holzhausen  2019,  Blindow  et  al.  2021).  In  contrast  to  constant  indoor  cultivation

conditions, outdoor experiments or greenhouse cultivation require the documentation of

environmental conditions to determine influencing factors such as growth, expression of

morphological  traits  or  gametangia  production.  In  addition  to  the  extreme  growth  of

microorganisms in culture vessels, the development and maturation of gametangia is often

suppressed completely or decreases over time. According to the existing literature, this

does not  only  depend on the  periodicity  or  preference for  vegetative  growth,  but  also

occurs with repeated reactivation of the material, as can be seen in Karling (1924). The

influence of various abiotic factors such as temperature, light regime or media composition

including amino acids and vitamins has been the subject of a large number of studies over

the last 100 years, but only a few have considered the development of gametangia during

experiments. Effects of amino acids and vitamins, added individually or in mixtures, on the

growth of protonemata and adult thalli  of Chara zeylanica were studied by Imahori and

Iwasa (1965).  Here they identified casein hydrolysate and polypeptone as effective for

promoting growth in protonemata and adult plants, whereas yeast extract and individual

amino acids were only marginally effective. In particular, the growth of adult plants was

promoted by the vitamins and phytohormones cobalamin, nicotinamide, GA and kinetin (6-

furfurylamino-purine). However, thiamine (B1) and pyridoxal (B6) only promoted the growth

of the protonemata. Further studies were carried out by Libbert and Jahnke (1965) who

found an antagonistic effect of indoleacetic acid/auxin (IAA) and antiauxin (PCIB) in Chara

vulgaris (Chara foetida), Chara hispida and Chara subspinosa (Chara rudis).

4. Biomolecular studies

The  number  of  biomolecular  studies  on  the  Characeae  is  lower  than  on  other  plant

organisms.  However,  over  the  last  100 years,  various  cell  wall  studies,  phytohormone

studies and cytological studies have been carried out.

In addition to the cell walls of antheridia, the chemical composition of charophytes has

also been studied in internodal cell walls of various species, mainly to elucidate the ion

exchange in the cell walls. Overall, charophytes contain the same proteins, pectates, lignin,

hemicellulose, and cellulose as land plants (Anderson and King 1961a, Anderson and King

1961b,  Anderson  and  King  1961c,  Anderson  and  King  1961d,  Foissner  et  al.  1996, 

Proseus and Boyer 2005, Proseus and Boyer 2006, Proseus and Boyer 2012). Only the
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percentages of these differ from those of land plants, e.g., the values for lignin in roots/

rhizoids.  The highest proportions of  uronic acid anhydrides and proteins were found in

dried cells of C. australis, C. foetida and N. translucens (5-50% of ash). Sugars such as

glucose, uronic acid, galactose, arabinose, xylose, mannose and rhamnose were detected

in descending order of abundance. Recent studies have shown that Nitellopsis obtusa, 

Chara aspera and Chara subspinosa lacks hydroxyproline and arabinogalactan proteins,

which are common in land plants (Pfeifer et al. 2022, Pfeifer et al. 2023).

Over  the  last  30  years,  Foissner  and  co-workers  have  published  a  vast  amount  of

cytological and molecular work on C. australis, C. braunii and Nitella internodal cells.

This  includes  wound healing,  exocytosis  (Foissner  et  al.  1996),  nuclei  fragmentation  (

Foissner and Wasteneys 2000), the detection of sterol-rich domains (Klima and Foissner

2008), the formation of lipid droplets near the endoplasmatic reticulum (Foissner 2009), the

involvement of charasomes in pH banding (Schmolzer et al. 2011, Foissner et al. 2015, 

Sommer et al. 2015, Eremin et al. 2019) and the inhibition of vesicle transport by Bredfield

A (Bulychev and Foissner 2020). The majority of these studies have been carried out using

FM labelling. In addition, molecular and biochemical work was done on vesicular transport

and plasma membrane repair by identifying a CaARA6-like protein with GTPase activity

and a CaVAMP72 protein (Hoepflinger et al.  2013, Hoepflinger et al.  2014), as well  as

studies on OH- transporters including the identification of the Slc4-like gene CaSLOT (

Quade et al. 2022). Genomic data and protocols available for C. braunii, C. australis and

C. corallina have accelerated the ongoing molecular work on charophytes using in-vitro

cultures (Tsutsui et al. 1987,Nakanishi et al. 1999, Nishiyama et al. 2018, Bonnot et al.

