
Project Report

Author-formatted document posted on 19/01/2024

Published in a RIO article collection by decision of the collection editors.

DOI: https://doi.org/10.3897/arphapreprints.e119131

D5.5 Short-term ecological forecasts in support of the
Bioeconomy Strategy and EU citizens 

Ana Ceia-Hasse,  Judy Shamoun-Baranes,  Néstor Fernández, Henrique Pereira,  César Capinha

https://doi.org/10.3897/arphapreprints.e119131
https://orcid.org/0000-0002-1652-7646
https://orcid.org/0000-0002-9645-8571
https://orcid.org/0000-0002-0666-9755


 

 

 

 

 

D5.5 Short-term ecological forecasts in support of the Bioeconomy Strategy and EU citizens 

 

10/01/2024 

 

Lead beneficiary: 

Institute of Geography and Spatial Planning (IGOT), University of Lisbon 
  

Author-formatted document posted on 19/01/2024. DOI:  https://doi.org/10.3897/arphapreprints.e119131



 europabon.org                                         2 | Page                D5.5 Short-term ecological forecasts 

                       This project receives funding from the European Union’s Horizon 
                       2020 research and innovation programme under grant agreement 
                       No 101003553. 

This project receives funding from the European Commission’s Horizon 2020 research and innovation 

programme, under Grant Agreement n.101003553 

Prepared under contract from the European Commission 

Grant agreement No. 101003553 
EU Horizon 2020 Coordination and Support Action 
 
Project acronym: EuropaBON 
Project full title:  EUROPA BIODIVERSITY OBSERVATION NETWORK: INTEGRATING DATA 

STREAMS TO SUPPORT POLICY 
 
Start of the project:  01.12.2020 
Duration:                36 months  
Project coordinator:      Prof. Henrique Pereira 
                Martin-Luther Universitaet Halle-Wittenberg (MLU) 
                             www.europabon.org 
 
Type:                Coordination and Support Action 
Call:  The Sc5-33-2020 Call: “Monitoring ecosystems through innovation and            

technology” 
 
 
 
 
 
The content of this deliverable does not necessarily reflect the official opinions of the European 
Commission or other institutions of the European Union. 
  

  

Author-formatted document posted on 19/01/2024. DOI:  https://doi.org/10.3897/arphapreprints.e119131

http://www.europabon.org/
http://www.europabon.org/


 europabon.org                                         3 | Page                D5.5 Short-term ecological forecasts 

                       This project receives funding from the European Union’s Horizon 
                       2020 research and innovation programme under grant agreement 
                       No 101003553. 

Project ref. 
no. 

101003553 

Project title EUROPA BIODIVERSITY OBSERVATION NETWORK: INTEGRATING DATA STREAMS TO 
SUPPORT POLICY 

 

 

 

Deliverable title Short-term ecological forecasts in support of the 
Bioeconomy strategy and EU citizens 

Deliverable number D5.5 

Contractual date of delivery 31.01.2024 

Actual date of delivery 10.01.2024 

Type of deliverable Report 

Dissemination level Public 

Work package number WP5 

Institution leading work package Martin Luther University Halle-Wittenberg 

Task number T5.5 

Institution leading task Institute of Geography and Spatial Planning (IGOT), 
University of Lisbon. 

Author(s) Ana Ceia-Hasse, Judy Shamoun-Baranes, Néstor 
Fernández, Henrique M. Pereira, César Capinha 

EC project officer Laura Palomo-Rios 

 

 

 

Deliverable description This deliverable describes the workflows developed 

to produce short-term forecasts of Essential 

Biodiversity Variables that can support the 

Bioeconomy Strategy and EU citizens. Two 

forecasting workflows are described and showcased. 

The first is applicable to diverse ecological and 

biological phenomena and is demonstrated here 

through the fruiting of a wild edible mushroom of 

recreational interest and the adult life-stage of an 

invasive species of concern to EU agriculture. The 
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second workflow focuses on forecasting the aerial 

biomass of migrating birds. 
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Executive summary 

A relevant number of ecological questions raised by policymakers, managers, and citizens often pertain 

to the short-term future (e.g., the coming days or weeks). In this sense, short-term ecological and 

biological forecasts can make substantial and practical contributions to achieving policy objectives and 

benefit society broadly. Specifically, short-term forecasts of Essential Biodiversity Variables (EBVs) and 

Essential Ecosystem Service Variables (EESVs) can support decision-making by stakeholders from 

multiple sectors, enabling to anticipate ecological transformations and support proactive, informed 

decisions that promote conservation, economic activities, and human well-being. 

The aim of this task was to demonstrate how a European Biodiversity Observation Network can 

support the generation of short-term spatial forecasts of ecological and biological phenomena relevant 

to the Bioeconomy Strategy and to EU citizens at large. Our specific objectives included showcasing 1) 

a computational workflow that enables the production of days-ahead forecasts for distinct ecological 

or biological phenomena and 2) a specialized computational workflow for days-ahead forecasts of bird 

aerial biomass. The first, (‘generic’) workflow, is exemplified using two case studies: i) forecasting the 

fruiting of a wild mushroom of commercial and recreational relevance, and ii) forecasting the life stage 

of relevance for surveillance of an invasive pest species important for agriculture. These case studies 

aim to demonstrate specific, tangible contributions that short-term ecological forecasting can make 

towards the sustainable use of bio-based economy sectors, ecosystem protection, and anticipation of 

ecological risks. Beyond aligning with the EU Bioeconomy Strategy, our three forecasting targets also 

offer relevant contributions to a wider range of EU strategies and policies. 

We actively involved stakeholders in defining the end-products and in the development of 

computational modelling approaches of the workflows. This process entailed two distinct approaches. 

For the generic forecasting workflow, we engaged in a participatory process from the project's start, 

focusing on stakeholders involved in mushroom foraging and experts in mycology and ecological 

modelling. For the bird aerial biomass forecasting workflow, we built upon substantial developments 

that predated the project, with our engagement primarily drawing on insights and input from earlier 

initiatives. The two workflows serve complementary purposes in terms of the primary data they use. 

While the first (generic) workflow is based on the growing body of opportunistic biodiversity 

observation data, particularly from citizen science initiatives, the second workflow requires highly 

specialized radar data from weather stations. However, both workflows use predictor data from 

weather observations and forecasts and employ machine learning algorithms to correlate these data 

with observed variations in the phenomena being forecasted. 
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1. Introduction 

1.1.  State of the art in short term forecasts in support of EU policy and citizens at large 

Short-term ecological forecasting refers to the prediction of ecological phenomena in the near future, 

typically within a timeframe of less than one year, ranging from a few hours to several months (Tulloch 

et al. 2020). This high temporal resolution and near-term forecasting horizon differentiates it from 

many ongoing and past ecological modeling efforts, which were predominantly focused on longer time 

periods, such as multi-decadal scenario-based projections being used in long-term decision support 

(Pereira et al. 2010). 

