

PREPRINT

Author-formatted, not peer-reviewed document posted on 05/03/2024

DOI: https://doi.org/10.3897/arphapreprints.e122266

Extent, impacts, and drivers of oystershell scale invasions in aspen ecosystems

Connor Crouch, Amanda Grady, Nicholas Wilhelmi, Richard Hofstetter, Margaret Moore, Kristen Waring

1 Journal: NeoBiota

2 **Title:** Extent, impacts, and drivers of oystershell scale invasions in aspen ecosystems

- 4 **Authors:** Connor D. Crouch^{1,2}, Amanda M. Grady³, Nicholas P. Wilhelmi³, Richard W.
- 5 Hofstetter¹, Margaret M. Moore¹, and Kristen M. Waring¹
- 6
- ⁷ ¹School of Forestry, Northern Arizona University, 200 E Pine Knoll Dr, Flagstaff, AZ 86011, USA
- 8 ²USDA Forest Service, Northern Research Station, 202 Anheuser-Busch Natural Resources
- 9 Building, University of Missouri, Columbia, MO 65211, USA
- 10 ³USDA Forest Service, Forest Health Protection, Arizona Zone, 2500 S Pine Knoll Dr, Flagstaff, AZ
- 11 86001, USA
- 12
- 13 Corresponding author: Connor D. Crouch (connor.crouch@usda.gov)

14 Abstract

15 Invasive herbivores that kill foundation tree species pose a major threat to forest ecosystem 16 sustainability. One important foundation tree species in the interior western United States is 17 quaking aspen (*Populus tremuloides*), which is threatened by recent outbreaks of an invasive 18 insect, oystershell scale (Lepidosaphes ulmi; OSS). OSS outbreaks were first reported in 2016, 19 when OSS began causing dieback and mortality of aspen in wildland forest settings in northern 20 Arizona. Since then, OSS has been observed in other locations across Arizona and in other 21 western states, and recent studies in Arizona have highlighted the threat that OSS poses to 22 aspen sustainability, warranting a comprehensive survey of OSS invasions and their impacts on 23 aspen ecosystems. We sampled aspen populations across Arizona and addressed three 24 questions: (1) What is the geographic extent of OSS in Arizona? (2) What impacts does OSS have 25 on aspen? (3) Which biotic and abiotic factors influence OSS abundance? We found that OSS 26 was widespread in central Arizona and had a negative impact on aspen forest health. OSS was 27 associated with crown damage and tree mortality, especially of intermediate-sized, recruiting 28 stems. Climate was the most important driver of plot-level OSS abundance, with warmer, drier 29 conditions resulting in significantly more OSS. OSS was also associated with less recent fire, 30 presence of ungulate management strategies such as fenced exclosures, and stands with a 31 greater density of aspen saplings. We conclude that active management is required to suppress 32 OSS populations and mitigate damage to aspen ecosystems, and we provide OSS monitoring 33 and management recommendations based on our findings. 34 Keywords: armored scale insect, climate change, invasion ecology, Lepidosaphes ulmi, Populus

35 *tremuloides*, sleeper species

36 Introduction

37 Invasive species pose a major threat to sustainability of forest ecosystems (Chornesky et al. 38 2005). Of particularly high concern are invasive species that kill foundation tree species, 39 resulting in reductions to biodiversity and other ecosystem services (Ellison et al. 2005; Ellison 40 2019). Unlike keystone species, which are low in abundance but have an outsized influence on 41 ecosystem dynamics, foundation species are common at the landscape scale and often 42 abundant at smaller spatial scales (Ellison et al. 2005; Ellison 2019). An important foundation 43 tree species in the interior western United States is quaking aspen (*Populus tremuloides*; 44 hereafter aspen), which has the widest distribution of any tree species in North America (Little 45 1971; Perala 1990). Despite its continental abundance, aspen has high conservation value in the 46 Interior West because it is one of the only hardwood species that forms pure, single-species 47 stands (Rogers et al. 2020). As such, aspen ecosystems make disproportionately large 48 contributions to biodiversity and other ecosystem services compared to neighboring conifer-49 dominated stands (DeByle 1985; Kay 1997; Chong et al. 2001; LaMalfa and Ryle 2008; Kuhn et 50 al. 2011; Rogers et al. 2020). The conservation value of aspen is especially pronounced along 51 the southwestern edge of its range, which includes Arizona, because aspen occupies less than 52 2% of forested land (Johnson 1994; Rolf 2001; Gitlin et al. 2006; Halbritter and Bender 2011; 53 Zegler et al. 2012; Crouch et al. 2023). Concerningly, aspen in the Interior West is threatened by 54 recent outbreaks of an invasive insect, oystershell scale (Lepidosaphes ulmi; hereafter OSS) 55 (Crouch et al. 2021) (Fig. 1).

56

57 Figure 1

58 **Title:** Photos of stand-level aspen mortality from oystershell scale (OSS) and close-ups of OSS on

- 59 aspen.
- 60 Legend: Photo of young aspen stand inside of an exclosure (2 m tall fence built to exclude
- 61 ungulates from browsing aspen) experiencing high levels of dieback and mortality from
- 62 oystershell scale (OSS). Photos on the right show close-ups of OSS on aspen.
- 63
- 64 OSS is an armored scale (Hemiptera: Diaspididae) that inserts its stylet through the bark
- of woody host plants to feed on the fluid of non-vascular cells (Griswold 1925; Beardsley and
- 66 Gonzalez 1975). This feeding damages host cells, resulting in cell death and cracking of the
- 67 host's bark under heavy infestations (Beardsley and Gonzalez 1975). Mortality of heavily
- 68 infested branches, stems, and stands may occur (Griswold 1925; Beardsley and Gonzalez 1975).
- 69 OSS is polyphagous, with around 100 host genera globally (Miller and Davidson 2005). Twelve

70 host genera (Acer, Alnus, Ceanothus, Cornus, Frangula, Fraxinus, Juglans, Lupinus, Populus, 71 *Ribes, Salix, and Symphoricarpos*) have been documented in the Interior West (Crouch et al. 72 2021). OSS is most common on woody, deciduous plants, especially those with relatively thin 73 bark (Miller and Davidson 2005). As an obligate parasite, OSS completes its entire life cycle on 74 woody tissue of living hosts (Samarasinghe 1965; Crouch et al. 2024). All OSS life stages are 75 sessile, except for first instars (i.e., crawlers), which actively disperse along the host's stem or 76 branches in search of a suitable feeding site (Miller and Davidson 2005). Once a feeding site is 77 found, OSS will remain there through adulthood (Griswold 1925). In bisexual populations, males 78 shed their tests and fly to mate with females; however, female-only populations occur and 79 reproduce via parthenogenesis (Beardsley and Gonzalez 1975; Miller and Davidson 2005). 80 Questions remain about OSS dispersal mechanisms and distances, but long-distance crawler 81 dispersal is likely driven by human movement of infested plants, whereas short- and 82 intermediate-distance dispersal are likely driven by wind, potentially with animal assistance 83 (Griswold 1925; Beardsley and Gonzalez 1975; Magsig-Castillo et al. 2010). Crawlers do not 84 actively move more than 1 m due to limited energy reserves and susceptibility to adverse 85 climatic conditions (Beardsley and Gonzalez 1975; Magsig-Castillo et al. 2010). 86 Although the native range and introduction history of OSS are uncertain, the species 87 was likely transported to North America by European settlers on infested plant material 88 (Griswold 1925; Beardsley and Gonzalez 1975). OSS was first reported as a pest of apple trees 89 (Malus spp.) in the 1700s and is now present throughout much of North America, especially in 90 urban and ornamental settings (Griswold 1925; Miller and Davidson 2005). Despite the species'

91 polyphagous nature, its pervasiveness in North America, and its long invasion history, OSS has

92 rarely been a major pest in wildland forest settings (but see Sterrett 1915; DeGroot 1967; 93 Houston 2001). OSS was first reported on aspen in wildland forest settings in Arizona, USA by 94 Fairweather (1992) and Zegler et al. (2012). In both cases OSS abundance was low, and impacts 95 were minimal. However, in 2016 OSS was observed causing dieback and mortality of aspen in 96 wildland forest settings (Grady 2017), and severe outbreaks have since been observed in both 97 areas where Fairweather (1992) and Zegler et al. (2012) first observed OSS. Based on this 98 invasion history, Crouch et al. (2021) suggested that OSS may be a sleeper species, which is 99 defined as a non-native species that establishes successfully but experiences slow population 100 growth before suddenly awakening when conditions become favorable and experiencing rapid 101 population growth (Groves 1999; Bradley et al. 2018; Frank and Just 2020). It is unclear what 102 led to the awakening of OSS, but recent climatic changes, namely warmer and drier conditions 103 (Williams et al. 2022), are a likely explanation (Crouch et al. 2021). A warming climate may have 104 improved conditions for OSS by increasing the species' fitness and abundance and/or by 105 increasing susceptibility of aspen to infestation and mortality (Frank 2020; Crouch et al. 2021). OSS's role as a sleeper species and its potential interactions with climate change are concerning 106 107 because continued climate warming may trigger OSS invasions in other areas of aspen's range 108 (Crouch et al. 2021).

109 Critical to managing any invasive species is baseline information on its occurrence and 110 impacts. The first peer-reviewed report of OSS outbreaks in aspen ecosystems indicated that 111 OSS is already widespread in northern Arizona (Crouch et al. 2021). Crouch et al. (2021) also 112 observed that OSS only occurred in the lower half of aspen's elevation range (< 2500 m) and 113 that OSS seemed to be particularly pervasive on, and damaging to, smaller recruiting stems. In a

114 survey of aspen populations across Arizona, Crouch et al. (In revision) corroborated those early 115 results by finding that there was significantly less OSS at higher elevations and that OSS 116 contributed to mortality of aspen recruits (stems > 1.37 m tall and < 12.7 cm diameter at breast 117 height [dbh; height = 1.37 m]). Both studies also found that OSS was more common in fenced 118 ungulate exclosures (2 m tall fences built to exclude ungulates from browsing on aspen) than 119 outside of them. Because recruitment is critical for self-replacement, these early findings 120 highlight the threat that OSS poses to aspen resilience and sustainability (DeRose and Long 121 2014; Crouch et al. 2023), warranting a comprehensive survey of OSS and its impacts on aspen 122 across Arizona. We do not know which factors influence OSS's presence across the landscape 123 and what specific impacts OSS has on aspen ecosystems. Obtaining this information is critical 124 for informing management of OSS and mitigating damage caused by this high-impact invasive 125 species. To fill these knowledge gaps, we sampled aspen populations across Arizona and 126 addressed three questions: (1) What is the geographic extent of OSS in Arizona ? (2) What 127 impacts does OSS have on aspen? (3) Which biotic and abiotic factors influence OSS abundance 128 in aspen ecosystems?

129

130 Methods

131 Study area

Our study area encompassed aspen ecosystems across Arizona, USA. Although OSS has been
 observed on numerous hosts in Arizona (Crouch et al. 2021), our study focused on aspen
 because the first OSS outbreaks were observed in aspen ecosystems and because of aspen's
 importance as a foundation species. Aspen ecosystems in Arizona tend to be small (0.1–25 ha in

136 size), especially compared to more northerly latitudes of aspen's range (Zegler et al. 2012). 137 Aspen is limited to relatively high elevations (2000–3000 m), where lower temperatures and 138 higher precipitation allow the drought-intolerant species to survive (Perala 1990; Rehfeldt et al. 139 2009). At lower elevations, small stands of aspen occur on north-facing slopes or in drainages 140 with increased water availability, and as elevation increases, the aspen component tends to be 141 more abundant and less aspect-limited (Rasmussen 1941; Covington et al. 1983; Merkle 1962; 142 Fairweather et al. 2008; Zegler et al. 2012). In addition to occurring alone in small single-species 143 stands, aspen commonly co-occurs with conifers, including ponderosa pine (Pinus ponderosa 144 var. scopulorum) and Douglas-fir (Pseudotsuga menziesii var. glauca) at lower elevations, white 145 pine (Pinus strobiformis or Pinus flexilis var. reflexa) and white fir (Abies concolor) at mid elevations, and corkbark fir (Abies lasiocarpa var. arizonica) and Engelmann spruce (Picea 146 147 engelmannii) at the highest elevations. 148 149 Site selection

150 We sampled 220 aspen plots that represent the range of conditions under which aspen exists in

151 Arizona (Fig. 2a). These plots were located across seven major areas: North Kaibab (n = 19),

152 South Kaibab (n = 26), Flagstaff (n = 113), Mogollon Rim (n = 13), White Mountains (n = 25),

153 Prescott (n = 17), and Coronado (n = 7) (Fig. 2a). All data were collected during the 2020, 2021,

and 2022 growing seasons (June – October), when aspen trees had leaves.