2019, Phipps et al. 2021, Haraguchi et al. 2022, Quade et al. 2022, Heß et al. 2023).

Phytohormone  signalling  is  known  to  be  essential  for  seed  maturation,  dormancy,

germination, and senescence. In land plants and bryophytes, the roles of abscisic acid

(ABA), gibberellic acid (GA ) and auxin are well studied. Their associated enzymes are key

players  in  plant  signalling  processes,  germination  and  stress  response  (von

Schwartzenberg 2006, Anterola et al. 2009, Thelander et al. 2018). Within Characeae, little

is  known  about  the  detailed  gene  regulatory  network  and  the  proteins  involved  in

transporting phytohormones and performing specific functions. In the past centuries, the

focus on physiological studies has dominated this research, which e.g., demonstrated the

auxin accumulation in charophytes. Here the first studies on auxin in charophytes were

carried out by the group of Libbert and co-workers. The synthesis of IAA via a tryptophan-

independent pathway was suggested by cut-off studies of apices (Libbert and Jahnke 1965

).  The  presence  of  polar  auxin  transport  (PAT)  in  internodal  cells  and  membrane-

associated  PIN2-like  proteins  in  male  antheridia  during  proliferation  but  not  during

spermiogenesis is confirmed by immunofluorescence labelling studies in C. corallina and

C.  vulgaris ( Boot  et  al.  2012).  Interestingly,  PIN2-like  protein  expression  and  auxin

accumulation were found to be associated with callose and plasmodesmata connectivity

between cells, suggesting that these functional features evolved long before land plants.

The highest expression and accumulation were found in capitula cells. In addition, the use

of  exogenous  IAA  had  been  shown  to  (i)  shorten  the  proliferative  period  while  PCIB

reduces mitotic activity (Godlewski 1980, Zabka et al. 2016) and (ii) ensure the presence of

3
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rhizoids  during the development  of  gametangia  (Sievers  and Schröter  1971)  However,

recent phylogenetic analyses based on genomic data could confirm proteins involved in

phytohormone biosynthesis and signalling (Feng et al. 2023).

Within the charophytes, hormone extraction was performed for C. braunii and C. australis

including  salicylic  acid  (SA),  ABA,  jasmonic  acid  (JA),  indole-3-acetic  acid  (IAA),

jasmonate-isoleucine  conjugate  (JA-Ile),  indole-3-acetyl-aspartate  (IAA-Asp),

strigolactones and the JA precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) using LC-

MS/MS methods and deuterium-labelled standards (e.g., Delaux et al. 2012, Hackenberg

and Pandey 2014, Beilby et al. 2015, Waters et al. 2017, Schmidt 2021). After detecting

low levels of ABA in C. foetida cells (Tietz et al. 1989), Hackenberg and Pandey identified

the associated G-proteins (Hackenberg and Pandey 2014). Like land plants, they could

potentially be involved in phytohormone signalling pathways, as suggested by the findings

of  a  synchronous  seasonal  and  circadian  change  in  ABA,  serotonin  and  melatonin

concentrations (Beilby et al. 2015). Furthermore, melatonin findings in C. australis have

been suggested to be protective against reactive oxygen species. This compound is known

for the freshwater and brackish water species C. tomentosa with its reddish tips (Beilby

2016). Detailed interdisciplinary studies to elucidate this evolutionary feature, which has

not  yet  been  found  in  Zygnematophyceae  or  Coleochaetophyceae,  are  essential  to

elucidate  its  function,  molecular  signalling  pathway  and  microorganism-associated

association  (non-sulfur  bacteria  and  cyanobacteria).  Evidence  for  the  presence  of  the

serine-threonine phosphatase (PP2C), which acts as an ABA signalling sensor (Ma et al.