Short-term ecological forecasts offer significant and tangible contributions towards accomplishing 

policies objectives and benefiting society at large. Specifically, a relevant number of ecologically 

related questions being asked by policymakers, managers, and citizens are frequently about the short-

term future (e.g., coming days or weeks) (Dietze 2017). These questions encompass a diverse range of 

ecological or biological phenomena and relate to many distinct aims. For instance, in the USA, real-

time tracking and forecasts have been employed to monitor migratory patterns of bird species, aiding 

monitoring and mortality mitigation efforts (Van Doren and Horton 2018). Similarly, European 

initiatives have leveraged short-term forecasts for predicting seasonal blooms of harmful species in 

freshwater ecosystems (Jackson-Blake et al. 2022), the risk of vector-borne disease outbreaks 

(Semenza 2015), bird migration patterns (Kranstauber et al. 2022; van Gasteren et al. 2019), or 

tourism-relevant patterns of tree leaf senescence (Tourismus n.d.). Additionally, short-term 

forecasting can play a crucial role in mitigating damages, be it from invasive species harming crops 

(Barker et al. 2020) or in the reduction of accidents, like bird or bat collisions with wind farms, aircraft, 

and urban structures (Van Doren and Horton 2018, Frick et al. 2012, van Gasteren et al. 2019). 

Crucially, the large potential of these forecasts for supporting environmental and economically 

oriented decisions, either from experts and decision makers or citizens in general, remains barely 

touched with many potentially useful applications yet to be tested and operationalised (Dietze et al. 

2018). 

Short-term ecological forecasts are also relevant within the scope of Essential Biodiversity Variables 

(EBVs) (Pereira et al. 2013) and of Essential Ecosystem Service Variables (EESVs) (Balnavera et al. 2022). 

These variables aim at enabling the improved monitoring, researching, and forecasting of patterns and 

trends in biodiversity and in ecosystem services (Gonzalez et al. 2023). Relevantly, many of the 

phenomena represented in proposed EBVs or EESVs can show marked intra-annual variation, spanning 

diverse classes like species abundances, species distributions or ecosystem functioning, and domains 

such as freshwater, marine, and terrestrial environments. Therefore, the ability to anticipate intra-

annual variation for these variables can considerably increase the insights and applied value they 

provide. The scope of use of the forecasts necessarily varies according to the objectives of end-users; 

however, most will benefit from an increased ability to respond promptly to anticipated changes in 

biodiversity or forthcoming shifts in ecosystem services, such as biomass provisioning, pollination, 

biological control, and recreation-related dynamics. Ultimately, short-term forecasts of EBVs and 

EESVs further empower stakeholders from multiple sectors (policy, academia, NGOs, citizen science, 

businesses) to foresee ecological transformations, thereby facilitating proactive monitoring and 

ensuring timely intervention. 
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Despite their confirmed and latent significance in decision-making and societal benefits, the 

development and operationalization of short-term ecological forecasts still faces important 

operational challenges. A primary obstacle concerns the pervasive fragmentation of biodiversity 

observation data across multiple sources. Such sources include real-time in-situ monitoring, citizen 

science contributions, scientific papers, and technical literature, which often originate from disparate 

entities using varied data reporting and standardization structures (Castro et al. 2023, Weisshaupt et 

al. 2021). This fragmentation of data sources and standards presents a significant challenge in 

identifying, harmonizing, and integrating biodiversity information, which is crucial for creating timely 

and accurate computational models for short-term forecasting, particularly when aimed at wide 

geographical areas. Given these challenges, the data integration efforts being developed under the 

EuropaBON project represents a major step forward towards the increase in capacity of implementing 

short-term ecological forecasts at the scale of the EU. 

 

1.2.  Showcase goals 

Given the context described above, our aim was to demonstrate how a European Biodiversity 

Observation Network can support the production of near-real time short-term spatial forecasts of 

ecological and biological phenomena to support the Bioeconomy Strategy and EU citizens in general. 

To this end, our specific objectives were to showcase 1) a computational workflow that allows 

producing short-term forecasts of a diverse range of biological phenomena and 2) a computational 

workflow for near real-time forecasting of bird aerial biomass. The first (‘generic’) forecasting 

workflow is presented here through two case studies: i) the short-term forecasting of the fruiting of 

wild mushrooms of commercial or recreational value in the EU and ii) the short-term forecasting of the 

life stages of invasive pest species. The scopes of application of the forecasts specifically aim to 

demonstrate how short-term ecological forecasts provided to EU citizens at large enable better 

management of the EU's biological resources and their use as food, as well as in preventing damages 

from pest and non-pest species. The two workflows also serve a complementary demonstration 

purpose in terms of the primary data they use. While the first workflow makes use of the growing body 

of opportunistic biodiversity observation data, especially those from citizen science initiatives (Bonney 

2021), the second workflow requires highly specialized data extracted from weather radars (Shamoun-

Baranes et al. 2021). 

 
 

2. Showcase participatory design 

2.1.  Stakeholder engagement process 

Stakeholder engagement took two distinct approaches. For the generic forecasting workflow, we 

actively involved stakeholders from the beginning of the project. This engagement focused primarily 

on stakeholders related to mushroom fructification forecasting, the case study that served as the main 

conceptual and practical basis for the development of the workflow. On the other hand, for the bird 

aerial biomass forecast workflow, there were substantial developments before the project began; as 

a result, our engagement with stakeholders for this workflow primarily relied on insights and input 

from previous initiatives. Stakeholder engagement process is represented in Fig. 1. 
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2.1.1. Methodology of stakeholder engagement for the generic forecasting workflow 

Regarding the stakeholder engagement process for the generic forecasting workflow, the main 

stakeholders were initially identified by the task team and consisted of people or institutions with 

expertise on mushroom phenology, mushroom foraging, and ecological modelling. These diverse 

backgrounds were chosen to help identify the most suitable characteristics of the forecasts from the 

point of view of the end users (e.g., foragers and managers), but also to ensure that these attributes 

can be realistically implemented, considering the knowledge of the species and modelling experts. The 

engagement process began by inviting the identified stakeholders to take part in workshops organized 

by the project. We co-organized two workshops, one in November 2021 at the German Centre for 

Integrative Biodiversity Research (iDiv) - Halle-Jena-Leipzig headquarters in Leipzig, Germany (online 

and in-person) and one in April 2023 in Troia (Portugal) (in-person). In these workshops, we focused 

the discussion around three main topics. The first concerned the identification of the desirable 

properties of forecasts from the end-user's point of view and included discussing subjects such as the 

temporal and spatial resolution of forecasts and how to present the forecast products to end-users. 

The second topic concerned the identification of relevant drivers of mushroom seasonality and how 

these could be converted into spatial predictors to use in the forecast models. Finally, the third topic 

was centered around the modelling approaches and the operational assembly of the workflow and 

included subjects such as the relevant data sources available and discussing pros and cons of distinct 

modelling choices. In addition to the joint discussions in the workshops, we had follow-up meetings, 

in person and online, with several of the participants focusing on specific sections of the workflow. 

 

2.1.2. Stakeholder representativeness and gaps for the generic forecasting workflow 

The scientific representation of stakeholders in the participatory process was comprehensive, 

including eight 'core' experts, who assisted in the co-development of the workflow in a consistent and 

continuous manner and covering the full range of research-related issues involved. On the end-user 

side, counting the project participants, we received feedback from more than ten individuals with 

experience in mushroom collecting in various European countries (Portugal, Spain, Poland, the UK, 

Denmark, Italy, and Germany). Although we expect that this good level of individual participation 

guarantees the representativeness of the intended end users, we note the absence of representatives 

from mushroom collecting associations, to which a significant number of invitations were sent, but 

from which we received no response. 