155

156 Figure 2

157 **Title:** Maps showing absence, presence, and abundance of OSS in study plots located in

158 Arizona, USA.

159 Legend: Maps showing absence, presence, and abundance of OSS in (a) 220 study plots across

seven major areas (*in italics*) where aspen occurs in Arizona, USA, (b) study plots in the South

161 Kaibab (left of green National Forest boundary line) and Flagstaff major areas (right of green

line), and (c) study plots along the Mogollon Rim. These three areas are the only ones where

163 OSS presence varied. OSS was present in all plots around Prescott and was absent in all plots in

- 164 the North Kaibab, White Mountains, and Coronado.
- 165

166 To ensure that we obtained a representative sample of aspen sites and conditions, we

- 167 stratified sites across four variables elevation (≤ 2400 m, > 2400 m); aspect (north/east,
- south/west); ungulate management (none, fenced exclosure or jackstraw treatment [large piles
- 169 of woody debris protecting aspen regeneration from ungulate browse]); and fire history (0–2
- 170 years post-fire, 2–20 years post-fire, > 20 years post-fire) resulting in 24 strata. We first

171 sought to obtain one plot for each stratum, which we accomplished for 21 of the 24 strata, 172 before building out a sample that was proportional to how much aspen occurs in each stratum. 173 We assessed aspen's actual occurrence in each stratum using an observed GIS layer of aspen's 174 range on three national forest ranger districts surrounding Flagstaff (Flagstaff and Mogollon 175 Rim Ranger Districts of the Coconino National Forest; Williams Ranger District of the Kaibab 176 National Forest) (DePinte 2018). Although this layer covers only three of the nine ranger 177 districts we sampled, it is the most accurate estimation of where aspen occurs in Arizona 178 because it is a fine-scale layer of aspen's recent presence based on direct observations from an 179 aircraft (DePinte 2018). We compared the proportion of aspen observed on the landscape, 180 based on area from the GIS layer, to the proportion of aspen plots we sampled, based on the 181 number of plots that fell into each stratum. We succeeded in obtaining a representative sample 182 across elevation, aspect, and fire history, with proportions of aspen observed in each stratum 183 versus aspen sampled differing by less than 7% for each stratum (Crouch et al. In revision). When possible, we prioritized remeasurement of existing aspen monitoring plots to 184 185 reduce the number of redundant plots on the landscape and to facilitate research permission 186 on national forest land. Specifically, we revisited plots previously established by the Coconino 187 National Forest (n = 44), the Apache-Sitgreaves National Forest (n = 5), Zegler et al. (2012) on 188 the Kaibab National Forest (n = 20), and Northern Arizona University's Ecological Restoration 189 Institute on the San Francisco Peaks (n = 12). All four of these networks established plots using 190 stratified or completely random sampling, ensuring the locations of these plots lacked bias. We 191 established the remaining 139 plots by identifying aspen stands that filled target strata, 192 standing on the edge of selected stands, laying out a linear transect longways through those

193 stands, and establishing plots every 30 m along the transects. The Coconino National Forest,

194 Apache-Sitgreaves National Forest, and Ecological Restoration Institute plots were also

established along transects with plot spacings ranging from 100 m to 300 m. Zegler et al. (2012)

196 established sites at randomly located points within known aspen stands and sampled plots in all

197 four cardinal directions 20 m from those points.

198

199 Field data collection

200 Each study plot consisted of two fixed-area, circular plots: an overstory plot (8 m radius) and a 201 nested regeneration plot (4 m radius) sharing the same plot center (Zegler et al. 2012). We 202 collected GPS coordinates at the center of each study plot, recorded whether the plot fell in an 203 area of ungulate management (i.e., fenced exclosure or jackstraw treatment), and noted 204 whether there was evidence of recent conifer removal, as indicated by cut conifer stumps 205 present in or directly adjacent to the plot. For a plot to be included in our study, it had to 206 contain at least five live aspen stems between the 8 m overstory and 4 m regeneration plots 207 combined. In the 8 m overstory plot, all trees with dbh > 12.7 cm were measured. In the 4 m 208 regeneration plot, all trees > 0.02 cm in height and < 12.7 cm dbh were measured. In the 209 regeneration plot, we classified stems into three size classes adapted from Zegler et al. (2012): 210 short regeneration (< 1.37 m tall), tall regeneration (> 1.37 m tall and < 5.1 cm dbh), and 211 saplings (5.1–12.7 cm dbh). We considered both tall regeneration and saplings to be recruiting 212 stems (Crouch et al. In revision) and chose a recruitment threshold height of 1.37 m to be 213 consistent with previous studies of aspen juveniles in Arizona (Binkley et al. 2006; Zegler et al. 214 2012). For all live aspen, we measured height, dbh (except for regeneration and recruits that

215	were < 1 cm dbh), crown dieback ([percentage of dead branches above the bottom of the tree's
216	live crown] 0%, 1–33%, 34–67%, > 67%), crown ratio (percentage of total height occupied by
217	the tree's live crown), and OSS presence and severity. We assessed OSS severity using the
218	system devised by Crouch et al. (2021), which rates OSS severity on each tree from ground level
219	to 6 m. Each tree's stem up to 6 m is divided equally into thirds, and severity is rated for each 2
220	m section (or shorter for trees < 6 m tall) on both the north and south sides of the tree. Severity
221	is rated 0–3: 0 = no OSS present, 1 = only a handful of OSS present (trace), 2 = OSS covers < 50%
222	of section (light), 3 = OSS covers > 50% of section (severe). For every dead aspen and live tree
223	species other than aspen, we recorded size class and dbh.
224	For all live aspen in our study plots, we documented the top three damaging agents
225	present on each tree (Zegler et al. 2012). When more than three damaging agents were
226	present, preference was given to agents with the greatest severity of impact (i.e., most likely to
227	cause dieback and mortality) (Zegler et al. 2012). These damaging agents included insects,
228	diseases, ungulate browse, other animal damage, and abiotic damages. For insects and
229	diseases, we grouped individual species into functional groups to facilitate analysis and because
230	some biotic damages (e.g., defoliating insects) were impossible to identify based solely on
231	damage signs and symptoms. These functional groups included sucking and gall-forming
232	insects, bark beetles, wood-boring insects, defoliating insects, canker-causing diseases, foliar
233	and shoot diseases, and decay diseases (USDA Forest Service 2013; Steed and Burton 2015). As
234	explained in the previous paragraph, OSS was identified and measured separately from other
235	sucking and gall-forming insects, so that functional group excluded OSS. We assessed certain
236	cankers individually because of their potential to have outsized impacts on aspen tree health

237 compared to less pathogenic diseases (Hinds 1985; Zegler et al. 2012; Crouch et al. 2023). The 238 cankers we assessed individually were Cytospora canker (caused by Cytospora spp.), Hypoxylon 239 canker (caused by Entoleuca mammatum), Ceratocystis canker (caused by Ceratocystis spp.), 240 and sooty bark canker (caused by Encoelia pruinosa). We lumped all abiotic damages together, 241 which included fire scarring of stems, foliar drought scorch, and foliar chlorosis. We assessed 242 animal damage to aspen stems, including browse, ungulate barking (i.e., elk chewing aspen 243 bark), and other animal damage. We also indirectly quantified ungulate impacts by counting 244 ungulate scat piles within the 8 m overstory plot. We identified scat piles by species (i.e., elk 245 [Cervus canadensis], deer [Odocoileus hemionus or O. virginianus couesi], or cattle [Bos taurus]) 246 and treated piles from the same species as distinct when piles were clearly separated, 247 contained more than three pellets, and differed in color or size (Bunnefeld et al. 2006; Rhodes 248 and St. Clair 2018).

249

250 OSS extent

We assessed presence, absence, and abundance of OSS in each of the 220 study plots to determine where OSS occurs in Arizona. OSS abundance, which we also refer to as plot-level abundance, was calculated by assessing the proportion of stems in each plot that were infested by OSS at any level of severity. We also used descriptive statistics to quantify OSS presence and severity across the study plots. At the tree level, we assessed OSS severity across the four aspen size classes (i.e., short regeneration, tall regeneration, saplings, and overstory trees) to determine if there were differences in susceptibility to OSS. We analyzed all data in R version

4.2.1 (R Core Team 2022), using the *dplyr* package (Wickham et al. 2022) for data manipulation
and the ggplot2 package (Wickham 2016) for figure creation.

260

261 OSS impacts

262 We assessed OSS impacts on aspen at both the tree and stand levels. At the tree level, we built 263 univariate regressions to quantify the influence of OSS presence and severity on aspen dieback 264 and crown ratio, which are metrics that capture individual stem health (Schomaker et al. 2007). 265 Tree-level OSS severity was calculated by taking the mean percentage of each category in the 266 rating system (i.e., 1% for 1, 25% for 2, and 75% for 3) and calculating the mean for the six 267 ratings recorded for each tree. We used the *nlme* package (Pinheiro et al. 2022) to fit four linear mixed-effects models with crown dieback and crown ratio as responses, OSS presence and 268 269 severity as fixed effects, and the hierarchical, nested structure of plots (i.e., plots [n=220] within 270 study sites [n=87] within minor areas [n=19] within major areas [n=7]) as random effects. Study 271 site refers to a transect or group of plots that are clustered near each other, whereas minor 272 area refers to a group of transects or plots in a larger but still confined area (e.g., an individual 273 mountain or fire footprint). To assess OSS impacts at the stand level, we built univariate 274 regressions between plot-level OSS abundance (i.e., proportion of stems infested by OSS) and 275 aspen mortality. We used the nlme package (Pinheiro et al. 2022) to fit six linear mixed-effects 276 models with dead aspen basal area, dead aspen density, and density of dead aspen in each of 277 the four size classes individually as the six response variables. For these stand-level regressions, 278 we fit OSS abundance as the fixed effect and the hierarchical, nested structure of plots (i.e., 279 plots [n=64] within study sites [n=23] within minor areas [n=9] within major areas [n=4]) as a

280 random effect. Sample sizes differ for these stand-level models compared to the tree-level

281 models because we used only the 64 plots in which OSS occurred for these stand-level models.

282 Table 1

283 **Title:** List of 99 variables considered as potential influencing factors of plot-level oystershell scale (OSS) abundance. **Legend:** List of 99 variables considered as potential influencing factors of plot-level oystershell scale (OSS) abundance. Mean and range are shown for continuous variables, whereas percentage of plots in each category is shown for categorical variables.

Influencing factor	Mean	Range
Stand structure		
Aspen basal area ^a	10.3	0–55.9
All hosts basal area	10.3	0–55.9
Non-host basal area	10.2	0–78.1
Aspen overstory density ^b	172	0–1,194
Aspen sapling density	354	0–6,565
Aspen tall regeneration density	2,399	0–89,127
Aspen short regeneration density	8,694	0–136,873
All hosts overstory density	172	0–1,194
All hosts sapling density	356	0–6,565
All hosts tall regeneration density	2,460	0–89,127
All hosts short regeneration density	8,745	0–136,873
Non-host overstory density	115	0–945
Non-host sapling density	65	0–1,592
Non-host tall regeneration density	192	0–9,350
Non-host short regeneration density	1,394	0–33,224
Ungulates		
Browse ^c	0.30	0-1
Ungulate barking ^c	0.03	0–0.85
Total ungulate scat ^d	2.6	0–35
Elk (<i>Cervus canadensis</i>) scat	1.3	0–23
Deer (Odocoileus hemionus & O. virginianus couesi) scat	1.1	0–29
Cattle (Bos taurus) scat	0.3	0–20
Damaging agents ^c		
Sucking & gall-forming insects (excluding OSS)	0.09	0–0.80
Bark beetles	0.01	0–0.20
Wood-boring insects	0.22	0–0.83
Defoliating insects	0.60	0–1
Cytospora canker (caused by Cytospora spp.)	0.02	0–0.34
Hypoxylon canker (caused by Entoleuca mammatum)	0.002	0–0.10
Ceratocystis canker (caused by Ceratocystis spp.)	0.02	0–0.42
Sooty bark canker (caused by Encoelia pruinosa)	0.001	0–0.05
All cankers	0.33	0–1
Foliar & shoot diseases	0.19	0–0.94
Decay diseases	0.04	0–0.67
Abiotic damage	0.01	0–0.61
Other animal damage (excluding browse & barking)	0.01	0–0.15
Fire		
Fire strata ^e	1 (14.1%), 2 (22.7%), 3 (63.2%)
Fire severity ^f	1 (65.5%), 2 (9.1%), 3 (11.4%), 4 (8.2%), 5 (5.9%)
Burned twice ^g	0 (95.0%), 1 (5.0%)