2009) has been identified in the Chara genome (Nishiyama et al. 2018). Gibberellin-like

substances  have  been  ascertained  in  extracts  of  C.  braunii ( C.  coronata)  by  paper

chromatography  (Murakami  1966).  Additionally,  different  studies  have  shown  a

concentration-depending promoting effect of exogenous GA  concerning male gametangia

development,  germination  initiation  or  RNA  and  protein  biosynthesis  in  charophytes  (

Godlewski and Kwiatkowska 1980, Sederias and Colman 2007, Holzhausen et al. 2022).

Concentrations  of  10  and  10  M  GA  shorten  the  duration  of  mitotic  divisions  in

antheridial filaments, increases the number of spermatids per filament by about 200 and

increases the lengths of spermatoid cells (Godlewski and Kwiatkowska 1980). Interestingly,

Godlewski found a stimulating effect of GA  on the incorporation of 8- C adenine into DNA

and RNA in dependence of  the cell  cycle stage of  antheridia as well  as an increased

capability  of  the  antibiotics  actinomycin  D  binding  that  indicates  at  least  an  indirect

participation  at  the  transcription  level.  The  chemical  compound  responsible  for  the

gibberellin activity could not be identified so far and needs to investigate in further studies.

One  possible  explanation  for  land-plant-like  reaction  of  exogenous  gibberellins  in

charophytes  could  be  the  presence  of  uniport-transporters  with  activities  for different

nutrients and simultaneously phytohormone conjugates. Those transporters are well known

for plants, especially within the nitrate/peptide transporter family (NRT/PTR) or the SWEET

sugar  transporters.  Recently,  in  Arabidopsis  thaliana,  the  uniporter  SWEET13

(AtSWEET13)  was  identified  to  transport  sugars  and  gibberellin.  Orthologs  of  this

AtSWEET13 proteins can be found in different streptophytic algae genomes.
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5. ECO-in-vitro-CULTIVATION

The  intensive  study  of  the  charophytes  shows  that  there  are  various  studies  on

reproduction, germination and dormancy that can be used on an ad hoc basis and as

fundamental resource. The understanding and integration of evolutionary, systematic, and

ecological knowledge enables the successful establishment of laboratory cultures as well

as axenic cultures (unpublished). 

Further  own  studies  have  shown  that  this  integration  of  e.g.,  monitored  field  data  is

essential to allow dioecious species from permanent water bodies to complete the life cycle

under laboratory conditions. Monitored light and temperature profiles from mesocosms at

the University Rostock, as shown in Fig. 4, were used to identify temperature and light

ranges  in  which  the  physiological  processes  of  dormancy  breakage  and  germination

initiation (Fig. 4A), gametangia development (Fig. 4B) and maturation (Fig. 4C) take place.

The transfer of these natural conditions to in-vitro cultures of different dioecious species

successfully induces the formation of gametangia upon maturation of the oospores. This

method  of  ECO-in-vitro-cultivation  is  particularly  useful  for  species  that  are  poor

gametangiogenic in-vitro, such as dioecious species. These reproduce mainly vegetatively

in culture, which greatly reduces the formation of gametangia. In addition, the analysis of

the solids used, such as organic additives, but also the analysis of  the liquid medium,

provides information about the chemical components and their content (Holzhausen et al.

2022, unpublished data). These are currently used to optimise the inorganic medium.

This type of cultivation allows for a complete reproductive cycle and the establishment of a

variety  of  in-vitro species  for  future  molecular  work,  so  that  in  addition  to  the  rapidly

reproducing  freshwater  species  C.  braunii further  freshwater  species  or  salt-tolerant

species such as C. canescens or C. tomentosa can be used to identify e.g., reproduction-

related gene networks at different reproduction states.
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Figure 1. 