 

2.1.3. Methodology of stakeholder engagement for monitoring and forecasting aerial biomass of 

birds 

Concerning the workflow of the forecasts of aerial biomass of birds, stakeholder engagement was done 

through discussions with stakeholders as part of previous national and international initiatives (e.g., 

user committees) and through discussions for developing future tools with new stakeholders, 

contacted sometimes directly by stakeholders (e.g., different offices within the ministry of 

infrastructure, ministry of economic affairs, provincial governments) and through international 

collaborative projects (e.g. BioDivERsa GloBAM). Short term forecasts of biomass flows had already 

been developed for military aviation and are in operational use in several countries. Discussions with 

these users focused on improving biomass flow monitoring techniques (for near real-time warnings 
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and as input for forecast model development), access to and integration of biomass flow data from 

different sensors and forecast accuracy. Stakeholders for the wind energy sector included policy 

makers, energy companies, energy grid operators and nature conservation. This group is particularly 

interested in the development of forecast models to provide early warnings for wind energy 

curtailment. Topics discussed with this group include challenges related to forecasting migration 

(particularly over sea, which is novel), transitioning from research and development to operational 

systems, access to weather forecast data, and realistic forecast windows. 

 

2.1.4. Stakeholder representativeness and gaps for monitoring and forecasting aerial biomass of 

birds 

Several research groups are active in further developing tools for monitoring and forecasting aerial 

biomass of birds and discussions with researchers from the Netherlands, Switzerland, Sweden, 

Belgium, Finland, Germany, Norway, and the USA have been incorporated. The workflow for 

automated processing of weather radar data to extract aerial biomass flows was developed and 

updated through various collaborative projects, resulting in the ALOFT repository (Table 1). Short term 

forecasts were developed for aviation safety by researchers in the Netherlands and Finland and spatial 

predictions developed by researchers in Switzerland, resulting in the aerial biomass flow EBV. Official 

agreements for collaboration with OPERA were established during the cost action ENRAM (2013-2017) 

and while these agreements are periodically renewed, stronger collaboration would be beneficial in 

the future and represents a current gap in the stakeholder representation. Currently individual 

meteorological institutes are involved in discussions, but official representation from the leadership of 

OPERA would have been an improvement. Forecast models have been designed at a regional scale in 

Europe where long term and high-quality aerial biomass data is available, with examples in the 

Netherlands and Finland. However, many other European countries could benefit from short term 

forecasts for a broad range of stakeholders. Wind energy stakeholders were represented in discussions 

as were representatives for military aviation. Civil aviation may be potential stakeholders and have 

periodically shown interest in such developments but were not actively involved in discussions at this 

stage.    

 

2.2. Key inputs from stakeholders 

2.2.1. Key inputs from stakeholders for the generic forecasting workflow 

The co-design participatory process employed for the generic forecasting workflow provided prolific 

and highly valuable input from stakeholders. Key input concerning the desirable properties of the 

product (i.e., the forecast maps) included a spatial resolution in the range of 10×10 km to 50×50 km, a 

daily or multi-daily temporal resolution and a forecast horizon of at least one week (8 days). Based on 

species experts, we also identified a set of potential target species to test the workflow and the 

identification of most likely relevant environmental factors driving the seasonality of fructification. 

Together with ecological modelling experts, species experts also provided highly valuable input on the 

identification of available data sources of mushroom observation data and on how to best encode 

environmental predictors for maximizing predictive performance (e.g., which features of temperature 

or precipitation variation to use as predictors). Finally, experts in ecological modelling were 

instrumental for defining the full modelling cycle and implementation, providing advice on key aspects, 
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such as likely successful modelling techniques and optimal validation approaches (e.g., machine 

learning models, validation with independent data, etc.). Another key contribution referred to the joint 

vision among participants of the capacity of the workflow to adapt seemingly to other ecological 

phenomena, prompting us to test it for a second case study (life-stages of invasive pests; mentioned 

above). However, many other potential applications were envisioned, including the early warning of 

harmful algal blooms, forecasting life-stages of disease vectors, forecasts of levels of activity for game 

species or of species of relevance for touristic activity (birdwatching, firefly tourism, etc.). 

 

2.2.2. Key inputs from stakeholders for the workflow of the aerial biomass of birds 

An important issue for bird forecasts is the tradeoff between improved bird forecasts and the need for 

a certain forecast window to take appropriate mitigation action. The energy grid operators for example 

may require a longer forecast window to balance the energy market and address supply and demand 

issues. Yet, the longer the forecast window the higher the uncertainty in migration forecasts. Energy 

companies, on the other hand, want to avoid unnecessary wind curtailment. Input data for forecasts 

was also mentioned regarding availability, and the need for a license or open access, e.g. from the 

European Centre for Medium-Range Weather Forecasts (ECMWF). For example, reanalysis of weather 

data (ERA5, Hersbach et al. 2020) is available open access at an hourly temporal resolution. Such data 

is used to develop predictive models of avian migration (Kranstauber et al. 2022). Yet, to run a 

predictive model to forecast migration, weather forecasts are needed but the ECMWF medium range 

forecasts are not freely available. The propagation of errors in migration forecasts due to uncertainty 

of weather forecasts is a relatively unexplored issue and requires further research. Another issue 

relates to the need to go from scientific code to operational software, who would be responsible and 

how this can be implemented. An issue of concern raised by scientists developing predictive models 

and data users is access to long term biomass flow data of sufficient quality. Data flows from 

operational weather radars are currently at risk of being cleaned of biological information before being 

made available for biodiversity related research and model development (Shamoun-Baranes et al. 

2022). 

 

Figure 1. Schematic representation of stakeholder engagement and contributions to workflow 

development. Workflow development involves stakeholder engagement at different steps of the 

process, represented by the different wheels of stakeholder engagement in the figure. At a more initial 

stage (left wheel in the figure), stakeholders are involved for input on workflow characteristics and 

technical details such as: which drivers of the phenomena being forecasted should be considered (e.g., 

Author-formatted document posted on 19/01/2024. DOI:  https://doi.org/10.3897/arphapreprints.e119131

http://www.europabon.org/


 europabon.org                                         12 | Page                D5.5 Short-term ecological forecasts 

                       This project receives funding from the European Union’s Horizon 
                       2020 research and innovation programme under grant agreement 
                       No 101003553. 

weather), at which spatial and temporal resolution should the forecasts be produced, or which is the 

best modelling approach for the intended objective? At a later stage (right wheel in the figure), issues 

such as advances achieved, roadblocks, or advantages and caveats, are key factors to be discussed 

with stakeholders. 

 

3. Contributions of the short-term forecasts to policy and to end users 

As mentioned, the two forecasting workflows are described and demonstrated by providing days-

ahead insight into 1) the likelihood of fruiting for wild edible mushrooms, 2) the likelihood of the 

occurrence of invasive pest species in specific life stages and 3) the aerial biomass of birds. These case 

studies were selected having in mind EU citizens as end users and aim primarily at contributing to the 

EU Bioeconomy Strategy, which intends to foster sustainable and circular bio-based economy sectors, 

reduce industries environmental footprint, diversify sources of renewable biological resources, and 

protect ecosystems (EC-DGRI 2018). 

By providing EU citizens with timely information on when to forage for edible wild mushrooms, we 

expect to significantly promote the adoption of this naturally renewable food source, which is still an 

overlooked forestry by-product in many European countries (De Cianni et al. 2023, Huber et al. 2023). 

Furthermore, mushroom foraging can also contribute significantly to ecotourism (Latorre et al. 2021). 