Influencing factor	Mean	Range
Management		
Ungulate management ^h	0 (67.7%), 1 (32.3%)
Conifer removal ⁱ	0 (87.7%), 1 (12.3%)
Site factors		
Elevation (m above sea level)	2543	1976–3038
Aspect ^j	0.98	0–2
Slope (°)	7.9	0.1–29.7
Heat load (MJ/cm ² /yr)	0.98	0.71–1.08
Radiation (MJ/cm ² /yr)	0.96	0.64-1.09
Major area ^k	1 (3.6%), 2 (5	1.8%), 3 (6.4%), 4 (9.1%), 5 (8.2%),
	6 (11.8%), 7 (11.4%)
UTM easting	453804	358542-674303
UTM northing	3880092	3589116-4052723
Soils		
Soil order ⁱ	1 (2.7%), 2 (1	4.1%), 3 (13.2%), 4 (70.0%)
Soil pH in H ₂ O (pHx10)	63.4	55.4–71.4
Cation exchange capacity (CEC) (mmol(c)/kg at pH 7)	232.9	176.3–272.15
Nitrogen (cg/kg)	110.0	80.0–188.3
Soil organic carbon content (dg/kg)	135.2	93.8–193.9
Bulk density (cg/cm ³)	147.5	130.1–157.8
Sand content (g/kg)	321.7	187.5–592
Clav content (g/kg)	269.1	129.7–397.7
Volumetric fraction of coarse fragments (cm ³ /dm ³)	179.2	75.2–293.0
Climate	_/01_	
Degree-days below 0°C	323 9	109 0-596 0
Degree-days above 5°C	1883	1215–2819
Degree-days below 18°C	3823	2656-4842
Degree-days above 18°C	137.1	24.5-389.0
Degree-days above 10°C and below 40°C	909.0	464.5-1521.0
Number of frost-free days	181.2	140.5–265.5
Frost-free period	113.4	78.0–185.0
Winter temperature (maximum) ^m	6.0	2.5–10.6
Spring temperature (maximum)	13.8	10.7–17.8
Summer temperature (maximum)	25.3	21.2–29.1
Autumn temperature (maximum)	16.6	13.3–20.3
Winter temperature (minimum)	-7.6	-10.8
Spring temperature (minimum)	-1.2	-4.4-3.7
Summer temperature (minimum)	9.1	6.5–14.0
Autumn temperature (minimum)	0.8	-1.7–6.2
Winter temperature (mean)	-0.8	-4.2-3.9
Spring temperature (mean)	6.3	3.2–10.4
Summer temperature (mean)	17.2	13.9–21.1
Autumn temperature (mean)	87	5 8-12 4
Precipitation as snow $(annual)^n$	135.8	29.5-332.0
Winter precipitation ⁿ	211 3	83 5-516 5
Spring precipitation	148 8	66.5–240.0
Summer precipitation	147.8	64.5-292.5
Autumn precipitation	130 5	62 5-366 0
Winter relative humidity ^o	51 0	44 5-70 5
Spring relative humidity	51.0	47 0–66 0
Summer relative humidity	52.0	47 0–63 0
Autumn relative humidity	50.0 50.2	43 0-66 0
Automitrelative numberly	50.8	-3.0 00.0

Influencing factor	Mean	Range		
Winter Hargreaves reference evaporation ⁿ	30.0	0–125.5		
Spring Hargreaves reference evaporation	272.1	192.5–323.0		
Summer Hargreaves reference evaporation	463.1	396.5–535.0		
Autumn Hargreaves reference evaporation	224.1	193.5–263.0		
Winter climatic moisture deficit (CMD) ⁿ	6.2	0–26.0		
Spring climatic moisture deficit (CMD)	163.6	117.0–216.0		
Summer climatic moisture deficit (CMD)	325.6	177.0–461.5		
Autumn climatic moisture deficit (CMD)	139.2	57.5–199.0		
Winter climate moisture index (CMI) ⁿ	18.5	5.6–42.7		
Spring climate moisture index (CMI)	-3.2	-14.7–9.6		
Summer climate moisture index (CMI)	-29.9	-48.3– -7.3		
Autumn climate moisture index (CMI)	-11.0	-21.8–15.2		
Annual dryness index ^p	0.07	0.04–0.12		
Annual heat moisture index ^q	31.8	18.1–49.8		
Summer heat moisture index ^r	118.8	45.1–242.4		
^a basal area = m² ha⁻¹				
^b density = trees ha ⁻¹				
^c proportion of aspen stems affected by damaging agent				
^d scat = pellet piles/plot				
^e categorical: 1 (0-2 yrs since fire), 2 (2-20 yrs since fire), 3 (>	20 yrs since fir	e)		
^f categorical: 1 (unburned in past 20 yrs), 2 (unburned/low),	3 (low), 4 (mod	erate), 5 (high)		
^g categorical: 0 (burned < 2 times in past 20 yrs), 1 (burned t	wice in past 20	yrs)		
^h categorical: 0 (no ungulate management), 1 (exclosure or ja	ackstraw)			
ⁱ categorical: 0 (no treatment), 1 (conifer removal)				
^j 0–2 (0 = 225°, 1 = 135° or 315°, 2 = 45°)				
^k categorical: 1 (Coronado), 2 (Flagstaff), 3 (Mogollon Rim), 4	(North Kaibab)	, 5 (Prescott), 6 (South Kaibab), 7		
(White Mountains)				
¹ categorical: 1 (Inceptisols), 2 (Mollisols – Borolls), 3 (Molliso	ols – Ustolls), 4	(Alfisols)		
^m temperature = °C				
ⁿ precipitation, evaporation, CMD, CMI = mm				
° relative humidity = %				
^p annual dryness index = annual degree days above 5°C ÷ annual precipitation				
	, ,			

^q annual heat moisture index = (annual temperature + 10) ÷ (annual precipitation ÷ 1000)

^r summer heat moisture index = warmest month temperature ÷ (summer precipitation ÷ 1000)

Seasons for climate variables are winter (December – February), spring (March – May), summer (June – August), autumn (September – November).

- 285 Factors influencing OSS abundance
- 286 To assess drivers of OSS invasions in aspen ecosystems, we collected data representing an array
- of biotic and abiotic factors that may influence plot-level OSS abundance (Table 1). In total, we
- 288 considered 99 variables across eight categories of potential influencing factors: stand structure,
- ungulates, other damaging agents, fire, management, site factors, soils, and climate. Although
- some of these factors (e.g., ungulates) are unlikely drivers of OSS invasions, we included as

291 many potential influencing factors as possible because we had no prior data on which factors 292 drive OSS invasions. Using tree diameter data, we calculated basal area of stems > 5.1 cm dbh 293 for live aspen, all OSS host species, and non-host species (Table 1). We calculated stem 294 densities (trees ha⁻¹) for live aspen, all host species, and non-host species across each of four 295 stem size classes (i.e., short regeneration, tall regeneration, saplings, and overstory trees). 296 Using the presence/absence data for all damaging agents on each live aspen stem, we 297 calculated the proportion of stems affected by each agent in each plot (Table 1). 298 Using the GPS coordinates we collected at each plot's center, we calculated elevation, 299 aspect, and slope using a 30 m² digital elevation model (Table 1). We transformed raw aspect 300 into a continuous variable ranging from 0-2 with 0 representing southwest (225°) and 2 301 representing northeast (45°) (Beers et al. 1966). We also calculated heat load and potential 302 annual direct radiation, two indices that assess site-level temperature based on slope, aspect, 303 and latitude (McCune and Keon 2002). We assessed fire occurrence in each plot for the past 20 304 years using wildland fire perimeters obtained from the USDA Forest Service Region 3 GIS database (https://www.fs.usda.gov/detail/r3/landmanagement/gis) and prescribed fire 305 306 perimeters from national forest staff. We assessed fire severity using data obtained from the 307 Monitoring Trends in Burn Severity program (https://www.mtbs.gov/), which provides fire 308 severity data at 30 m resolution. We created categorical variables to represent both fire 309 occurrence and severity in addition to a binary variable for plots that burned twice in the past 310 20 years (Table 1). Finally, we used GPS coordinates and maps obtained from national forest 311 staff to verify whether plots fell inside areas of ungulate management and conifer removal

312 treatments, and we created binary variables for both ungulate management and conifer313 removal (Table 1).

314 We obtained soils data from SoilGrids (https://www.isric.org/explore/soilgrids), which 315 provides global soil mapping data at 250 m resolution (Poggio et al. 2021). We used 9 of 12 316 available soil metrics to capture variables that represent soil moisture (e.g., sand content and 317 bulk density), fertility (e.g., cation exchange capacity, nitrogen, and soil organic content), 318 rooting environment (e.g., bulk density, clay content, and coarse fragments), and chemical 319 environment (e.g., soil pH) (Table 1). We aggregated mean values for each variable to a depth 320 of 1 m because most lateral aspen roots occur within the first 1 m of the soil (Jones and DeByle 321 1985). We obtained climate data from ClimateNA (https://climatena.ca/), which downscales 322 PRISM data (Daly et al. 2008) at 800 m resolution (Wang et al. 2016). Because we expected 323 climate to be an important driver of OSS abundance but had no prior data on which aspects of 324 climate are the most important, we included as many climate variables as possible. Specifically, 325 we obtained variables representing annual and, when available, seasonal degree-days, 326 temperature, precipitation, humidity, Hargreaves reference evaporation (hereafter 327 evaporation), and drought for the two years preceding the date each plot was sampled (Table 328 1). We chose two years because, based on repeated observations of OSS in the same field sites 329 across multiple years indicated that most OSS we observed on trees had accumulated in the 330 preceding two years (Crouch et al. 2024). Although dead OSS are likely capable of lasting even 331 longer on host trees, more recent climate data captures the most recent trends in live OSS population abundance. 332

333 We used random forests, structural equation modeling (SEM), and stand- and tree-level 334 regressions to determine which biotic and abiotic factors drive OSS invasions. First, we used 335 random forests to determine which of the 99 predictor variables had the strongest influence on 336 plot-level OSS abundance. Random forests are a useful tool for assessing variable importance in 337 regression and classification settings among an array of potential predictors (Breiman 2001). 338 Specifically, we used the VSURF package (Genuer et al. 2015), which used 50 random forest 339 runs, each of which was built using 2000 trees, to rank variable importance for each of our 340 three response variables. VSURF is robust in noisy, high dimensional settings and in the 341 presence of highly correlated predictors (Genuer et al. 2010). VSURF outputs a ranked list of 342 variables based on importance, which is calculated using out-of-box mean square error for each tree. We used this ranked list of variables when building SEMs and assessing univariate 343 344 relationships between influencing factors and OSS abundance. We also used the climate 345 variables in this list to search for climatic thresholds beyond which OSS does not occur in 346 Arizona.

Once we obtained a list of the most important variables influencing OSS abundance, we 347 348 used SEM to assess how those variables and their interactions affect OSS abundance. SEM is an 349 insightful tool for ecological research because it allows the user to build models based on 350 theoretical understanding of an ecological system, resulting in a network of causal, multivariate 351 relationships with a complete accounting of direct and indirect relationships and the relative 352 strengths of those relationships (Grace 2006; Lefcheck 2016). Our first step in building an SEM 353 was to construct an *a priori* model based on our theoretical understanding of how biotic and abiotic factors might influence OSS. This *a priori* model (Fig. 3) accounted for all 99 variables 354

355 Figure 3

356 **Title:** A priori structural equation model (SEM) illustrating hypothesized relationships among

357 influencing factors and OSS abundance.

358 Legend: A priori structural equation model (SEM) illustrating hypothesized directional

relationships among influencing factors and plot-level OSS abundance. Arrows indicate causal

360 relationships, and colors correspond to each of the eight categories of influencing factors. See

- 361 Table 1 for complete list of measured variables included in each of these eight categories.362
- 363 that potentially influence OSS abundance using the eight categories of influencing factors (i.e.,

364 stand structure, ungulates, other damaging agents, fire, management, site factors, soils, and

365 climate). We then built a "full" SEM, which included the highest ranked variable based on

366 random forests from each of the eight categories of influencing factors (Table 1). We used a

367 combination of backward and forward selection to optimize model fit (using AIC and Fisher's C

368 statistic) and maximize explanatory power (using R² of the response variable). This optimization

- 369 process included removing variables with low significance in the model and adding in more
- 370 than one variable per category (e.g., adding a second climate variable) when two variables from
- 371 one category had high importance values based on random forests. We also tested how
- 372 swapping in one variable to replace another variable of the same category (i.e., replacing fire

severity with fire strata) affected the model. We used the *piecewiseSEM* package to build SEMs
because this package accommodates use of mixed-effects models (Lefcheck 2016). For the
individual regressions that underlie *piecewiseSEM*, we used the *lme4* package (Bates et al.
2015) to fit linear mixed-effects models with the hierarchical, nested structure of plots modeled
as random effects.