Life cycle of charophyte antheridia. First developmental stages characterised by the green (A)

and yellow-greenish colour (B) of antheridia. (C-D) fully mature antheridia (C) including their

autofluorescence in detail (D). (E-F) release of spermatozoids from open antheridia (E) and a

detailed  view of  extracted  spermatozoids  (F).  (G)  empty  and  fanned shield  cells  of  male

antheridia after the release of spermatozoids.
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Figure 2. 

Reproductive units and rhizoid cells of charophytes. Nitellopsis obtusa. (A) fully developed

star-shaped bulbil, scale 1mm. (B) Cell at the beginning of bulbil development, scale 200µm.

(C)  root  nodules  with  associated  microorganisms  from  Chara  aspera,  scale  1mm.  (D)

vegetative reproduction of Chara filiformis by nodule cells, scale 500µm. (E) characteristic S-

shaped cleavage plane of rhizoid cells (*) of Chara vulgaris with additional cells for secondary

rhizoids (arrows), scale 1mm. (F) root cell of Chara braunii S276, stained with DAPI, scale

200µm. (G) root tip of C. braunii S276, stained with DAPi, 200µm. (H) oospore of C. braunii

S276, stained with PI, scale 200µm.
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Figure 3. 

Modification of the hypothetical physiological dormancy model of Hilhorst (1998). Red stars

indicate available studies for charophyte oospores. Gibberellin-like substances or precursors

of gibberellin have not yet been identified.
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Figure 4. 

Details  of  ECO-in-vitro-cultivation  of  Chara  hispida.  Field  data  are  monitored  for  the

physiological processes of dormancy and germination initiation (A), gametangia development

(B) and gametangia maturation (C). The resulted mean day values were adopted successfully

to in-vitro cultures of Chara hispida and initiate gametangia development and maturation.
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reference o bject method fixative 

Johow (1881) C. foetida (C. vulgaris) 

branchlet

gametangia

rhizoids

nodal cells

- -   picric acid

Zacharias (1885), 

Zacharias (1888), 

Zacharias (1890)

C. foetida (C. vulgaris) 

male and female gametangia

rhizoids

-   microscopy -

Overton (1890) N. syncarpa 

C. hispida 

female gametangium, branchlets

and internodal cells

-   staining

-   microscopy

-   reaction against conc.

acids

-

Kaiser (1896) C. foetida (C. vulgaris) 

C. hispida 

C. crinita (C. canescens) 

N. syncarpa 

N. flexilis 

apical cell

node cell

branchlets

oogonia/antheridia

cortex cells

-   sectioning

(3-5 µm)

-   1% sublimate solution

-   picric acid

-   Flemming’s solution

-   Herrmann’s solution

Goetz (1899) Nitella flexilis 

Nitella opaca 

Chara foetida (C. vulgaris) 

internodal cells

oogonia/oospores

-   sectioning

-   oogonia 10µm sections

-   zygotes 20µm sections

-   Rath’s mixture

-   Zenker’s mixture

Mottier (1904) C. fragilis (C. globularis) 

spermatozoids

-   sectioning (3-5µm) -   chrome-osmic-acetic acid

Oelkers (1916) C. fragilis (C. globularis) 

C. foetida (C. vulgaris) 

N. syncarpa 

generative/vegetative tissues

-   sectioning (30µm)

-   degradation of sugars

-   vegetative: chromium-acetic

acid

-   generative: alcohol or

xylol resp. chloroform

Riker (1921) C. fragilis (C. globularis) 

C. verrucosa (C. virgata) 

-   sectioning

(5 – 7µm)

-   Flemming’s solution

-   Merkel’s solution

-   Benda’s solution

Karling (1926) C. coronata (C. braunii) 

C. fragilis (C. globularis) 

N. gracilis 

antheridia/oogonia

apical cells

nodal cells

-   microscopy -   Flemming’s solution

-   Merkel’s solution

Table 1. 