Activities such as workshops, guided tours, and foraging events can draw tourists and catalyze 

economic growth in rural areas (Latorre et al. 2021), aligning with the bioeconomy strategy aspirations 

for rural development and job creation. Having a priori information on the timing of occurrence of 

fruiting bodies of species of foraging interest can contribute to maximizing the success of such 

initiatives. Moreover, for the EU Bioeconomy Strategy to truly harness the benefits of mushroom 

foraging, adherence to sustainable practices is critical. In this context, if managers of natural habitats, 

farmlands, or forestry areas adopt these forecasts, they could also be better informed about the 

optimal periods to implement measures countering possible negative effects of harvesting activities, 

ensuring mushroom foraging aligns with both ecological and economic objectives.  

The contribution of forecasts for pest species can also be substantial. Specifically, by knowing when 

specific life stages are occurring, citizens (e.g., under citizen-science initiatives) and experts can better 

program the timing for pest monitoring and early detection initiatives (Latombe et al. 2016), as well as 

to implement any impact minimization or eradication efforts (Barker et al. 2020, Dietze et al. 2018, 

Tulloch et al. 2020). This, in turn, contributes to a more informed and proactive approach to pest 

management, aligning with the EU Bioeconomy Strategy's goal of safeguarding ecosystems and 

preventing significant economic losses in agriculture and forestry sectors, two crucial pillars of the 

bioeconomy. The timely eradication or control of invasive pests also minimizes the use of potentially 

harmful chemicals, further reducing the environmental footprint of industries. 

The bird biomass flow forecasts, in turn, is highly valuable to inform civil and military aviation about 

periods when large numbers of birds are expected in a particular air space, and subsequent flight 

planning can improve aviation safety and reduce economic losses due to damage to aircraft or delayed 

flights (Kranstauber et al. 2022, Metz et al. 2020, Nilsson et al. 2021, van Gasteren et al. 2019).  Finally, 

migration is a natural phenomenon of high touristic potential and is appreciated by many nature 

enthusiasts (see, for example, BirdCast in North America; Horton et al. 2019). Similarly, to the 
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mushroom case study, forecasts can help improve the success of birdwatching-related touristic 

activities by informing on the optimal timing for observation activities. 

Beyond our primary alignment with the EU Bioeconomy Strategy, the three forecasting targets also 

provide relevant contributions to a broader array of EU strategies and policies. For example, these 

forecasts can support the EU Biodiversity Strategy for 2030 (EC-DGRI 2018), contributing to 

conservation, by helping support the definition of prohibition dates for sites with habitats sensitive to 

mushroom foraging activities or to inform wind turbine curtailment (e.g., bird biomass in the North 

Sea) and temporarily turning off urban lighting to reduce avian mortality (“lights out” programs, 

Horton et al. 2019). Bird migration forecasts can also contribute to targets of the Convention for 

migratory species, the Ramsar convention and potentially the Birds Directive. For example, they could 

be used to identify future areas being targeted for restoration or conservation to support changing 

migratory patterns in face of climate change (Barrett 2011, Howard et al. 2020).  The EU Farm to Fork 

(F2F) Strategy is also supported, as with deeper insights into invasive pest life cycles, one can 

significantly optimize pest management, reducing the dependency on chemical pesticides. This aligns 

with the strategy's goal of minimizing chemical usage, ensuring both healthier ecosystems and safer 

food chains (EC 2020). Relevantly, better knowledge on the stages of development of invasive pest 

species also provides clear support to the EU efforts to fight invasive alien species (IAS), namely under 

the EU IAS regulation (EU 2014), by enabling the optimization of measures for preventing their further 

spread in the EU territory. Finally, the European Green Deal is also supported, since in addition to 

supporting conservation, our forecasts also help promote sustainable and environmentally friendly 

economic practices. 

 

 

4. Essential Biodiversity Variables design and outputs 
4.1. EBV design characteristics 

4.1.1. EBV description 

The EBVs produced in the workflows developed belong to the Species populations and Community 

composition EBV classes and to the terrestrial environmental domain. They represent phenology and 

biomass flows and are provided as daily probabilities (phenology of mushrooms or invasive pest) or 

hourly averages and annual timing of arrival and departure in the case of bird density (Table 1). 
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Table 1. Characterization of the EBVs produced by the two forecasting workflows described. 

     EBV     

Forecast Class Name Description Metric Domain 

Phenology 

of 

mushrooms 

Species 

Populations 

Phenology of 

fructification 

of mushrooms 

and wild fruits 

Short-term 

forecasting of the 

fructification of wild 

mushroom species 

within contiguous 

spatial units (grid 

cells) across the EU 

over time 

Daily probability of 

observing fruiting 

bodies of selected wild 

mushroom species of 

commercial and 

recreational interest 

across the EU 

Terrestrial 

Phenology 

of invasive 

pests 

Species 

Populations 

Phenology of 

life-stages of 

selected 

terrestrial 

invasive pest 

species 

Short-term 

forecasting of the 

phenology of 

invasive pest 

species within 

contiguous spatial 

units (grid cells) 

across the EU over 

time 

Daily probability of 

observing selected 

invasive pests in 

specific life stages 

Terrestrial 

Bird 

biomass 

Community 

composition 

Aerial biomass 

of migrating 

birds 

Biomass flows of 

aerial migrants 

(birds) across 

Europe within 

contiguous spatial 

units (grid cells) 

over time 

Summary statistics of 

migration densities of 

birds derived from 

vertical profile time 

series of weather radar 

data (e.g. hourly 

averages of bird density 

and speed) 

Terrestrial 

  Species 

Populations 

Phenology of 

migration of 

terrestrial 

birds 

The annual timing of 

arrival and 

departure of 

European terrestrial 

migratory bird 

species at breeding, 

staging and 

wintering sites over 

time 

Migration phenology 

metrics 

Terrestrial 
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4.1.2. EBV spatial and temporal resolution and extent 

The EBVs produced in the forecast workflows have a daily temporal resolution and temporal extent 
going from days to one year. The spatial resolution is 0.25° (c. 28 x 28 km at the Equator) and the 
intended uses include supporting mushroom foraging and management activities, pest monitoring and 
management, and informing aviation and wind turbine activities, while contributing to bird 
conservation (Table 2). 

 

Table 2. Spatial and temporal characteristics of the EBVs produced in the forecast workflows. 

Forecast 
Spatial 

extent 

Spatial 

resolution 

Temporal 

extent 

Temporal 

resolution 
Intended uses 

Phenology of 

wild 

mushrooms 
Countries 

within 

Europe 

0.25° 

(~28x28km 

at the 

Equator) 

up to nine 

days 

daily 

Support wild mushroom foraging and 

management activities, by indicating 

the expected timing of occurrence of 

fruiting bodies of selected species. 

Phenology of 

invasive 

pests 

Support invasive pest monitoring and 

management activities, by indicating 

the expected timing of occurrence of 

specific life stages of selected species.  

Bird biomass 

Countries 

within 

western 

Europe 

0.25° one year 

Support aviation safety, wind turbine 

curtailment, and bird migration 

conservation, by informing about 

levels of aerial bird biomass. 

 
 

4.2. Input biodiversity data  

4.2.1 Input biodiversity data for the generic forecasting workflow  

The generic forecasting workflow is based on temporally discrete biodiversity observation records. To 

be usable within the scope of the workflow, these records need to 1) provide the full date of the 

observation (i.e., day, month, and year), 2) have geographical coordinates with a spatial resolution 

equal to or better than that of the final product, and 3) be supported by visual media, such as 

photographs, or textual descriptions confirming the representation of the phenomenon of interest 

(e.g., the fruiting body of a selected wild mushroom species or the adult life stage of an invasive pest). 