378 We also fit stand- and tree-level regressions to assess how various factors influence OSS 379 presence and severity. At the stand level, we took the top 25 factors influencing OSS abundance 380 based on random forests and built univariate regressions to quantify relationship direction, 381 strength, and significance. We used the *nlme* package (Pinheiro et al. 2022) to fit linear mixed-382 effects models with plot-level OSS abundance as the response, the 25 individual influencing factors as fixed effects, and the hierarchical, nested structure of plots as random effects. At the 383 384 tree level, we built univariate regressions to determine the influence of aspen tree size on OSS 385 presence and severity. We used the *nlme* package (Pinheiro et al. 2022) to fit eight linear 386 mixed-effects models with OSS presence and severity as responses, with dbh, height, height-to-387 diameter ratio, and size class as fixed effects, and with the hierarchical, nested structure of 388 plots as random effects. Because size class is a categorical variable with four levels, we also 389 used the "anova" function in R (R Core Team, 2022) to conduct one-way analysis of variance 390 (ANOVA), allowing us to test for significant differences in OSS presence and severity among the 391 four size classes. When ANOVA found a significant ($\alpha = 0.05$) difference between size classes, 392 we used the emmeans (Lenth, 2022), multcomp (Hothorn et al. 2008), and multcompView (Graves et al. 2019) packages to conduct post-hoc Tukey-adjusted pairwise comparisons and 393 determine which size classes significantly differed. We used these same ANOVA procedures to 394

- 395 compare height-to-diameter ratios inside versus outside areas of ungulate management to
- 396 assess how these treatments influence aspen growth and, in turn, potentially influence OSS
- 397 abundance.
- 398
- 399 Table 2
- 400 **Title:** Summary data for aspen stand structure, crown condition, and OSS presence.

Legend: Means and standard errors of variables representing live and dead aspen basal area, live and dead aspen density in different stem size classes, live aspen crown ratio and dieback, and OSS presence at the plot and tree levels. For categorical variables, percentage of plots or trees in each level are shown.

Variable	Mean	Std error
Live aspen basal area (m ² ha ⁻¹)	10.3	0.8
Dead aspen basal area (m² ha⁻¹)	4.3	0.4
Total live aspen density (trees ha ⁻¹)	11,618.5	1,304.2
Total dead aspen density (trees ha ⁻¹)	4,450.5	704.2
Live aspen short regeneration density (trees ha ⁻¹)	8,693.8	1,169.4
Dead aspen short regeneration density (trees ha ⁻¹)	3,420.9	674.6
Live aspen tall regeneration density (trees ha ⁻¹)	2,399.1	550.8
Dead aspen tall regeneration density (trees ha ⁻¹)	796.7	126.6
Live aspen sapling density (trees ha ⁻¹)	353.6	58.4
Dead aspen sapling density (trees ha ⁻¹)	165.5	42.6
Live aspen overstory density (trees ha ⁻¹)	172.0	17.1
Dead aspen overstory density (trees ha ⁻¹)	67.4	8.6
Aspen crown ratio (%)	52.0	0.5
Aspen crown dieback (categorical)		
0% dieback	34.2	0.5
1–33% dieback	44.5	0.5
34–67% dieback	13.9	0.3
68–99% dieback	7.5	0.3
Plot-level OSS presence (categorical)		
OSS absent	70.9	3.1
OSS present	29.1	3.1
Tree-level OSS presence (categorical)		
OSS absent	89.3	0.3
OSS present	10.7	0.3

402	Results
403	Aspen condition
404	Mean total aspen basal area, including living and standing dead trees, in our 220 study plots
405	was 14.6 m ² ha ⁻¹ , of which dead trees made up 29.5% (Table 2). Mean total aspen density was
406	16,069 trees ha ⁻¹ , 27.7% of which were dead. Looking at individual stem size classes, study plots
407	contained an average of 239 overstory aspen ha ⁻¹ (28.2% of which were dead), 519 saplings ha ⁻¹
408	(31.9% dead), 3,196 tall regeneration stems ha ⁻¹ (24.9% dead), and 12,115 short regeneration
409	stems ha ⁻¹ (28.2% dead) (Table 2). Of the 9965 live aspen stems we sampled, 34.2% of stems
410	had no crown dieback, 44.5% of stems had 1–33% dieback, 13.9% of stems had 34–67%
411	dieback, and 7.5% of stems had 67–99% dieback (Table 2). Mean crown ratio of live aspen was
412	52.0%.

413

414 OSS extent

415 OSS was present in 29% of study plots and occurred in four of seven major areas where aspen 416 occurs in Arizona: South Kaibab, Flagstaff, Prescott, and Mogollon Rim (Fig. 2a). OSS was not 417 found in study plots we sampled in the North Kaibab, White Mountains, or Coronado major 418 areas. The area around Prescott had the highest plot-level rate of infestation, with OSS present 419 in all 17 plots. The South Kaibab had 65.4% of plots infested (Fig. 2b), the Mogollon Rim had 420 53.4% of plots infested (Fig. 2c), and Flagstaff had 20.4% of plots infested (Fig. 2b). Of the 9965 421 live aspen stems we sampled, 10.7% were infested with OSS (Table 2). Tree-level rates of 422 infestation across major areas were consistent with plot-level rates of infestation. When 423 looking at all plots, not just those in which OSS occurred, Prescott had the highest proportion of

424 trees infested (60.3%), followed by South Kaibab (20.8%), Mogollon Rim (16.2%), and Flagstaff
425 (7.6%).

OSS infested aspen stems of all sizes, although there was a higher likelihood of infestation on trees taller than 1.37 m (i.e., tall regeneration stems and larger) (Fig. 4). Using the OSS severity rating, 6.9% of all live aspen stems we sampled had a mean rating of trace, 2.3% were light, and 1.4% were severely infested. In the 64 plots where OSS was present, mean severity ratings were 34.5% trace, 11.6% light, and 7.2% severe. Patterns of OSS severity across stem size classes generally followed those of OSS presence, with more severe infestations occurring as rate of presence increased (Fig. 4).

433 Figure 4

- 434 **Title:** OSS severity across four aspen stem size classes.
- 435 **Legend:** OSS severity across four aspen stem size classes. Data shown were taken only from the
- 436 64 study plots in which OSS was observed and include only live trees. OSS severity was assessed
- 437 using the rating system devised by Crouch et al. (2021), which rates OSS severity on each tree
- from ground level to 6 m. Each tree's stem up to 6 m is divided into thirds, and severity is rated
- for each 2 m section (or shorter for trees < 6 m tall) on both the north and south sides of the
- 440 tree. The ratings are as follows: light (no OSS present), trace (only a handful of OSS present),
- 441 light (OSS covers < 50% of section), severe (OSS covers > 50% of section).

442 Table 3

443 Title: Relationships between two measures of aspen stem health and OSS presence and

444 severity.

Legend: Univariate relationships between two measures of aspen stem health (crown ratio and dieback) and OSS presence and severity at the tree level.

Response	Predictor	Coefficient	Std error	p value	Marginal R ²
Aspen crown ratio (%)	OSS presence ^a	-9.83	1.25	< 0.001	0.012
Aspen crown ratio (%)	OSS severity (%)	-38.87	4.33	< 0.001	0.009
Aspen crown dieback ^b	OSS presence ^a	0.52	0.04	< 0.001	0.031
Aspen crown dieback ^b	OSS severity (%)	2.06	0.14	< 0.001	0.024

These relationships are based on linear mixed models. Marginal R² is based solely on the model's fixed effects, which were either OSS presence or severity.

^a 0–1 (0 = OSS absent, 1 = OSS present)

^b 0–3 (0 = 0% dieback, 1 = 1–33% dieback, 2 = 34–67% dieback, 3 = 68–99% dieback)

- 445
- 446 OSS impacts

447	OSS presence at the tree level was significantly ($p < 0.001$) associated with reduced aspen
448	crown ratio and increased crown dieback based on univariate regression (Table 3). Trees
449	infested with OSS were associated with a 9.8% reduction in crown ratio and a 0.5 unit increase
450	in dieback compared to trees without OSS. Because dieback was assessed on a categorical scale
451	from 0 to 3 (0 = 0% dieback, 1 = 1–33% dieback, 2 = 34–67% dieback, 3 = 67–99% dieback), a 0.5
452	unit increase on the categorical scale equates to a roughly a 16% increase in dieback. Tree-level
453	OSS severity was also significantly ($p < 0.001$) associated with reduced crown ratio and
454	increased dieback (Table 3). Tree-level OSS severity ranged from 0 to 0.75, with 0 indicating a
455	tree without OSS and 0.75 indicating a tree with the highest possible severity rating (OSS
456	covering > 50% of all six stem sections rated). Thus, an increase in OSS severity of 0.1 equates
457	to a 10% increase in OSS infestation of the tree's stem up to 6 m in height. A 0.1 unit increase in
458	OSS severity was associated with a 3.9% reduction in crown ratio and a 0.2 unit increase in
459	dieback, which equates to roughly 6.6% dieback. Despite the high degree of significance for all

- 460 four of these univariate relationships, OSS presence and severity explained a low proportion of
- the variance observed in aspen crown ratio and dieback ($R^2 \le 0.03$), indicating that OSS is one of
- 462 many factors influencing aspen stem health.

463 Table 4

464 **Title:** Relationships between six measures of dead aspen density and plot-level OSS abundance. **Legend:** Univariate relationships between six measures of dead aspen density and plot-level OSS abundance (i.e., proportion of stems infested by OSS). These models were fit using data only from the 64 study plots in which OSS was present.

Response	Predictor	Coefficient	Std error	p value	Marginal R ²
Dead aspen basal area ^a	OSS (%)	5.74	2.35	0.019	0.108
Total dead aspen ^b	OSS (%)	1029.67	1644.03	0.535	0.005
Dead aspen short regeneration ^b	OSS (%)	-646.59	961.49	0.505	0.005
Dead aspen tall regeneration ^b	OSS (%)	1654.33	834.21	0.054	0.076
Dead aspen saplings ^b	OSS (%)	532.32	275.75	0.061	0.070
Dead overstory aspen ^b	OSS (%)	33.15	35.04	0.350	0.015

These relationships are based on linear mixed models. Marginal R^2 is based solely on the model's fixed effect, which was plot-level OSS abundance. ^a m² ha⁻¹

```
<sup>b</sup> trees ha<sup>-1</sup>
```

465

466 For the 64 study plots in which OSS was present, plot-level OSS abundance was

467 significantly (p = 0.019) associated with increased dead aspen basal area (Table 4). An increase

in OSS abundance of 1, which represents the difference between no stems infested by OSS and

all stems infested by OSS, was associated with an increase in dead aspen basal area of 5.7 m²

470 ha⁻¹. For context, mean basal area of living aspen in these 64 plots was 11.4 m² ha⁻¹ and in all

471 220 study plots was 10.3 m² ha⁻¹. We also assessed the influence of OSS abundance on five

- 472 measures of dead aspen density: total dead aspen and density of the each of the four size
- 473 classes. None of these univariate relationships were significant, although the tall regeneration
- 474 (p = 0.054) and sapling (p = 0.061) models approached significance (Table 4). An increase in OSS
- 475 abundance of 1 was associated with 1,654 more dead tall regeneration stems ha⁻¹ and 532

476 more dead saplings ha⁻¹. For context, there were 1,579 living tall regeneration stems ha⁻¹ and 477 867 living saplings ha⁻¹ on average in the 64 plots where OSS occurred and 2,399 tall 478 regeneration stems ha⁻¹ and 354 living saplings ha⁻¹ across all study plots. The models for total 479 dead aspen density, density of dead short regeneration, and density of dead overstory trees 480 were insignificant ($p \ge 0.350$).

481

482 Factors influencing OSS abundance

483 We considered 99 potential factors influencing plot-level OSS abundance, and random forests 484 indicated the five most important influences were autumn evaporation, elevation, degree-days 485 between 10°C and 40°C, winter climate moisture index (CMI), and autumn precipitation (Table 5). Based on univariate relationships between the top 25 most important influencing factors 486 487 and OSS abundance, the five strongest influencing factors were maximum winter temperature $(R^2 = 0.43; p < 0.001)$, winter evaporation $(R^2 = 0.41; p < 0.001)$, maximum spring temperature 488 $(R^2 = 0.30; p < 0.001)$, elevation $(R^2 = 0.26; p < 0.001)$, and minimum spring temperature $(R^2 = 0.26; p < 0.001)$ 489 0.21; p = 0.004).490

The optimal SEM for plot-level OSS abundance (AIC = 861.6; Fisher's C = 1.018 with p = 0.907 [high p value indicates better fit]; response marginal R² = 0.53, conditional R² = 0.88 [marginal includes only fixed effects, conditional includes both fixed and random effects]) included seven influencing factors: autumn evaporation, winter CMI, maximum winter temperature, elevation, fire strata, live aspen sapling density, and presence of ungulate management (Fig. 5). Based on this SEM, all influencing factors except for winter CMI and elevation had a significant (p < 0.05) direct effect on OSS abundance. Autumn evaporation had

498 Table 5

- 499 **Title:** Relationships between OSS abundance and the most important influencing variables
- 500 based on random forests.