List of cytological studies on gametangia, rhizoids and vegetative thallus material of charophytes.

The respective object and cell type, methods, fixative, embedding, staining and washing solutions,

and identified organelles are recorded.
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Linsbauer (1927) C. rudis (C. subspinosa) 

C. foetida (C. vulgaris) 

C. fragilis (C. globularis) 

rhizoids

-   microscopy -   1% chromic acid

Schmuckler (1927) C. contraria var. hispidula 

oogonia

-   microscopy -

Walther (1929) N. syncarpa 

N. hyalina 

N. batrachosperma 

oogonia/antheridia

oospores

node cells

branchlets

internodal cells

-   sectioning

(6-16 µm)

-   Flemming’s solution

-   osmic acid

-   xylol

-   ethanol

Sasaki (1935a), Sasaki

(1935b)

N. sp. 

C. sp. 

spermatozoids

- -   2% osmic acid

Sundaralingam (1954) C. zeylanica -   sectioning (5-10µm)

 

-   Nawaschin’s fluid

Satô (1954) C. braunii 

spermatozoids

-   electron microscopy

-   phase contrast

microscopy

 

-   2% osmic acid solution and 4%

formalin

Barton (1965a), Barton

(1965b)

C. vulgaris 

mature lateral cells

-   sectioning -   4% - 6% glutaraldehyde

(addition of phosphate buffer) and

potassium permanganate

Hollenstein (1966) C. sp. 

spermatozoids

-   X-ray diffraction -
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Shen (1967a), Shen

(1967c)

C. contraria 

C. zeylanica 

older internodes rhizoids

protonema

leaves

shoot apices

-   sectioning (25µm)

-   smear

-   whole plant part

-   10% neutral-buffered formalin +

hydrolysis in 1N hydrochloric acid

-   Permount

-   Navashin’s solution

-   10% neutral-buffered formalin

Shen (1967b) Chara zeylanica 

sperms

-   Feulgen spectral

absorption

-   erythrocytes containing slides

Pickett-Heaps (1967a), 

Pickett-Heaps (1967b), 

Pickett-Heaps (1968)

C. australis 

C. fibrosa 

C. sp. 

N. sp. 

antheridia

oogonia

-   sectioning -   6 % glutaraldehyde with

phosphate buffer and calcium

chloride

-   post-fixation with veronal-

buffered 1% osmium tetroxide

 

Sawa and Frame (1974) T. nidifica 

plant apices with oogonia

-   sectioning (1-5µm) -

Leitch (1986), Leitch

(1989), Leitch et al.

(1990)

C. delicatula (C. aspera) 

C. hispida 

L. papulosum 

oogonia

-   sectioning 

-   (80-100nm; >200nm)

-   paraformaldehyde and sodium

hydroxide

-   sodium cacodylate and

glutaraldehyde

-   osmium tetroxide in sodium

cacodylate

Moestrup (1970) 

 

C. corallina

spermatozoids

-   sectioning

-   formvar/carbon-coated

grids for electron

microscopy

-   2% osmium tetroxide with

phosphate buffer

-   glutaraldehyde

Stabenau et al. (2003) C. fragilis (C. globularis) 

homogenates

-   sectioning -   3.5% glutaraldehyde in K-

phosphate buffer

-   1.5% osmium tetroxide

Hodick (1993) C. fragilis (C. globularis) 

protonema from nodes

-   microscopy -
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Sievers and Schröter

(1971), Braun and

Sievers (1993), Buchen

et al. (1993), Braun

(1996a), Braun (1996b),

Braun and Wasteneys

(1998) 

C. globularis 

N. pseudoflabellata 

protonema

rhizoids

 

-   immuno-fluorescence

labelling

-   sectioning (2-3µm)