These records can come from a large variety of sources, particularly citizen science projects and 

research-based initiatives, and are commonly available from online databases (e.g., inaturalist.org; 

mushroomobserver.org, observado.org), research institutions (e.g., natural history collections), the 

scientific literature and social media (Marcenò et al. 2021). The Global Biodiversity Information Facility 

(GBIF; gbif.org; Table 3) is currently a reference meta-repository for these observations and, for many 

ecological phenomena, can already provide several thousands of usable records with sufficient spatial 

and temporal coverage (Capinha et al. 2023). However, in the case of a perceived limited sampling 

based solely on observations records available from GBIF, the other mentioned sources could be 

considered.  
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Apart from the three above-mentioned criteria, the observation records need to undergo a strict 

quality control before being used in the workflow. First, they need to have been made within a 

temporal period of reference (e.g., from 2010 to 2020), which is used to characterize each record in 

terms of predictor variables. Records made outside this period should be excluded. Next, retained 

records need also to undergo a fine cross-checking of validity of observation dates. One common error 

in this attribute concerns the automated assignment of the first day of the month for records that are 

missing the exact day number (Belitz et al. 2023). In records coming from GBIF, these cases could be 

identified by the simultaneous attribution of a null timing (i.e., 00:00:00). Records having this or any 

other inconsistencies in terms of the attribution of the date of observation do not qualify for use. 

Additionally, potential georeferencing issues must also be assessed. As previously mentioned, only 

records offering a spatial resolution compatible with the desired end product (0.25 degrees) are 

suitable. In terms of coordinate uncertainty, this means retaining only those records with a level of 

uncertainty up to 0.125 degrees (i.e., half of the spatial resolution of reference), to ensure that the 

record accurately matches the corresponding grid cell rather than neighboring ones. It is also crucial 

to examine common indicators of positional error in records for which the positional uncertainty is 

unknown (e.g., when only the coordinates are given). These indicators include coordinates that match 

the centroids of countries or provinces, capital cities, urban areas, or having identical values of 

longitude and latitude, or coordinates located at sea for terrestrial phenomena (or on land for marine 

phenomena). Flagged observation records, for which there is no additional information allowing to 

confirm sufficient positional accuracy, should be excluded. 

It is also imperative to confirm that the records effectively represent the ecological or biological 

phenomenon of interest (i.e., the one being forecasted). For instance, records of a mushroom fruiting 

body should be meticulously checked for taxonomic inaccuracies, such as the misattribution of species 

names. The most common form of evidence supporting the representation of the phenomenon of 

interest, particularly in citizen science records, is photographic documentation. Therefore, each record 

and its supporting media should be individually scrutinized to confirm they specifically depict the event 

of interest. This means, for example, ensuring that records of a mushroom species accurately 

represent the fruiting body of the species rather than another distinguishing feature (e.g., spores). 

Furthermore, even if the images correctly depict the expected phenomenon, it is crucial to verify that 

they represent its occurence at the date of observation and not from a previous period. This includes, 

for example, checking for signs of significant deterioration in a fruiting body of a mushroom, which, if 

confirmed, should lead to the exclusion of the record, since there was an apparent time lag between 

the occurrence of the phenomenon and its recording. 

 

4.2.2 Input biodiversity data for the aerial bird biomass forecasting workflow 

The aerial bird biomass workflow uses data on the numbers of birds in the air during nocturnal 

migration. Aerial biomass data is extracted from operational weather radars in western Europe using 

the bioRAD package (Dokter et al. 2019) running at the Swedish Meteorological Institute. Data is 

processed into 5 - 15 minute vertical profiles of bird migration and stored in an online repository 

(https://aloftdata.eu). Continuous, high resolution spatio-temporal maps of nocturnal bird migration 

densities, flight speed in east/west direction and flight speed in north/south direction across western 

Europe were interpolated from vertical profile time series datasets measured by 37 weather radars in 
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France, Germany, The Netherlands and Belgium, operating between 13 February 2018 and 1 January 

2019. To go from point data (from each radar) to gridded data, bird flow (i.e., average bird movement) 

of long- and short-distant nocturnal migrants is modeled on a nightly time scale and a spatial resolution 

of 0.25°. The modeled flow (density, speed and direction) represents average fluxes of all birds moving 

through the area and used to create the EBVs (Nussbaumer et al. 2021). Measured or modeled bird 

flows can be used to develop predictive models of migration. 

Ensemble models of spring and autumn bird migration were developed to forecast bird migration for 

military aviation safety in the Netherlands. Weather radar data was collected from the KNMI (Royal 

Netherlands Meteorological Institute) and vertically integrated bird densities were extracted at a 

temporal resolution of 5 minutes using the bioRAD (Dokter et al. 2019) package to create a 10 year 

time series. Phenological predictors were derived from the migration time series and meteorological 

predictors from ERA5 data. Migration was predicted using general additive models; for more details 

regarding the forecast modelling workflow see Kranstauber et al. (2022). 

 

Table 3. Raw data availability and access for the two workflows developed. 

DATASET 
TITLE 

GBIF Mushroom Observer Aloft 

Raw data 
collection 
design 

The Global Biodiversity 
Information Facility (GBIF; 
https://www.gbif.org) is a 
leading aggregator of 
biodiversity observation 
records, including those from 
opportunistic observations - 
citizen science, research, 
monitoring programs, 
museum collections . 

Mushroom Observer 
(https://mushroomobserver.or
g) is a citizen science platform 
(not included in GBIF) providing 
opportunistic observation 
records of mushroom species 

The Aloft data repository contains bird 
movement data extracted from 
European weather radar data which is 
sent to the central OPERA repository 
(https://aloftdata.eu). 

Monitoring 
programs 

NA NA OPERA 
(https://www.eumetnet.eu/activities/
observations-programme/current-
activities/opera/). 

Types of 
data access 

Open access (license: CC BY-
NC, CC BY). 

Open access upon registration 
(license: CC BY-NC, CC BY). 

Vertical profile data of bird movement 
publicly available data (license: CC BY). 

Data 
repositories 

https://www.gbif.org https://mushroomobserver.org https://aloftdata.eu 

Persistent 
identifier(s) 

Craterellus tubaeformis: 
https://www.gbif.org/occurre
nce/search?taxon_key=25545
36 
 
Popillia japonica: 
https://www.gbif.org/occurre
nce/search?taxon_key=44257
74 

Craterellus tubaeformis: 
https://mushroomobserver.org
/observer/observation_search?
pattern=Craterellus+tubaeformi
s  
 

https://aloftdata.eu 

Metadata 
description  
 

Metadata discoverability: 
metadata is indexed in a 
searchable resource and 
accessible with standard 
protocols. 

Metadata discoverability: 
metadata description is 
provided as a static resource in 
the project website. 
Metadata standards: rules and 
guidelines used to describe and 

Metadata discoverability: 
https://github.com/enram/data-
repository 
Provenance: 
https://github.com/enram/data-
repository/tree/master/file_transfer 
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Metadata standards: Darwin 
Core 

catalog information is specific to 
the project.  

Other 
provenance 
information 

- - Data originally extracted from OPERA 
and processed using the bioRAD 
toolbox 
(https://adriaandokter.com/bioRad/ ) 

 
 

4.3. The EBV model 

4.3.1. Generic forecasting workflow 

4.3.1.1. Workflow description 

The full ‘generic’ workflow consists of seven main data processing and modelling steps (see Capinha 

et al. 2023) for the full details of the modelling approach and Fig. 2 for a representation of the 

workflow).  