Legend: Top 25 most important variables influencing plot-level OSS abundance based on 50 random forest runs, each of which was built using 2000 trees. Univariate relationships between influencing factors and OSS abundance were based on linear mixed models. See Table 1 for list of all influencing factors considered.

Random forests		Univariate re	egressions	
Rank	Influencing factor	Coefficient	Marginal R ²	<i>p</i> value
1	autumn evaporation	-0.003	0.014	0.195
2	elevation	< -0.001	0.263	< 0.001
3	degree-days 10–40°C	< 0.001	0.197	0.003
4	winter CMI	0.005	0.015	0.302
5	autumn precipitation	0.002	0.168	0.002
6	winter evaporation	0.006	0.413	< 0.001
7	winter temp (max)	0.120	0.428	< 0.001
8	wood boring insects	0.121	0.007	0.034
9	winter precipitation	< -0.001	0.002	0.755
10	clay	< 0.001	0.003	0.638
11	degree-days < 0°C	-0.001	0.190	0.003
12	snow	-0.002	0.146	0.001
13	spring temp (max)	0.105	0.301	< 0.001
14	spring CMD	0.004	0.109	0.002
15	spring evaporation	0.002	0.037	0.085
16	aspen saplings ha ⁻¹	< 0.001	0.018	0.001
17	host saplings ha ⁻¹	< 0.001	0.018	0.001
18	degree-days > 5°C	< 0.001	0.198	0.003
19	spring temp (min)	0.071	0.210	0.004
20	host regeneration ha ⁻¹	< -0.001	< 0.001	0.455
21	UTM easting	< -0.001	0.088	0.170
22	other animal damage	0.070	< 0.001	0.891
23	summer temp (mean)	0.068	0.174	0.005
24	aspen regeneration ha ⁻¹	< -0.001	< 0.001	0.458
25	fire severity	-0.014	0.003	0.463

Marginal R² is based solely on the model's fixed effect, which was the influencing factor shown in each row.

. .

501

- - -

502	a negative direct effect (effect size = -0.33; p = 0.011) on OSS abundance, whereas maximum
503	winter temperature (0.60; $p = 0.011$), fire strata (0.30; $p < 0.001$), live aspen sapling density

. . .

504 (0.13; p = 0.001), and presence of ungulate management (0.26; p < 0.001) had positive direct

.

505 effects. Fire strata and ungulate management were categorical variables (Table 1), and SEM 506 indicated that less recent fire and presence of ungulate management resulted in greater OSS 507 abundance. All three climate variables had significant ($p \le 0.003$) influences on fire strata, with 508 recent fire being driven by less autumn precipitation, higher winter CMI, and higher maximum 509 temperatures in winter. Thus, more autumn evaporation indirectly led to more OSS, while 510 higher winter CMI and maximum winter temperatures indirectly led to less OSS. More autumn 511 evaporation and higher winter CMI also resulted in significantly ($p \le 0.003$) fewer aspen 512 saplings, resulting in both climate variables having an additional negative indirect effect on OSS 513 abundance. Finally, aspen sapling density was significantly (p < 0.001) lower at higher elevation, 514 resulting in a negative indirect effect of elevation on OSS abundance.

515 Figure 5

- 516 **Title:** Optimal SEM for plot-level OSS abundance.
- 517 **Legend:** Optimal SEM for OSS abundance that minimized AIC and maximized response R².
- 518 Significant (*p* < 0.05) path coefficients are shown in bold, and their corresponding paths are
- 519 depicted as solid lines. In contrast, insignificant coefficients are not bolded, and their
- 520 corresponding paths are shown as dashed lines. Path thickness indicates strength of its
- 521 coefficient, with wider paths indicating stronger relationships.

522 Figure 6

- 523 Title: Elevation and climate thresholds beyond which OSS does not occur in aspen ecosystems
- 524 in Arizona.

525 Legend: Relationships between plot-level OSS abundance and (a) elevation, (b) snowfall, (c)

- 526 autumn evaporation, (d) degree-days above 10°C and below 40°C, (e) maximum winter
- 527 temperature, and (f) maximum spring temperature. Red lines indicate thresholds above or
- 528 below which OSS does not occur in aspen ecosystems in Arizona.

529 To further assess the relationship between climate and OSS, we searched for thresholds 530 using the climate variables that random forests, univariate regressions, and SEM indicated were 531 the most important drivers of plot-level OSS abundance. We identified clear elevational and 532 climatic thresholds beyond which OSS does not occur in Arizona (Fig. 6). According to these 533 thresholds, OSS was not observed in plots that exceeded 2545 m in elevation, received greater 534 than 152 mm of snow annually, experienced maximum winter temperatures below 5.25°C, 535 experienced maximum spring temperatures below 13.25°C, and had fewer than 825 degree-536 days between 10°C and 40°C (calculated as accumulated temperature difference from the 537 degree-day threshold, rather than a true accumulation of degree-days [Wang et al. 2006]). In 538 addition, OSS was not observed in plots with less than 218 mm of autumn evaporation, except for one plot which had 202.5 mm of evaporation and a single aspen stem infested with OSS. 539 540 We also assessed univariate relationships between tree-level OSS presence and severity 541 and four measures of aspen stem size: size class, height, dbh, and height-to-diameter ratio. 542 One-way ANOVA indicated that there were significant differences (p < 0.001) in OSS presence 543 and severity among the four stem size classes (Table 6). OSS presence was significantly greater 544 on overstory trees and saplings compared to tall and short regeneration, and OSS presence was 545 significantly greater on tall regeneration than short regeneration. Saplings and tall regeneration 546 had significantly greater OSS severity than overstory trees and short regeneration, while 547 overstory trees had significantly greater OSS severity than short regeneration. OSS presence 548 and severity significantly (p < 0.001) increased with increasing height and decreasing dbh (Table 549 6). In addition, OSS presence and severity significantly ($p \le 0.042$) increased with increasing 550 aspen height-to-diameter ratio, and one-way ANOVA indicated that height-to-diameter ratios

551 were significantly (*p* < 0.001) greater inside areas of ungulate management than outside these

areas. Similar to the tree-level crown ratio and dieback results, aspen stem size explained a low

proportion of the variance observed in OSS presence and severity (marginal $R^2 \le 0.02$) (Table 6).

554 Table 6

555 **Title:** Relationships between tree-level OSS presence and severity and four measures of aspen 556 stem size.

Legend: Univariate relationships between tree-level OSS presence and severity and four measures of aspen stem size (size class, height, dbh, and height-to-diameter ratio).

Response	Predict	tor	Coefficient	Std error	p value	Marginal R ²
OSS presence ^a	size	SR	-12.246 c	1.936	< 0.001	0.014
	class	TR	1.752 b	0.189	< 0.001	
		S	2.905 a	0.279	< 0.001	
		0	2.904 a	0.280	< 0.001	
OSS severity (%)	size	SR	0.010 c	0.008	0.239	0.021
	class	TR	0.027 a	0.002	< 0.001	
		S	0.035 a	0.004	< 0.001	
		0	0.011 b	0.003	< 0.001	
OSS presence ^a	height	(m)	0.006	0.001	< 0.001	0.004
OSS severity (%)	height	(m)	0.001	< 0.001	< 0.001	0.002
OSS presence ^a	dbh (cr	n)	-0.003	0.001	< 0.001	0.005
OSS severity (%)	dbh (cr	n)	-0.001	< 0.001	< 0.001	0.012
OSS presence ^a	height:	diameter (m)	0.458	0.166	0.006	0.001
OSS severity (%)	height:	diameter (m)	0.114	0.056	0.042	0.001

These relationships are based on linear mixed models. Aspen size class abbreviations: SR (short regeneration, < 1.37 m tall), TR (tall regeneration, > 1.37 m tall and < 5.1 cm dbh), S (saplings, 5.1–12.7 cm dbh), O (overstory trees, > 12.7 cm dbh). Different letters after coefficients indicate significant differences among size classes based on post-hoc Tukey-adjusted pairwise comparisons. Marginal R² is based solely on the model's fixed effects, which was aspen size class, height, dbh, or height-to-diameter ratio.

^a 0–1 (0 = OSS absent, 1 = OSS present)

557

- 558 Discussion
- 559 OSS extent

560 OSS is widely distributed throughout aspen ecosystems in central Arizona (Fig. 2a), confirming

the initial report of OSS outbreaks in the region (Crouch et al. 2021). This study added plots in

562 three areas not surveyed by Crouch et al. (2021) – North Kaibab, White Mountains, and

563 Coronado – none of which had OSS. We also added plots in the South Kaibab, Flagstaff, 564 Prescott, and Mogollon Rim major areas, identifying more sites where OSS occurs in these areas 565 than were initially reported (Grady 2017; Crouch et al. 2021). Aspen ecosystems we sampled in 566 the North Kaibab and White Mountains may be free of OSS because wetter, colder climates in 567 those areas (Supplementary table 1) may be unsuitable for OSS, as we discuss later. For 568 example, all North Kaibab and White Mountains plots occurred above 2545 m in elevation, 569 which was the threshold above which we did not observe OSS anywhere in Arizona (Fig. 6a). 570 Alternatively, these areas may have evaded OSS invasions for a different, unknown reason. For 571 example, OSS spread at the landscape scale is likely facilitated by its ability to infest a wide 572 array of hosts in addition to aspen (Crouch et al. 2021) and perhaps even by historical 573 transportation of infested apple stock by Euro-American settlers or more recent movement of 574 infested nursery stock. However, our ability to determine how other host species facilitate OSS 575 invasions of aspen ecosystems is limited due to the lack of fine-scale mapping of where apples 576 were historically planted and where other OSS host species occur, particularly understory hosts 577 such as Ceanothus spp. In contrast to the North Kaibab and White Mountains, aspen 578 ecosystems on the Coronado tend to occur on relatively warmer, drier sites (Supplementary 579 table 1), but OSS may have been absent in our Coronado study plots because all the plots we 580 sampled were in areas burned the previous year by the 2020 Bighorn Fire. Importantly, our 581 sampling was not exhaustive and was restricted to aspen ecosystems, so OSS may occur in the 582 North Kaibab, White Mountains, and Coronado. More extensive monitoring in these areas, 583 including on hosts other than aspen, is warranted.

584 Prescott had the highest rates of OSS infestation of the seven major areas we studied, 585 with all 17 plots and 60.3% of live aspen in the region being infested. This is concerning because 586 Prescott also had the highest levels of sustainable aspen recruitment (Crouch et al. In revision), 587 so OSS outbreaks in this area might eventually counteract successful recruitment. One reason 588 why there is so much aspen recruitment in Prescott is because elk populations, which 589 significantly inhibit aspen recruitment (Beschta and Ripple 2010; Fairweather et al. 2014; 590 Crouch et al. 2023, In revision), do not occur in the area. Therefore, ungulate exclosures, which 591 do not exist in the area, do not facilitate OSS invasions of aspen ecosystems in Prescott as they 592 seem to do in other areas of Arizona. Instead, Prescott may have more OSS than other areas 593 because it has been present in the area for longer. The earliest report of OSS occurring on 594 wildland aspen in Arizona was in Prescott approximately 30 years before our study occurred 595 (Fairweather 1992). Another possible explanation for why OSS is so abundant in Prescott is 596 because aspen sites in this area tend to experience warmer temperatures than aspen in other 597 parts of Arizona (Supplementary table 1). As we discuss below, warmer temperatures are a 598 significant driver favoring OSS.