-   slow-rotating-centrifuge-

microscope

-   3% paraformaldehyde in MSB

-   1% paraformaldehyde and 1%

glutaraldehyde in MSB buffer

-   3% glutaraldehyde in Pipes

-   sodium cacodylate, 1% OsO

mM CaCl , 0.8% K Fe(CN)

-   agar

 

2 3
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species habit zonobiome most effective method to break dormancy (storage

conditions) 

Chara aculeolata p VIII +4°C for about 2 months

Chara aspera p VIII +4°C for about 2 months

Chara australis p

p

V

V

wet under semi-natural conditions

Chara braunii p I/V wet storage 22°C

Chara canescens p/t

p

p/t

VI

VI

VI

Dry oospores, low temperatures

12weeks at 10°C in the dark

dessication at 5°C

Chara contraria p/t

p

 

p

N/A

III*

 

VII

drying of oospores

wet oospores at cold 

temperatures (3°C)

fresh oospores from mother plant

Chara corallina p V 15°C and darkness for up to 4 days

Chara globularis p

 

p

III*

 

V

dry oospores at cold temperatures (3°C)

15°C and darkness for up to 4 days

Chara hispida t VI drying of oospores, cold treatments of 1-3months at 4°C

p VIII +4°C for about 2 months

Chara muelleri p/t V dry storage in either dark or

ambient light conditions

Chara papillosa p VI dessication at 20°C

Chara rusbyana p III* dry oospores at cold temperatures (3°C)

Chara vulgaris p

p

p

p

t

VIII

VIII

VIII

VIII

VI

36days at 18-22°C

wet storage

60days at 4°C and red light

dark at 4°C

drying of oospores, cold treatments of 1-3months at 4°C

Chara zeylanica p

p/t

p

VIII

N/A

III*

4°C for about 2 months

cold temperatures (5-7°C) for 10 days

wet oospores at cold temperatures (3°C)

Lychnothamnus barbatus p VI dessication at 5°C

Nitella  cristata var.

ambigua

p/t V cold treatment (4-5°C)

Nitella furcata p VI 4°C and darkness

p V 15°C and darkness for up to 4 days

Nitella flexilis 

 

p VIII 247days sediment storage at  18-22°C, decline of  redox

conditions in medium

Nitella  sonderi/  Nitella

subtilissima 

p/t V drying of oospores

* sample sites are not given for all strains of the collection 

Table 2. 

List  of  existing  references  for  oospore  dormancy  breakage including  the  habit  (permanent/

temporary) and zonobiome after Pott (2005).
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* Oospores in Proctor (1962) were obtained from the faeces of waterfowls. Only Chara

braunii and  Chara  zeylanica are  present  at  the  study  site  in  Texas.  The origin  of  the

oospores is therefore unknown.

** Imahori  and Iwasa (1965) mentioned the use of material  from Proctor’s experiments

(oospores from Texas). 

species habit zonobiome T LC 

C. aculeolata p VIII 20-25 N/A│N/A

C. aspera p IV

VI

VIII

VI

VIII

21-29

10-16

20-25

20

room temp.

298 ± 20│14:10

 300│12:12 and 16:8

~40│continuous 95│16:8

N/A│natural light

C. australis p/t

p

V

V

14.4 – 27.8

14-16

N/A│N/A

0.1-147│14:10

C. braunii p/t I/V/VI

III

III*

III**

22

25 (50)