The first step of the workflow consists in compiling biodiversity observation records and is described 

above in section “4.2.1 Input biodiversity data for the generic forecasting workflow”. For example, in 

developing a forecasting workflow for the edible winter Chanterelle (Craterellus tubaeformis), we 

compiled fruiting body observation data from GBIF and Mushroom Observer for the period 2015 to 

2021. Following the described procedures, we obtained about 1,700 suitable observation records. We 

undertook a similar process for our second case study, which aims to forecast the occurrence of the 

adult stage of the Japanese beetle (Popillia japonica). This invasive alien species, recently established 

in continental Europe (notably in Italy; EFSA 2019), has the capacity to consume hundreds of plant 

species, causing significant economic damage. Forecasts of the adult phase of this species are relevant 

to inform monitoring and invasion surveillance efforts, as this is when the species has a higher visual 

detectability (EFSA 2019). For this species, we gathered data from GBIF from 2015 to 2021. After 

implementing the previously mentioned quality control criteria, we obtained a total of c. 10, 000 

records of the species in its adult stage. 

The second step involves identifying and preparing environmental predictor data. The selection of 

environmental factors in this phase is primarily influenced by the nature of the phenomena being 

forecasted. For many such phenomena, a detailed representation of meteorological variation is 

essential, as it is a primary driver of intra-annual variation for many ecological and biological 

phenomena (Diez 2013, EFSA 2019). Additional factors that may be considered include photoperiod 

(Buonaiuto et al. 2023), along with ‘static’ factors like soil properties, topographical features, and land 

use classes, which are not expected to change over the forecast period. 

When selecting temporal predictors, it is crucial to source them from providers that offer forecasts 

covering the intended forecasting horizon. For example, both the European Centre for Medium-Range 

Weather Forecasts (ECMWF) and the Global Forecast System (GFS) deliver global weather forecasts 

that stretch beyond 15 days, covering an extensive range of variables. Our general workflow is 

contingent upon these forecasted predictor variables being available. Therefore, our choice of 

temporally varying predictors is bound by the pool of variables offered by these forecasting services. 

For our case studies - the fruiting bodies of the winter chanterelle and the adult phase of the Japanese 

beetle - we used weather predictor data from the GFS. This includes time series data on daily minimum, 

maximum, and average temperatures, as well as snow depth and average wind speed. Unlike ECMWF, 
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GFS offers these datasets and real-time forecasts freely. Specifically, for model calibration (see below), 

we compiled spatial time series of these meteorological variables at the global scale using a 0.25° 

spatial resolution, from 2014 to 2021. 

The third step consists of addressing potential spatial or temporal bias in the observation data of the 

phenomena of interest. Typical spatial biases in these data correspond to having records highly 

concentrated in a few areas, which if used for model calibration may dominate the overall patterns of 

the data and make model fitting unrepresentative of other locations (i.e., reduce their spatial 

transferability). There are distinct procedures that could be used to mitigate this issue (Isaac and 

Pocock 2015), most of them involving the subsampling of the observation data and reducing the 

number of records in oversampled regions (e.g., Zhang et al. 2018). A typical way to approach this is 

to overlay a predefined grid of equal-sized cells and identify those that are upper outliers in terms of 

the number of records they have (Capinha 2019). Then for each of these cells only a subset of records 

is randomly selected (e.g., the support threshold value or the average number of records across all 

cells). 

Temporal biases are less straightforward to address. Clearly, some phenomena will have more 

observation records in some periods than others, simply because there was higher recording activity 

(e.g., more activity from citizen scientists). In other words, the temporal patterns in the frequency of 

observation records results from the joint variation in the actual timing of occurrence of the 

phenomenon being recorded and in the levels of activity of the recorders. One possibility to address 

these biases is to ‘remove’ the effect of unequal levels of recording activity. This can be achieved, to 

some extent, by using proxies of the level of recorder’s activity and resampling the observation records 

so that those made in periods of higher activity will have lower chances of being selected, and vice 

versa. Precise proxies can be hard to obtain, however the temporal variation in observations for certain 

‘benchmark’ taxa can give a useful indication (Capinha et al. 2023). Specifically, taxa that show little or 

no phenological variation along the year could be good indicators of recording levels. The rationale is 

that the appeal for recording these species is constant, implying that any temporal fluctuations in their 

records are likely indicative of levels of recording activity rather than the species variability. Taxa that 

could be considered as possible proxies include some conifer species, which are evergreen and have 

inconspicuous or visually unassuming reproductive structures, making their levels of recording 

appealing similar along the year.  

For the two case studies, we dealt with spatial bias first by using a grid of 250x250 km cells to identify 

upper outlier regions in terms of number of observation records (i.e., above the upper boundary of Q3 

+1.5 IQR, with Q3 corresponding to the third quartile and IQR to the interquartile range). Then for each 

outlier region, we randomly selected a number of records matching the outlierness threshold. Finally, 

we also only kept one record per 0.25° grid cell and date of observation.   

We also tested the benchmark taxa approach to deal with temporal bias in observation data. 

Specifically, we used records of observation of pine trees (Pinus spp.). We collected data of observation 

of these taxa from 2015 to 2021 from GBIF, and performed the geographical and temporal quality 

filtering procedures, as described above for the phenomena of interest.  

Next, we generated an equal number of observations, having the same geographical coordinates as 

Pinus spp. records, but with dates generated at random within the selected years (i.e., 2015 to 2021). 

This allowed us to obtain a distribution of records that would be expected if observations were made 
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randomly over time. For both types of records (i.e., observations and randomly generated dates), we 

then extracted the day of the week, month, average temperature of the day, total precipitation of the 

day, and average wind speed of the day. 

To avoid collinearity issues among the predictors, we computed the variance inflation factor (VIF) using 

the car package (Fox and Weisberg 2019) within R (R Core Team 2023). The results indicated that all 

predictors were within acceptable collinearity limits (i.e., squared scaled generalized VIF ≤ 1.4). 

Subsequently, we used a generalized linear model (GLM) with a binomial error distribution to correlate 

the record classes with calendar and weather predictors. The model yielded plausible results, 

effectively reflecting significative positive association between the availability of Pinus spp. records 

and warmer temperatures, absence of precipitation, lower wind intensities, weekends, and months 

associated with summer holidays.  

Next, we applied this model to estimate the sampling effort level associated with each record of the 

fruiting body of winter chanterelle and of adults of the Japanese beetle. The predicted values reflect 

the likelihood of increased number of records due to observer-friendly conditions (such as preferred 

days, months, and weather conditions). To compensate for this bias in the datasets of both the 

Japanese beetle and the winter chanterelle, we used inverse probability weighting (Mansournia et al. 

2016). Specifically, for each case study we created an alternate dataset of observation records, where 

the inclusion probability of each original record was inversely proportional to the recording effort 

predicted by the model. Consequently, records made under more favorable conditions for observers 

were less likely to be chosen, and vice versa.  

Despite the advantages of data-processing techniques aimed at reducing spatial and temporal biases 

in observational data, it is important to note that this step is entirely optional in our workflow. 

Specifically, one may choose to directly calibrate models using data gathered and cleaned in the initial 

workflow stage (Fig. 2). In our case studies, we observed that models using temporally debiased data 

and those without such processing yielded comparable predictive performances (Capinha et al. 2023). 

However, in the absence of prior knowledge regarding the extent of data biases, we recommend 

employing both approaches – with and without debiasing attempts – and comparing the model 

predictions from each. 