599

600 OSS impacts

OSS negatively affected aspen health at both the tree and stand levels. Aspen trees infested
with OSS had significantly lower crown ratios and higher dieback, indicating reduced stem
health. As OSS infestations became more severe, crown ratio significantly decreased, and
dieback significantly increased (Table 3). This crown damage was likely caused by the feeding
behvaior of OSS, which extracts fluid from the host plant's non-vascular cells (Griswold 1925;

606 Beardsley and Gonzalez 1975), but the exact mechanism that causes damage remains unknown 607 and represents an important research need. For example, aspen bark is photosynthetic (Jones 608 and DeByle 1985), so OSS feeding might reduce the tree's photosynthetic capacity. 609 Alternatively, OSS feeding may compromise stem health by causing trees to allocate resources 610 from growth to defense (Cope et al. 2021). At the stand level, plots with more stems infested by 611 OSS had significantly greater dead aspen basal area, with a 10% increase in OSS abundance 612 equating to an increase of 0.57 m² ha⁻¹ in dead aspen basal area (Table 4). Although density of 613 total dead aspen stems and density of dead stems in each of the four size classes had 614 insignificant relationships with OSS abundance, the models for dead tall regeneration and 615 saplings approached significance, suggesting that OSS may have an outsized influence on these 616 intermediate-sized, recruiting stems (Crouch et al. In revision). 617 Density of aspen saplings and saplings of all host species were significantly associated 618 with increased plot-level OSS abundance (Table 5), providing additional evidence that 619 intermediate-sized, recruiting stems seem to be most susceptible to OSS infestation. At the tree 620 level, OSS infestations were more severe on tall regeneration and saplings and were associated 621 with taller and thinner stems (Table 6). We hypothesize that short regeneration had such low 622 infestation rates because these stems remain shorter than 1.37 m for only a few years (Jones 623 and Schier 1985), which reduces the likelihood of OSS finding them before they grow into taller 624 size classes. Short regeneration may also be more likely to evade OSS because they are smaller 625 targets. We hypothesize that overstory trees had lower OSS severity than tall regeneration and saplings because overstory trees tend to have thicker bark, which may inhibit OSS's ability to 626 627 insert their stylet and feed on larger aspen stems. On the other hand, overstory trees may have

628	had lower OSS severity than intermediate-sized stems because the OSS severity rating system
629	does not assess OSS above 6 m in height. The mechanisms underlying OSS's outsized impacts
630	on intermediate-sized, recruiting stems merit further research, but the potential impacts of this
631	finding are clear. Recruiting stems are critical indicators of aspen community resilience (Rogers
632	and Mittanck 2014; Rogers 2017), and increased mortality of these stems from OSS poses a
633	major threat to sustainability of aspen ecosystems (Crouch et al. 2023, In revision).
634	
635	Factors influencing OSS abundance
636	Climate was the most important factor driving OSS invasions of aspen ecosystems in Arizona.
637	According to random forests, seven of the top 10 and 15 of the top 25 factors influencing OSS
638	abundance were climate variables. Moreover, SEM indicated that climate variables, namely
639	autumn evaporation and maximum winter temperature, had the strongest direct effect on OSS
640	abundance. Generally, warmer and drier conditions were associated with increased OSS
641	abundance. For example, greater OSS abundance was associated with fewer degree-days below
642	0°C and more degree-days between 10°C and 40°C, with warmer temperatures in winter,
643	spring, and summer, with less winter precipitation and annual snowfall, and with greater spring
644	climate moisture deficit (CMD) and winter evaporation (Table 5). The strong relationship
645	between climate and OSS abundance is not surprising because of the well-established influence
646	of climate on development of armored scale insects (Beardsley and Gonzalez 1975).
647	Alternatively, the relationship between climate and OSS might be mediated through host stress
648	(Crouch et al. 2021). The plant stress hypothesis would suggest that drought not only weakens
649	aspen defenses but also increases nutritional quality, leading to increased OSS fitness and

650 abundance (White 1984; Dale and Frank 2017). In support of this hypothesis, the optimal host 651 for sap-feeding herbivores is one that has experienced long-term, intermediate drought stress 652 punctuated by temporary releases from that stress (Kolb et al. 2016). Our findings seem to align 653 with this hypothesis because, although arid conditions in general were associated with more 654 OSS, we found that wetter conditions in autumn (e.g., reduced evaporation and increased 655 precipitation) were associated with increased OSS abundance. Therefore, we hypothesize that 656 OSS thrives when conditions are consistently arid with temporary releases from drought in 657 autumn. Further research is needed to assess this hypothesis and elucidate the mechanisms 658 underlying climate's influence on OSS. 659 Although previous research has indicated that elevation is an important limiting factor 660 for OSS (Crouch et al. 2021, In revision), our study revealed that climate drives this relationship.

661 Based on SEM, elevation did not have a significant direct effect on plot-level OSS abundance 662 when climate was accounted for in the model. Instead, climate variables had significant direct 663 effects on OSS abundance and were significantly correlated with elevation. A clear elevation 664 threshold was observed in our study, in which no OSS was found above 2545 m (Fig. 6a). 665 However, thresholds were also observed for climate variables (Fig. 6b-f), indicating that there 666 are cooler, wetter climatic conditions which are currently unsuitable for OSS, and these 667 conditions happen to coincide with elevation. We suspect that these thresholds, particularly 668 the elevation threshold, will change as the climate continues to warm (Seager et al. 2007); 669 however, repeated measurements of study plots will be required to confirm this hypothesis. Given OSS's hypothesized role as a sleeper species and the strong influence of climate 670 671 on OSS abundance, our study suggests that climate change caused OSS population sizes to

672 rapidly increase and to transition from an innocuous pest to a high-impact invasive species. We 673 have shown that OSS is associated with more arid conditions. Therefore, we hypothesize that 674 prolonged, record drought and warmer temperatures over the past 10–20 years (Williams et al. 675 2022) caused OSS populations in Arizona to awaken. Climate is generally considered the most 676 common cause of sleeper species awakenings (Bradley et al. 2018; Frank and Just 2020), 677 although other possible explanations exist, such a new mutualism, loss of a predator or 678 parasite, evolution, or introduction of a new genetic strain (Lockwood et al. 2005; Borden and 679 Flory 2021; Spear et al. 2021). A new mutualism is unlikely because there are no documented 680 mutualists associated with OSS (Griswold 1925; Miller and Davidson 2005), whereas the other 681 explanations are conceivable and represent fruitful areas for future research. For example, 682 armored scale populations are susceptible to suppression by natural enemies (Edmunds 1973; 683 Raupp et al. 2010; Frank 2020), so release from one or more natural enemies could lead to OSS 684 population growth. Interestingly, climate change can cause such a release by creating asynchrony between phenology of scale insects and their natural enemies (Frank 2020). 685 686 Research on OSS genetics is needed to determine whether evolution or introduction of a new 687 genetic strain of OSS may have influenced awakening of OSS populations. Because of the strong 688 relationship between climate and OSS, we have serious concerns that OSS populations in other 689 areas will continue awakening with continued climate warming (Seager et al. 2007), as has 690 recently been observed in Utah, Nevada, and Idaho (Williams 2021; Grady et al. 2022). 691 In addition to climate, fire had a strong influence on OSS abundance. Fire strata was the third most important direct influence on OSS abundance based on SEM. Less recent fire 692 693 resulted in significantly more OSS, suggesting that fire can be an important strategy for

694 managing OSS. Of the 31 study plots that experienced fire in the two years prior to sampling, 695 only two plots were infested with OSS, and OSS abundance in these two plots was low, with 696 only 1.7% and 7.3% of aspen stems infested. In contrast, 40 of the 139 plots that had not 697 experienced fire in the preceding 20 years were infested with OSS. Fire may be an important 698 limiting factor for OSS because it kills OSS both directly and indirectly, by killing hosts upon 699 which OSS is dependent (Crouch et al. 2021). Aspen has thin bark, making it highly susceptible 700 to fire mortality, so even low severity fire can kill overstory aspen (Jones and DeByle 1985; 701 Stoddard et al. 2018) and, in turn, the OSS feeding on aspen. Alternatively, lack of OSS in areas 702 of recent fire might simply be due to timing. It might take two or more years after a fire for 703 stands of recruiting stems, which we know are susceptible to OSS infestation, to develop. 704 We also found that ungulate management strategies, which primarily consisted of 705 fenced exclosures, resulted in significantly more OSS (Fig. 5). Although exclosures are highly 706 effective at promoting aspen recruitment (Crouch et al. In revision), this study supports 707 previous evidence that OSS is more prevalent in areas of ungulate management (Crouch et al. 708 2021, In revision). We hypothesize that ungulate exclosures promote OSS by directly increasing 709 aspen density and, potentially, by indirectly reducing host vigor. Dense aspen stands provide 710 more available host material and feeding sites for OSS and might facilitate OSS spread. High 711 densities might also reduce host vigor through increased inter-tree competition (Ashton and 712 Kelty 2018), thereby making individual aspen stems more susceptible to OSS. In support of this 713 hypothesis, we found that aspen inside areas of ungulate management had greater height-to-714 diameter ratios compared to aspen outside these areas. Dense stands produce stems with 715 greater height-to-diameter ratios (i.e., increased slenderness) (Wang et al. 1998; Frey et al.

716 2004), likely because trees prioritize height growth over diameter growth to compete with their 717 neighbors for sunlight. We expect that this is especially true for shade-intolerant species such 718 as aspen (Perala 1990). Frey et al. (2004) hypothesized that slender aspen in dense stands are 719 more susceptible to stressors because they have more difficulty with hydraulic conductivity and 720 may be more vulnerable to water stress and reduced photosynthesis as the stand naturally self-721 thins. In our study, aspen with greater height-to-diameter ratios (i.e., taller, thinner stems) 722 were significantly associated with increased OSS presence and severity (Table 6), indicating that 723 slender stems with reduced vigor may be more susceptible to OSS. Research is needed to 724 determine which of these mechanisms explains why more OSS is found inside ungulate 725 exclosures. For example, Lindroth et al. (2023) found reduced levels of phenolic glycosides, 726 which is aspen's primary chemical defense against ungulate and insect herbivory, in unbrowsed 727 aspen found inside exclosures, so perhaps exclosures alter growth-defense trade-offs in aspen 728 in a way that increases susceptibility to OSS.

729

730 Management implications

OSS is already widespread across several states in the Interior West, including Arizona, so management tactics intended to eradicate this pest are unlikely to succeed. Eradication is further complicated by OSS's ability to infest an array of different host species and by the fact that small populations are exceedingly difficult to detect due to OSS's small size and cryptic coloring (Crouch et al. 2021). Instead of eradication, management resources may be better spent suppressing OSS population sizes, mitigating damage to native ecosystems through integrated pest management, and developing slow-the-spread tactics (Sharov et al. 2002).

738 Robust monitoring to assess a species' extent and impacts is a critical first step to managing any 739 invasive species. Continued monitoring in areas of Arizona where we did not find OSS (e.g., 740 southern Arizona, North Kaibab, and White Mountains) is necessary, as is continued monitoring 741 of areas where OSS already occurs to document potential changes to the species' range (i.e., 742 will OSS migrate to higher elevations in the future?). We also recommend monitoring of OSS in 743 nursery stock of all host species, in urban areas that contain aspen, in riparian areas that 744 connect urban and wildland aspen populations, and in wildland aspen ecosystems, all of which 745 may harbor sleeper populations of OSS (Frank and Just 2020; Crouch et al. 2021). Our findings 746 can help managers identify stands at risk and prioritize which aspen ecosystems to monitor. For 747 example, OSS is most likely to occur on warmer, drier sites, in areas that have not recently experienced fire, and in stands that have dense recruitment, such as those inside fenced 748 749 ungulate exclosures. Specifically, the climatic and elevation thresholds we identified (Fig. 6) can 750 guide monitoring efforts. Although elevation is the easiest metric for managers to consider 751 when searching for OSS, the 2545 m threshold is liable to change across aspen's expansive 752 range. Instead, the climate thresholds are likely to be more consistent outside our study area, 753 though we anticipate such climate-based thresholds will shift as warming continues. These 754 climate data can be easily obtained via ClimateNA (https://climatena.ca/). 755 Our findings can also be used to guide management that seeks to suppress OSS 756 populations and mitigate damage to aspen ecosystems. Our study indicates that three 757 strategies might help to suppress OSS populations: (1) increasing application of fire at the 758 landscape scale, (2) reducing reliance on ungulate exclosures, and (3) decreasing aspen stand 759 density. Fire has a negative influence on OSS, and although frequency and size of wildfires will

760 likely continue to increase as climate warming continues (Seager et al. 2007; Singleton et al. 761 2019), managers may consider implementing prescribed fire to suppress OSS infestations in 762 individual aspen stands. Frequent, low-severity fire may be detrimental to aspen stands, 763 especially in the presence of chronic ungulate browse (Crouch et al. 2023), so fire should be 764 implemented with caution and infrequency when managing for OSS. Advantages of fire as an 765 OSS management strategy include low cost of implementation, the ability to kill OSS on 766 multiple host species including understory plants, and the fact that fire is a natural component 767 of aspen ecosystems (Crouch et al. 2021). Prescribed fire may also be an effective strategy for 768 slowing the spread of OSS from newly discovered invasion sites. 769 Another strategy managers may consider is reducing use of fenced ungulate exclosures. 770 Reducing reliance on exclosures should help reduce OSS population sizes, although this will 771 require finding other ways to overcome chronic ungulate browse that threatens aspen 772 ecosystem resilience, adaptive capacity, and sustainability (Rogers 2017; Crouch et al. 2023, In 773 revision). Dense stands with abundant recruiting stems are the structure that seems most 774 favorable for OSS population growth. However, it remains unclear whether the relationship 775 between aspen stand density and OSS is due to increased host availability, facilitated spread 776 among densely growing stems, and/or decreased host vigor in more slender stems. Further 777 research is needed to determine how stand density and growth versus defense trade-offs 778 influence aspen susceptibility to OSS at different spatial scales. 779 A third strategy managers may consider for suppressing OSS populations is reducing

A third strategy managers may consider for suppressing OSS populations is reducing
 aspen stand densities via thinning. Thinning might also promote aspen resistance to drought, as
 reduced growth rates which occur in dense stands are associated with increased mortality

782 during drought (Kane and Kolb 2014; Ireland et al. 2014, 2020; Crouch et al. 2023). However, 783 thinning must be implemented with care in aspen stands because aspen is sensitive to 784 mechanical damage from logging equipment and susceptible to subsequent infection by 785 canker-causing fungi and decay diseases (Walters et al. 1982; Jones and Shepperd 1985). 786 Another potential drawback to thinning is that sudden, direct exposure of aspen stems to 787 sunlight may cause sunscald (Krasnow et al. 2012), creating potential infection courts for 788 pathogens. Before we can wholeheartedly recommend use of prescribed fire or silvicultural 789 strategies like thinning to manage OSS, long-term experimental research is needed to assess 790 the efficacy of these strategies for suppressing OSS populations and mitigating damage to 791 aspen ecosystems. Research is also needed to assess the efficacy of other forms of 792 management, such as application of systemic insecticides, that will be critical components of an 793 integrated pest management program for OSS. Our future work seeks to address these needs 794 by assessing OSS and aspen responses to various suppression strategies.