24

25

< 30│16:8

N/A│N/A

N/A│continuous

~ 10│12:12

C. canescens p/t IV

III*

21-29

24

206 ± 26│14:10

N/A│continuous

C. contraria p/t N/A

III

III*

III**

VII

22

25

24

25

23

~ 50│12:12

N/A│N/A

N/A│continuous

~10│12:12

90-100│16:8

C. cf. contraria p VI 20 400│12:12

C. corralina p/t III** 25 ~10│12:12

C. delicatula p III 20 0-10│continuous bright light, continuous

dim light, dark

C. globularis p V

III

III*

VIII

III**

V

14-16

25

24

20-25

25

N/A

0.1-147│14:10

N/A│N/A

N/A│continuous light

~40│continuous

~10│12:12

N/A│6% ambient light

C. gymnopitys p V

III**

-

25

N/A│continuous

~10│12:12

C. hispida p IV

VIII

21-29

20-25

298 ± 20 │14:10

~ 40│continuous

C. hornemannia p III* 24 N/A│continuous light

C. hydropitys p III** 25 ~10│12:12

C. intermedia p/t VI 10 N/A│dark conditions

C. muelleri t V 14.4 – 27.8 N/A│N/A

C. sejuncta p III 20-25 ~40│continuous

Table 3. 

List  of  references  for  oospore  germination approaches including  light  and  temperature

conditions. Listed are the species name, the usual habit (occurrence in temporary/permanent water

bodies), the zonobiome (in correspondence to the published material), experimental temperature(s)

in °C (T), the light cycle (LC, intensity in µmol photon/(s*m ) and light:dark cycle in hours, method

of germination approach and reference. Missing information is marked with -.
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C. vulgaris p VIII

III

VIII

VIII

VIII

20-25

20-30

20

22

~40│continuous

N/A│dim light

N/A│12:12 (wet/dry)

N/A│ natural daylight, north-directed

window

C. zeylanica p/t N/A

III

III

VIII

 

III**

III

22

25 (5-37)

24~40

20-25

 

25

10-12 (night), 18-20

(day

~50│12:12

N/A│N/A

N/A│continuous light

N/A│continuous

 

~10│12:12

50│outdoor

N. cristata var. ambigua p/t V 14.4 – 27.8 N/A│N/A

N. flexilis p VIII 20 (wet/dry) N/A│12:12

N. furcata subsp.

megacarpa

p VI 18 monochromatic light │4, followed by

darkness and 18 or broad-band light

N. hyalina p IV 21-29 298 ± 20 │14:10

N. macrocarpa p III** 25 ~10│12:12 │
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species habit zonobiome T LC 

C. australis 

C. globularis 

p V 14-16 0.1-147│14:10

C. australis 

C. muelleri 

N. sonderi 

N. stuartii 

N. subtillissima 

N. tasmanica 

p/t V 14.4 - 27.8 treatments:

(I) wet winter

(II) dry winter

(III) dry summer

germination in glass houses 

C. baltica / var. liljebladii

C. contraria 

C. globularis 

C. canescens 

N. obtusa 

p VI 15 15-130 │16:8

C. canescens p VI 15 ~2│12:12

C. canescens t V N/A N/A│N/A

C. canescens 

C. contraria 

C. vulgaris 

T. nidifica 

p VI 15 100 ± 20│12:12

C. contraria 

C. globularis 

C. sp.

N. obtusa 

p VI 15 100 ± 20 │12:12

C. connivens 

C. aspera

T. nidifica 

L. papulosum 

p VI 15 80-90│12:12

C. filiformis p VI 15 15-20│16:8

C. corallina 

C. fibrosa 

C. globularis 

N. hookeri / cristata 

N. leptostachys 

N. pseudoflabellata 

p V N/A N/A│natural light cycle

C. fibrosa 

C. zeylanica 

p II N/A N/A│direct sunlight

C. hispida 

C. vulgaris 

p IV N/A

 

20

N/A│natural light cycle

N/A│natural light cycle

45│12:12

C. spp. p V 20 5│14:10

L. macropogon t V N/A N/A│partial sunlight with 15% shade

light  fibreglass  screen  mesh;

treatment

L. sp aff. macropogon t V N/A N/A

Table 4. 

List of references for sediment germination approaches. Listed are the species name, the usual

habit (occurrence in temporary/permanent water bodies), the zonobiome (in correspondence to the

published material), experimental temperature(s) in °C (T), the light cycle (LC, intensity in µmol

photon/(s*m )  and  light:dark  cycle  in  hours,  method  of  germination  approach  and  reference.