The next step in the workflow involves calibrating models to perform the forecasts. This can include a 

variety of techniques, ranging from traditional statistical-based methods such as logistic regression 

(Shanubhogue and Gore 1987) to supervised ‘classical’ machine learning algorithms such as random 

forests or boosted regression trees (Cutler et al. 2007, Elith et al. 2008, Zhang et al. 2020), and more 

recent deep-learning approaches such as convolutional or recurrent neural networks (Capinha et al. 

2021; Ceia-Hasse et al. 2023). In essence, these models are trained by contrasting the set of temporal 

environmental conditions associated with the phenomenon of interest against the temporal 

environmental conditions that are available in the places of their occurrence. To represent the latter, 

one may use temporal pseudo-absences (Capinha et al. 2023), which are records that share the 

geographical location of the observed phenomenon but have randomly selected dates within the 

temporal range of the data. Both types of records are then characterized by a set of predictor variables, 

representing conditions such as preceding temperature, accumulated precipitation, snow depth or 

wind speed. Prior to training the models, it is also crucial to evaluate and eliminate high levels of 

collinearity among the predictors, e.g., by selecting a subset of non-collinear ones.  
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Specifically for the two case studies, we trained two classical machine learning algorithms, random 

forests (Cutler et al. 2007) and boosted regression trees (Elith et al. 2008), using a total of 67 predictor 

variables representing multiple aspects of preceding conditions of temperature, precipitation, 

accumulated snow, and wind speed (Capinha et al. 2023). To address potential issues of collinearity, 

we calculated the Pearson correlation coefficient among pairs of predictors and selected only 

predictors having absolute correlation values below 0.8. 

 

 

Figure 2. Representation of the data processing and modeling procedures implemented in the generic 

forecasting workflow. 

 

Next, it is crucial to measure the predictive performance of the models. This can be done in various 

ways, with the fundamental principle being that the evaluation should not be performed with data 

used in model calibration (e.g., k-fold cross validation). One approach could be to use data from all 

years except one, reserving the excluded year for comparison with the predictions of the model. This 

procedure can be repeated, each time using a different year as the evaluation dataset (i.e., a ‘leave-

one-year’ out approach). This ensures that model testing is made for time periods independent of 

those used in the model calibration. In addition, one could also use data from regions or periods where 

high-quality observational data is available, such as those obtained through systematic observation 
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efforts. The congruence between model predictions and actual observations can be measured using a 

range of complementary metrics (e.g., the area under the receiver operating characteristic curve 

(AUC), point bi-serial correlation, or the F-score). This assessment should also cover the entire forecast 

horizon, meaning that it should evaluate predictions made for all future days-ahead periods covered 

by the forecast. 

For the two case studies, we used a ‘leave-one-year’ out approach, and also compared predictions of 

models with observation data in regions having a high recording density of the phenomena (i.e., in 

Denmark for the winter chanterelle and in northwest Italy for the Japanese beetle). In the first case, 

we used the AUC as the performance metric, while in the second we measured the point bi-serial 

correlation between the probabilities forecasted and the observed presence or absence of records of 

the phenomenon. In both cases, all predictions achieved AUC and point bi-serial correlation values 

representative of a good to very good predictive performances (minimum AUC for the winter 

chanterelle = 0.81 and minimum AUC for the adult stage of the Japanese beetle = 0.88; minimum point 

bi-serial correlation for the winter chanterelle = 0.70 and minimum point bi-serial correlation for the 

adult stage of the Japanese beetle = 0.81).  

Finally, once the models achieve a desired level of predictive accuracy, it is necessary to implement 

them for running in near-real-time. This implementation involves the preprogramming of a series of 

routines that automatically trigger task execution at predetermined intervals or after the completion 

of preceding processes. A key routine to run concerns the recurrent updating of predictive variables 

(e.g., by collecting daily updated data from GFS and processing it into the pre-defined predictor 

variables, for each future day within the forecasting horizon). The calibrated model(s) then generate(s) 

forecasts based on these updated variables. To guarantee a consistent and reliable near-real time 

operational implementation, it is essential to use a robust and fail-safe computational infra-structure. 

This includes having built-in redundancy features to safeguard against potential interruptions, such as 

unforeseen system downtimes, and continuous backups of data. 

 

4.3.1.2. Representation of the resulting EBV 

This workflow allowed obtaining up-to-date short-term forecasts of the target phenomena. 

Specifically, it enabled producing well-performing forecasts of the probability of occurrence of fruiting 

bodies of the winter chanterelle and of the adult stage of the Japanese beetle within a time frame of 

9 days, e.g., for the date of production of the forecast and two days after that date, for four to six days 

after the date of production of the forecast, or for seven to nine days after the date of production (see 

Figs. 3 and 4 for an example forecast of each of the target phenomena considered). 
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Figure 3. Output map from the generic forecasting workflow applied to the winter chanterelle. 
Probability of occurrence of fruiting bodies of Craterellus tubaeformis for four to six days from the day 
of production of the forecast (date of production: 23rd October 2023; forecast for 26-28 October 
2023). Areas in gray are deemed unsuitable for the species or are outside its recorded range of 
distribution.  
 
 

 
Figure 4. Output map from the generic forecasting workflow applied to the Japanese beetle. 

Probability of occurrence of the adult stage of Popillia japonica for four to six days from the day of 

production of the forecast (date of production: 23rd October 2023; forecast for 26-28 October 2023). 

Areas in gray are deemed unsuitable for the species or are outside its recorded range of distribution. 

 

4.3.1.3. Uncertainty assessment 

In the generic workflow, predictive uncertainty can arise from multiple sources, such as variability in 

the input data, the inherent stochastic nature of the models used, and potential limitations in the 

representativeness of the observational data. To address this, one can incorporate uncertainty 

assessment as a critical component of our workflow. This can be achieved through the implementation 

of bootstrapping and sensitivity analysis, enabling to quantify variability in model outputs due to 

changes in input data. Additionally, ensemble modeling methods can also be used, which involve 
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running multiple iterations of the models with slightly varied parameters to understand the range of 

potential outcomes. This allows for a more robust interpretation of the forecasts, providing a clearer 

picture of the likely bounds of the forecasted phenomena. 

 
4.3.2. Aerial biomass of birds forecasting workflow 

4.3.2.1. Workflow description 

This workflow forecasts bird migration - including moments of peak migration - using bird migration 

intensity data extracted from operational weather data (Fig. 5). Kranstauber et al. (2022) detail the 

predictive modelling approach to obtain bird migration forecasts using ensemble models and 

differentiating between spring and autumn (see also van Belle et al. 2007 and van Gasteren et al. 2019). 

 

 
Figure 5. Schematic representation of the forecast workflow for the aerial biomass of birds (from 
Shamoun-Baranes et al. 2022). 
 
Migration intensity was modeled with estimates of vertically integrated bird density (birds/km2), 

which is derived from weather radar data. Bird density was calculated with the software package 

vol2bird within a range from 5 to 25 km from the radar (Dokter et al. 2011). Data quality was further 

ensured by visually inspecting the vertical profile time series of peak nights, where periods of rain and 

other non-bird reflections not filtered out by vol2bird were then excluded. Additionally, the lowest 

altitudinal bin (0-200m) was not used since at this height birds were not consistently identified for 

vertical integration. 