795

796 Acknowledgements

We are immensely grateful to Jules Barab, Adam Hackbarth, Al Hendricks, Candle Pfefferle, Kyle
Price, Julia Totty, and Gabe Traver for helping with data collection and to Darlene Cook, Ben
DeBlois, Garry Domis, Dena Forrer, Miles Fule, Dr. Randy Fuller, Marissa Kuntz, Dr. Jim Malusa,
Ellen Mering, Mark Nabel, Jessi Ouzts, Mary Price, Gayle Richardson, Dr. Kyle Rodman, Ben Roe,
Elwood Rokala, Michael Sedgeman, and Mike Stoddard for help identifying aspen study sites,
obtaining research permission, and/or sharing their study sites. We also thank Dr. Derek
Sonderreger for providing statistical advice on our sampling approach, Dr. Matt Bowker for help

804	with obtaining and interpreting soil data, and Dr. Anita Antoninka for help with structural
805	equation modeling. Funding for this research was provided by McIntire-Stennis appropriations
806	from the USDA National Institute of Food and Agriculture to the Northern Arizona University
807	School of Forestry and the State of Arizona, Northern Arizona University's Presidential
808	Fellowship Program, ARCS Foundation Phoenix, the Arizona Mushroom Society, Brigham Young
809	University's Charles Redd Center for Western Studies, and USDA Forest Service, Forest Health
810	Protection, Emerging Pests Program. Finally, we acknowledge that Northern Arizona University
811	sits at the base of the San Francisco Peaks, on homelands sacred to Native Americans
812	throughout the region. We honor their past, present, and future generations, who have lived
813	here for millennia and will forever call this place home. Our research takes place on these
814	homelands and others sacred to Native Americans.
815	
815 816	References
815 816 817 818 819	References Ashton MS, Kelty MJ (2018) The practice of silviculture: Applied forest ecology, 10th edition. Wiley (Hoboken).
 815 816 817 818 819 820 821 822 	References Ashton MS, Kelty MJ (2018) The practice of silviculture: Applied forest ecology, 10th edition. Wiley (Hoboken). Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using Ime4. Journal of Statistical Softw67: 1–48. https://doi.org/10.18637/jss.v067.i01
 815 816 817 818 819 820 821 822 823 824 825 	References Ashton MS, Kelty MJ (2018) The practice of silviculture: Applied forest ecology, 10th edition. Wiley (Hoboken). Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using Ime4. Journal of Statistical Softw67: 1–48. https://doi.org/10.18637/jss.v067.i01 Beardsley JW, Gonzalez RH (1975) The biology and ecology of armored scales. Annual Review of Entomology 20: 47–73. https://doi.org/10.1146/annurev.en.20.010175.000403
 815 816 817 818 819 820 821 822 823 824 825 826 827 828 	References Ashton MS, Kelty MJ (2018) The practice of silviculture: Applied forest ecology, 10th edition. Wiley (Hoboken). Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using Ime4. Journal of Statistical Softw67: 1–48. https://doi.org/10.18637/jss.v067.i01 Beardsley JW, Gonzalez RH (1975) The biology and ecology of armored scales. Annual Review of Entomology 20: 47–73. https://doi.org/10.1146/annurev.en.20.010175.000403 Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. Journal of Forestry 64: 691–692.
 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 	 References Ashton MS, Kelty MJ (2018) The practice of silviculture: Applied forest ecology, 10th edition. Wiley (Hoboken). Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Softw67: 1–48. https://doi.org/10.18637/jss.v067.i01 Beardsley JW, Gonzalez RH (1975) The biology and ecology of armored scales. Annual Review of Entomology 20: 47–73. https://doi.org/10.1146/annurev.en.20.010175.000403 Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. Journal of Forestry 64: 691–692. Beschta RL, Ripple WJ (2010) Mexican wolves, elk, and aspen in Arizona: is there a trophic cascade? Forest Ecology and Management 260: 915–922.

835 836	Borden JB, Flory SL (2021) Urban evolution of invasive species. Frontiers in Ecology and the Environment 19: 184–191. https://doi.org/10.1002/fee.2295
837	
838 839 840 841 842	Bradley BA, Beaury E, Fusco EJ, Laginhas B, Pasquarella V (2018) Regional invasive species and climate change management challenge: preparing for sleeper species. Northeast Regional Invasive Species and Climate Change Management Network. https://doi.org/10.7275/R5F18WXT
843 844	Breiman L (2001) Random forests. Machine Learning 45: 5–32.
845 846 847 848	Bunnefeld N, Linnell JDC, Odden J,Van Duijin MAJ, Anderson R (2006) Risk taking by Eurasian lynx (<i>Lynx lynx</i>) in a human-dominated landscape: effects of sex and reproductive status. Journal of Zoology 270: 31–39. https://doi.org/10.1111/j.1469-7998.2006.00107.x
849 850 851 852 853 854	Chong GW, Simonson SE, Stohlgren TJ, Kalkhan MA (2001) Biodiversity: aspen stands have the lead, but will nonnative species take over? In Shepperd WD, Binkley D, Bartos DL, Stohlgren TJ, Eskew LG (Eds.) Sustaining aspen in western landscapes: Symposium proceedings. RMRS–P–18. USDA Forest Service, Rocky Mountain Research Station (Fort Collins): 261–272.
855 856 857 858 859	Chornesky EA, Bartuska AM, Aplet GH, Britton KO, Cummings-Carlson J, Davis FW, Eskow J, et al (2005) Science priorities for reducing the threat of invasive species to sustainable forestry. BioScience 55: 335–348. <u>https://doi.org/10.1641/0006-3568(2005)055[0335:SPFRTT]2.0.CO;2</u>
860 861 862 863 864	Cope OL, Keefover-Ring K, Kruger EL, Lindroth RL (2021) Growth–defense trade-offs shape population genetic composition in an iconic forest tree species. Proceedings of the National Academy of Sciences of the United States of America 118: e2103162118. <u>https://doi.org/10.1073/pnas.2103162118</u>
865 866 867 868	Covington WW, Kurmes EA, Haisley JR (1983) The effect of controlled burning on understory vegetation and soil nitrogen in the aspen-bunchgrass type. Eisenhower Consortium for Western Environmental Forestry Research.
869 870 871 872	Crouch CD, Rogers PC, Moore MM, Waring KM (2023) Building ecosystem resilience and adaptive capacity: a systematic review of aspen ecology and management in the Southwest. Forest Science 69: 334–354. <u>https://doi.org/10.1093/forsci/fxad004</u>
873 874 875 876	Crouch CD, Wilhelmi NP, Rogers PC, Moore MM, Waring KM (In revision) Sustainability and drivers of <i>Populus tremuloides</i> regeneration and recruitment near the southwestern edge of its range. Forestry.

877 878	Crouch CD, Grady AM, Wilhelmi NP, Hofstetter RW, DePinte DE, Waring KM (2021) Oystershell scale: an emerging invasive threat to aspen in the southwestern US. Biological Invasions
879 880	23: 2893–2912. <u>https://doi.org/10.1007/s10530-021-02545-0</u>
881 882 883	Crouch CD, Hofstetter RW, Grady AM, Edwards NNS, Waring KM (2024) Oystershell scale (Hemiptera: Diaspididae) population growth, spread, and phenology on aspen in Arizona, USA. Environmental Entomology nvae006. <u>https://doi.org/10.1093/ee/nvae006</u>
884 885 886 887	Dale AG, Frank SD (2017) Warming and drought combine to increase pest insect fitness on urban trees. PLoS ONE 12: e0173844. <u>https://doi.org/10.1371/journal.pone.0173844</u>
888 889 890 891 892	Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, et al (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology 28: 2031–2064. <u>https://doi.org/10.1002/joc.1688</u>
893 894 895 896	DeByle NV (1985) Animal impacts. In DeByle NV, Winokur RP (Eds.) Aspen: Ecology and management in the western United States. RM–119. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station (Fort Collins): 115–123.
897 898 899	DeGroot RC (1967) Twig and branch mortality of American beech infested with oystershell scale. Forest Science 13: 448–455.
900 901 902	DeRose RJ, Long JN (2014) Resistance and resilience: a conceptual framework for silviculture. Forest Science 60: 1205–1212. <u>https://doi.org/10.5849/forsci.13-507</u>
903 904 905 906 907	DePinte DE (2018) Aspen mapping project: Williams Ranger District, Kaibab National Forest and Flagstaff and Mogollon Rim Ranger Districts, Coconino National Forest. AZ–FHP–17–11. USDA Forest Service, Southwestern Region, Forest Health Protection, Arizona Zone (Flagstaff).
908 909 910	Edmunds GF (1973) Ecology of black pineleaf scale (Homoptera: Diaspididae). Environmental Entomology 2: 765–778. <u>https://doi.org/10.1093/ee/2.5.765</u>
911 912 913 914 915	Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, et al (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3: 479–486. <u>https://doi.org/10.1890/1540- 9295(2005)003[0479:LOFSCF]2.0.CO;2</u>
916 917 918	Ellison AM (2019) Foundation species, non-trophic interactions, and the value of being common. iScience 13: 254–268. https://doi.org/10.1016/j.isci.2019.02.020

919 920 921 922	Fairweather ML (1992) Functional assistance on insects and diseases affecting TREES certification stand on the Prescott National Forest. USDA Forest Service, Forest Pest Management (Flagstaff).
923 924 925 926	Fairweather ML, Geils BW, Manthei M (2008) Aspen decline on the Coconino National Forest. In McWilliams MG (Ed.) Proceedings of the 55th Western International Forest Disease Work Conference (Sedona): 53–62.
927 928 929	Fairweather ML, Rokala EA, Mock KE (2014) Aspen seedling establishment and growth after wildfire in central Arizona: an instructive case history. Forest Science 60: 703–712.
930 931 932 933	Frank SD (2020) Review of the direct and indirect effects of warming and drought on scale insect pests of forest systems. Forestry 94: 167–180. <u>https://doi.org/10.1093/forestry/cpaa033</u>
934 935 936	Frank SD, Just MG (2020) Can cities activate sleeper species and predict future forest pests? A case study of scale insects. Insects 11: 142. <u>https://doi.org/10.3390/insects11030142</u>
937 938 939 940	Frey BR, Lieffers VJ, Hogg EH, Landhäusser SM (2004) Predicting landscape patterns of aspen dieback: mechanisms and knowledge gaps. Canadian Journal of Forest Research 34: 1379– 1390.
941 942 943	Genuer R, Poggi J-M, Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recognition Letters 31: 2225–2236. <u>https://doi.org/10.1016/j.patrec.2010.03.014</u>
944 945 946	Genuer R, Poggi J-M, Tuleau-Malot C (2015) VSURF: an R package for variable selection using random forests. The R Journal 7: 19–33. <u>https://doi.org/10.32614/RJ-2015-018</u>
947 948 949 950 951	Gitlin AR, Sthultz CM, Bowker MA, Stumpf S, Paxton KL, Kennedy K, Muñoz A, et al (2006) Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology 20: 1477–1486. <u>https://doi.org/10.1111/j.1523-1739.2006.00424.x</u>
952 953 954	Grace JB (2006) Structural Equation Modeling and Natural Systems. Cambridge University Press (New York).
955 956 957 958	Grady AM (2017) Oystershell scale impacts and mitigation options on the Kaibab and Coconino National Forests. AZ–FHP–17–3. USDA Forest Service, Southwestern Region, Forest Health Protection, Arizona Zone (Flagstaff).
959 960 961	Grady AM, Crouch CD, Wilhelmi NP, Hofstetter RW, Waring KM (2022) Oystershell scale: an invasive threat to aspen conservation. WAA Brief No. 8. Western Aspen Alliance (Logan).
962	Graves S, Piepho H-P, Selzer L (2019) multcompView: Visualizations of Paired Comparisons.