Missing information is marked with -.
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L. papulosum 

N. flexilis/opaca 

p VI 15 30-130│16:8

L. barbatus p VI 15 30-40│16:8

N. micklei 

N. parooensis 

t

 

II

 

N/A N/A

N. mucronata p VIII 20 N/A│daylight, south-directed window

N. mucronata 

T. glomerata 

p VI 15 110-130 │16:8

N. sp.

C. sp.

p IV N/A N/A│greenhouse

T. nidifica/salina (p)/t VI 15-20

salt treatment

110-130│16:8

C. contraria 

C. globularis 

C. hispida 

p VI 15-18 110-130│16:8

C. aspera 

C. contraria 

C. globularis 

C. sp.

p VI 15-18 110-130│16:8
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species cultivation conditions observations 

C. canescens   oospore  length  differences  by  temperature  and  light,

substrate and culture medium

C. corallina Soil-water  medium,  windowsill  with

natural light/dark cycle

Aneuploidy  and  polyploidy  in  charophytes;  cytogenetic

species

C. corallina Aquarium  with  deionized  water,

fluorescent lamps

 (L:D  =14:10),  soil  /  sterilised  forest

soil

anion channels, in-vivo caspase 3-like proteinase activity

C. corralina tap water with soil extract and rotten

leaves, plastic buckets, 25 ± 1 °C,

fluorescent lamps with 50-60 µmol/m

s ), L:D = 15:9

intracellular transport of photoassimilates

C. foetida dark

half-dark

full daylight

loss or abnormally cortication in limited light conditions

C. fragilis windowsill  (all  cardinal  directions)  /

greenhouse / electric illumination 

gametangia  development  in  dependence  of  collection  date

and continuous illumination

C. fragilis/ 

C. foetida 

Glass  aquarium  4L;  sludge,  garden

soil, quartz sand or dolomite sand as

substrate  and/or  floating  cultures;

destilled water, spring water or mineral

media  (Detmer,  Crone,  Beyerinck,

Artari,  Pringsheim  and  Benecké);

addition  of  "Purissimum"  and  "Pro

Analysi" salt.

modified  mineral  medium  of  Crohn;  bicarbonate/CO

experiment;  effects  of  chemical  compounds  on  charophyte

cultivation 

C. fragilis/ 

C. foetida/ 

C. contraria 

Munich tap water, thalli w/wo rhizoids Effect of CuSO , alkaloids, strychnine, nicotine and caffeine

on the morphology of gametangia

C. fragilis/ 

C. foetida/ C.coronata/ 

N. mucronata 

Vessels with slufge, garden soil, clay,

sand  or  quatz;  sunlight,  shade  and

deeper shade

effects on different soils and light conditions on charophyte

cultivation

Chara hispida windowsill loss of cortication

Chara strigosa cultivation in sodium chloride solution

under full or reduced light conditions

high light conditions + full light leads to reduced length growth

Chara vulgaris buffered  lake  water  (HEPES);  22°C,

14:10

15W lumilux tubes 

sterile plants: 10hlight:14h dark

Chara vulgaris Forsberg mineral medium, Flora white

lamps (6.2W*m ), 

L:D = 14:10

L:D = 24:0

L:D = 1:23

continuous illumination: exceed mitotic activity (new nodes),

shortens internodal cells, increased rhizoid formation, initiate

antheridia, reduced oogonia formation;

prolonged  darkness:  halves  the  mitotic  activity,  prolongs

internodal  cells,  blocking  of  rhizoid  formation,  reduction

antheridia and oogonia formation

Nitella flexilis outdoor conditions high temperature and sunlight influenced oospore production

2

-1

4

-2

Table 5. 

List of references for in-vitro cultivation approaches. Listed are the species name, the cultivation

conditions, the observation as well as the respective reference. 
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