Regarding the spatiotemporal covariates, frequently used environmental variables correlating with 

migrant numbers are wind conditions, occurrence and abundance of rain, surface pressure and air 

temperature (e.g., van Belle et al. 2007, Van Doren and Horton 2018). Every 5-min radar measurement 

of bird density was related to environmental conditions belonging to three classes: local weather (e.g., 

wind and temperature at several heights, cloud cover, precipitation rate), remote weather (e.g., 

pressure and surface wind at departure locations), and an index related to the accumulation of birds 

not migrating due to poor weather conditions (see Table 1 in Kranstauber et al. 2022 for the full list of 
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variables). Weather conditions were linearly interpolated in time from the ECMWF ERA5 dataset 

(Hersbach et al. 2020). Data was extracted from the location of the radar site (local weather) and from 

the conditions at locations where birds could depart from (remote weather).  

The modelling approach consisted in two steps. A phenological model was first developed, 

representing seasonal and diurnal long-term migration dynamics, and then the value of including 

weather variables in the model was evaluated. Additionally, differences between spring and fall were 

assessed, and top models were averaged to create ensemble models, with the aim of increasing 

predictive performance (Dormann et al. 2018). Migration density was modeled using generalized 

additive models with a quasi-Poisson distribution family, which do not assume a particular relationship 

between the predictor variables and the dependent variable (Wood et al. 2015). The general 

phenological trends in migration were first captured in a model including three variables: day of the 

year (to capture seasonal trends), solar elevation (to capture circadian effects) and time derivative of 

solar elevation (to differentiate between sunset and sunrise). Models including environmental 

variables were then fitted using the phenological model as a basis. Each model represents the expected 

seasonal migration and one or a pairwise combination of two environmental variables. The best model 

was identified using cross-validations. In Kranstauber et al. (2022), the dataset was split 10 times for 

cross-validation datasets with a 70:30 division and the deviance by the sum of squares was calculated 

to the excluded 30% of data, for each environmental model. 

 
4.3.2.2. Representation of the resulting EBV 

This workflow allows obtaining point location specific bird migration forecasts. The approach can be 

applied on a continental scale using weather radars across Europe (Fig. 6). In addition, point based 

migration intensity (forecasted or measured) can be converted into a spatially explicit representation 

of migration intensity (biomass EBV) following the methodology developed by Nussbaumer et al. 

(2021) (Fig. 7). 
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Figure 6. Observed and predicted bird density (birds/km2) in the Netherlands for October 2016. The 

orange line corresponds to the observed bird density, while the dark blue line corresponds to the 

ensemble forecast model. Other predictions are also represented: predictions from single 

environmental models are represented by the gray lines, and predictions from a phenological model 

are represented by the purple line (from Kranstauber et al. 2022). 

 

 

 

Figure 7. Map of nightly average bird density (birds/km2) on 18 October 2018, a night of intense 
migration in many regions in western Europe. 
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4.3.2.3. Uncertainty assessment 

Model performance was assessed by iteratively omitting single years from the dataset for which 

predictions are calculated. The predictive capacity of phenological models was compared to that of 

the models including environmental variables, and single models were compared with ensemble 

model predictions for evaluating the advantages of ensemble modelling. Additionally, receiver 

operating characteristic (ROC) curves were computed to visualize the predictive performance for 

BirdTAM (Bird-notice-to AirMen) density thresholds (10, 20, 40 birds∕km2) of the phenological and 

ensemble model (Fawcett 2006, van Gasteren et al. 2019). Furthermore, the importance of the 

different environmental predictors was evaluated by analyzing how frequently they were selected in 

the cross-validations. 

In general, the ensemble models considering local and remote weather conditions performed better 

than the baseline phenological models and than single environmental models. The use of such 

ensemble models is thus recommended in operational settings - such as providing warnings for 

aviation flight planning, to reduce bird aircraft collisions during intense bird migration (Kranstauber et 

al. 2022). When forecasts were produced separately for spring and fall (Kranstauber et al. 2022) there 

were differences in the magnitude of peak migration, in the best performing modelling approach and 

in the weather conditions selected as most important in each season, which should be further 

investigated and taken into account in future implementations of this workflow. Furthermore, the 

models can fail to adequately capture extreme (migration peaks) and rare events (Kranstauber et al. 

2022), for which the inclusion of additional variables (such as the accumulation of easterly winds) can 

be useful, and which shows the importance of long training datasets and suitable data archives 

(Shamoun-Baranes et al. 2021). Similar models can also be valuable for civil aviation to support 

decisions (Nilsson et al. 2021) and to support shutdown or curtailment decisions for wind turbines 

(Marques et al. 2014). 

 

 

5. Discussion 

5.1. Advantages and breakthroughs of the forecasts 

The workflows described here can significantly empower stakeholders from multiple sectors (policy, 

academia, NGOs, citizen science, businesses) by enabling them to anticipate ecological changes in the 

short term, thus facilitating proactive and timely decision-making. They offer significant, tangible 

contributions towards achieving multiple EU policy objectives and benefiting society at large. 

 

The large diversity and relevance of potential gains from short-term ecological forecasting are clearly 

exemplified by the three test cases demonstrated. For example, mushroom fructification forecasts 

contribute to the bioeconomy and benefit EU citizens at large, also informing habitat and species 

conservation, and ecotourism. The invasive beetle forecasts can aid in pest surveillance and the timely 

implementation of control actions, thereby reducing crop damage and agricultural and economic 

losses. The aerial biomass of birds can inform aviation safety and wind farm curtailment, contributing 

to conservation, the economy, and citizen safety. It is noteworthy that these are just a limited number 

of possible applications, and the full potential of applications is much vaster. In this regard, it is relevant 

to highlight the demonstrated ability of the ‘generic’ workflow described to handle multiple, distinct 
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ecological phenomena, hence potentially allowing the wider potential of ecological short-term 

forecasts to be harnessed. 

 

5.2. Caveats, outstanding challenges, and proposed solutions 

However, there are still some caveats to the described workflows. The forecasts produced have 

relatively coarse spatial resolution and limited forecast-horizon extent, which largely reflect 

constraints in the available input data, particularly weather forecasts. Both workflows would also 

benefit from increased automation of certain procedures (e.g., in data collection and preprocessing 

steps), especially if aiming at an operational setting. In this regard, a relevant workflow component 

concerns the updating of model calibration (e.g., with data becoming available as time progresses), 

which is not currently automated in the workflows. Thus, future recalibration of models as new 

observational data becomes available still relies entirely on manual implementation. Additionally, we 

did not consider some of the weather data being produced and made available for Europe by ECMWF 

since these are not open access, being freely delivered for time-limited research projects only. The 

quality of the weather data provided by ECMWF is well recognized and to consider these data fully in 

the workflows would most likely result in further improvements. The forecasting workflows should 

also continuously seek improvements in other fronts. Specifically, improved understanding of the 

modeled systems would also be beneficial by help guiding model refinement, for example in deciding 

which predictors to include or whether more spatially general or locally specialized models are 

preferred. 

Several "upstream" challenges also hinder the widespread development and operationalisation of 

short-term ecological forecasts in the EU. One significant issue is the widespread scattering and lack 

of harmonization of the ecological and biological data needed for developing forecasting workflows. 

Efforts of data inventorying and integration, as performed by the EuropaBON Project are thus crucial 

to lessen this obstacle.  Moreover, ensuring the long-term sustainability and operational functionality 

of these workflows is challenging, depending on the availability of dedicated human personnel and IT 

infrastructure.  

Despite the identified limitations of the described workflows and the upstream challenges in 

implementation and operationalization, we demonstrate the substantial potential of short-term 

iterative ecological forecasts for informing policy and citizens. The increasing availability of vast 

volumes of biological data across wide geographical scales, along with ongoing efforts in data 

mobilization and harmonization, indicates that it is an opportune time for increased and robust 

research investment in short-term ecological forecasting. 
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