963 964 965 966 967	Griswold GH (1925) A study of the oyster-shell scale, <i>Lepidosaphes ulmi</i> (L.), and one of its parasites, <i>Aphelinus mytilaspidis</i> Le B. Cornell University Agricultural Experiment Station (Ithaca).
968 969 970	Groves RH (1999) Sleeper weeds. In Bishop AC, Boersma M, Barnes CD (Eds.) Proceedings of the 12th Australian Weeds Conference. Tasmanian Weed Society (Devonport): 632–636.
971 972 973 974	Halbritter H, Bender LC (2011) Quality of habitat occupied by elk (<i>Cervus elaphus</i>) in the southern Sacramento Mountains, New Mexico. Southwestern Naturalist 56: 1–8. https://doi.org/10.1894/TAL-14.1
975 976 977 978	Hinds TE (1985) Diseases. In DeByle NV, Winokur RP (Eds.) Aspen: Ecology and management in the western United States. RM–119. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station (Fort Collins): 87–106.
979 980 981	Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical Journal 50: 356–363.
982 983 984 985	Houston DR (2001) Effect of harvesting regime on beech root sprouts and seedlings in a north- central Maine forest long affected by beech bark disease. Research Paper no. NE–717. USDA Forest Service, Northeastern Research Station (Newtown Square).
986 987 988	Johnson M (1994) Changes in southwestern forests: stewardship implications. Journal of Forestry 92: 16–19.
989 990 991 992	Jones JR, DeByle NV (1985a) Fire. In DeByle NV, Winokur RP (Eds.) Aspen: Ecology and management in the western United States. RM–119. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station (Fort Collins): 77–81.
993 994 995 996	Jones JR, DeByle NV (1985b) Morphology. In DeByle NV, Winokur RP (Eds.) Aspen: Ecology and management in the western United States. RM–119. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station (Fort Collins): 11–18.
997 998 999 1000	Jones JR, Schier GA (1985) Growth. In DeByle NV, Winokur RP (Eds.) Aspen: Ecology and management in the western United States. RM–119. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station (Fort Collins): 19–24.
1000 1001 1002 1003	Jones JR, Shepperd WD (1985) Intermediate treatments. In DeByle NV, Winokur RP (Eds.) Aspen: Ecology and management in the western United States. RM–119. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station (Fort Collins): 209–216.
1004 1005 1006	Kolb TE, Fettig CJ, Ayres MP, Bentz BJ, Hicke JA, Mathiasen R, Stewart JE, et al (2016) Observed and anticipated impacts of drought on forest insects and diseases in the United States.

1007	Forest Ecology and Management 380: 321–334.
1008	https://doi.org/10.1016/j.foreco.2016.04.051
1009	
1010	Krasnow KD, Halford AS, Stephens SL (2012) Aspen restoration in the eastern Sierra Nevada:
1011	effectiveness of prescribed fire and conifer removal. Fire Ecology 8: 104–118.
1012	https://doi.org/10.4996/fireecology.0803104
1013	
1014	Kuhn TJ, Safford HD, Jones BE, Tate KW (2011) Aspen (Populus tremuloides) stands and their
1015	contribution to plant diversity in a semiarid coniferous landscape. Plant Ecology 212:
1016	1451–1463.
1017	
1018	LaMalfa EM, Ryle R (2008) Differential snowpack accumulation and water dynamics in aspen
1019	and conifer communities: implications for water yield and ecosystem function. Ecosystems
1020	11: 569–581. <u>https://doi.org/10.1007/s10021-008-9143-2</u>
1021	
1022	Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modelling in R for ecology,
1023	evolution, and systematics. Methods in Ecology and Evolution 7: 573–579.
1024	https://doi.org/10.1111/2041-210X.12512
1025	
1026	Lenth R (2022) emmeans: Estimated Marginal Means, aka Least-Squares Means.
1027	
1028	Lindroth RL, Wooley SC, Donaldson JR, Rubert-Nason KF, Morrow CJ, Mock KE (2023)
1029	Phenotypic variation in phytochemical defense of trembling aspen in western North
1030	America: genetics, development, and geography. Journal of Chemical Ecology 49: 235–250.
1031	https://doi.org/10.1007/s10886-023-01409-2
1032	
1033	Little EL (1971) Atlas of the United States Trees, Vol. 1. Conifers and important hardwoods. US
1034	Department of Agriculture, Forest Service (Washington DC).
1035	
1036	Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species
1037	invasions. Trends in Ecology and Evolution 20: 223–228.
1038	https://doi.org/10.1016/j.tree.2005.02.004
1039	
1040	Magsig-Castillo J, Morse JG, Walker GP, Bi JL, Rugman-Jones PF, Stouthamer R (2010) Phoretic
1041	dispersal of armored scale crawlers (Hemiptera: Diaspididae). Journal of Economic
1042	Entomology 103: 1172–1179. <u>https://doi.org/10.1603/EC10030</u>
1043	
1044	McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load.
1045	Journal of Vegetation Science 13: 603–606. <u>https://doi.org/10.1111/j.1654-</u>
1046	<u>1103.2002.tb02087.x</u>
1047	
1048	Merkle J (1962) Plant communities of the Grand Canyon area, Arizona. Ecology 43: 698–711.
1049	https://doi.org/10.2307/1933459
1050	

1051 1052 1053	Miller DR, Davidson JA (2005) <i>Lepidosaphes ulmi</i> (Linnaeus). In Miller DR, Davidson JA (Eds.) Armored scale insect pests of trees and shrubs. Cornell University Press (Ithaca): 265–268.
1054 1055 1056 1057	Perala DA (1990) <i>Populus tremuloides</i> Michx. In Burns, RM, Honkala BH (Eds.) Silvics of North America: Vol. 2, Hardwoods. US Department of Agriculture, Forest Service (Washington DC): 555–569.
1058 1059	Pinheiro J, Bates D, R Core Team (2022) nlme: Linear and Nonlinear Mixed Effects Models.
1060 1061 1062 1063	Poggio L, de Sousa LM, Batjes NH, Heuvelink GBM, Kempen B, Ribeiro E, Rossiter D (2021) SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7: 217–240. https://doi.org/10.5194/soil-7-217-2021
1064 1065	R Core Team (2022) R: A language and environment for statistical computing.
1066 1067 1068	Rasmussen DI (1941) Biotic communities of Kaibab Plateau, Arizona. Ecological Monographs 11: 229–275. <u>https://doi.org/10.2307/1943204</u>
1069 1070 1071 1072	Raupp MJ, Shrewsbury PM, Herms DA (2010) Ecology of herbivorous arthropods in urban landscapes. Annual Review of Entomology 55: 19–38. <u>https://doi.org/10.1146/annurev-</u> <u>ento-112408-085351</u>
1072 1073 1074 1075	Rehfeldt GE, Ferguson DE, Crookston NL (2009) Aspen, climate, and sudden decline in western USA. Forest Ecology and Management 258: 2353–2364. https://doi.org/10.1016/j.foreco.2009.06.005
1070 1077 1078 1079 1080	Rhodes AC, St. Clair SB (2018) Measures of browse damage and indexes of ungulate abundance to quantify their impacts on aspen forest regeneration. Ecological Indicators 89: 648–655. <u>https://doi.org/10.1016/j.ecolind.2018.02.013</u>
1081 1082 1083 1084	Rogers PC, Pinno BD, Šebesta J, Albrectsen BR, Li G, Ivanova N, Kusbach A, et al (2020) A global view of aspen: conservation science for widespread keystone systems. Global Ecology and Conservation 21: e00828. <u>https://doi.org/10.1016/j.gecco.2019.e00828</u>
1085 1086 1087 1088 1089	Rolf JM (2001) Aspen fencing in northern Arizona: a 15-year perspective. In Shepperd WD, Binkley D, Bartos DL, Stohlgren TJ, Eskew LG (Eds.) Sustaining aspen in western landscapes: Symposium proceedings. RMRS–P–18. USDA Forest Service, Rocky Mountain Research Station (Fort Collins): 193–196.
1090 1091 1092	Samarasinghe S (1965) The biology and dynamics of the oystershell scale, <i>Lepidosaphes ulmi</i> (L.) (Homoptera: Coccidae), on apple in Quebec. Dissertation. McGill University (Quebec).

1093 Schomaker ME, Zarnoch SJ, Bechtold WA, Latelle DJ, Burkman, Cox SM (2007) Crown-condition 1094 classification: a guide to data collection and analysis. SRS-GTR-102. USDA Forest Service, 1095 Southern Research Station (Asheville). 1096 1097 Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H-P, et al (2007) Model projections of 1098 an imminent transition to a more arid climate in southwestern North America. Science 1099 316: 1181–1184. https://doi.org/10.1126/science.1139601 1100 1101 Sharov AA, Leonard D, Liebhold AM, Roberts EA, Dickerson W (2002) "Slow the spread": a national program to contain the gypsy moth. Journal of Forestry 100: 30–36. 1102 1103 https://doi.org/10.1093/jof/100.5.30 1104 1105 Singleton MP, Thode AE, Sánchez Meador AJ, Iniguez JM (2019) Increasing trends in highseverity fire in the southwestern USA from 1984 to 2015. Forest Ecology and Management 1106 1107 433: 709–719. https://doi.org/10.1016/j.foreco.2018.11.039 1108 1109 Spear MJ, Walsh JR, Ricciardi A, Zanden MJV (2021) The invasion ecology of sleeper 1110 populations: prevalence, persistence, and abrupt shifts. BioScience 71: 357–369. 1111 https://doi.org/10.1093/biosci/biaa168 1112 1113 Sterrett WD (1915) The ashes: their characteristics and management. Bulletin No. 299. USDA 1114 Forest Service (Washington DC). 1115 1116 Steed BE, DA Burton (2015) Field guide to diseases and insects of quaking aspen in the West. 1117 Part 1: Wood and bark boring insects. R1–15–07. USDA Forest Service, Forest Health 1118 Protection, Northern Region (Missoula). 1119 1120 Stoddard MT, Huffman DW, Fulé PZ, Crouse JE, Sánchez Meador AJ (2018) Forest structure and regeneration responses 15 years after wildfire in a ponderosa pine and mixed-conifer 1121 1122 ecotone, Arizona, USA. Fire Ecology 14: 12. https://doi.org/10.1186/s42408-018-0011-y 1123 1124 USDA Forest Service (2013) Field guide to insects and diseases of Arizona and New Mexico 1125 forests. MR-R3-16-3. (Albuquerque). 1126 1127 Walters JW, Hinds TE, Johnson DW, Beatty J (1982) Effects of partial cutting on diseases, 1128 mortality, and regeneration of Rocky Mountain aspen stands. RM–RP–240. USDA Forest 1129 Service, Rocky Mountain Forest and Range Experiment Station (Fort Collins). 1130 1131 Wang T, Hamann A, Spittlehouse D, Carroll C (2016) Locally downscaled and spatially 1132 customizable climate data for historical and future periods for North America. PLoS ONE 1133 11 :e0156720. 1134

Wang Y, Titus SJ, LeMay VM (1998) Relationships between tree slenderness coefficients and
tree or stand characteristics for major species in boreal mixedwood forests. Canadian
Journal of Forest Research 28: 1171–1183.
White TCP (1084) The abundance of invertebrate berbiveres in relation to the availability of

- White TCR (1984) The abundance of invertebrate herbivores in relation to the availability of
 nitrogen in stressed food plants. Oecologia 63: 90–105.
 https://doi.org/10.1007/BF00379790
- 1142

- 1143 Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag (New York).
- 1145 Wickham H, Francois R, Henry L, Muller K (2022) dplyr: A Grammar of Data Manipulation. 1146
- Williams AP, Cook BI, Smerdon JE (2022) Rapid intensification of the emerging southwestern
 North American megadrought in 2020–2021. Nature Climate Change 12: 232–234.
 <u>https://doi.org/10.1038/s41558-022-01290-z</u>
- 1150
 - Williams JP (2021) Oystershell scale infestation in aspen, Uinta-Wasatch-Cache National Forest.
 OFO-TR-21-02. USDA Forest Service, Intermountain Region, Forest Health Protection,
 Ogden Field Office (Ogden).
- 1154
- Zegler TJ, Moore MM, Fairweather ML, Ireland KB, Fulé PZ (2012) *Populus tremuloides* mortality
 near the southwestern edge of its range. Forest Ecology and Management 282: 196–207.
 https://doi.org/10.1016/j.foreco.2012.07.004