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Abstract

Background

This paper describes a data system to analyse large amounts of subsea movie data for

marine  ecological  research.  The  system  consists  of  three  distinct  modules  for  data

management and archiving, citizen science, and machine learning in a high performance

computation  environment.  It  allows  scientists  to  upload  underwater  footage  to  a

customised  citizen  science  website  hosted  by  Zooniverse,  where  volunteers  from  the

public classify the footage. Classifications with high agreement among citizen scientists are

then  used  to  train machine  learning  algorithms.  An application  programming

interface allows  researchers  to  test  the algorithms  and  track biological  objects  in  new

footage. We tested our system using recordings from remotely operated vehicles (ROVs)

in a Marine Protected Area, the Kosterhavet National Park in Sweden. Results indicate a

strong decline of cold-water corals in the park over a period of 15 years, showing that our

system  allows  to  effectively  extract  valuable  occurrence  and  abundance  data  for  key

ecological  species  from underwater  footage.  We argue that  the  combination  of  citizen

science tools, machine learning, and high performance computers are key to successfully

analyse large amounts of image data in the future, suggesting that these services should

be consolidated and interlinked by national and international research infrastructures.

New information

Novel information system to analyse marine underwater footage.
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Introduction

Biological observation techniques in the marine environment need to improve radically to

serve our understanding of marine ecosystems under long-term global change and under

the  influence  of  multiple  stressors  (Benedetti-Cecchi  et  al.  2018).  Today  biologists

increasingly have  access  to  autonomously  operated  technologies  for  data  collection,

offering the opportunity to generate enormous volumes of data. This is especially the case

for high-definition optical imagery recorded by ROV’s (remotely operated vehicles), AUVs

(autonomous underwater vehicles), drop-cameras, video plankton recorders, and drones

(Bean et al. 2017, Danovaro et al. 2016). Although such image-based observations may

revolutionize the fields of marine biology and biodiversity monitoring, these methods also

impose completely new demands for data management and processing on researchers.

Hence, such in-situ monitoring systems need to be coupled to data services that allow for

swift  exploration, processing, and long-term storage (Guidi et al.  2020). Some of these

services already exist including the EcoTaxa application for analysis of large amounts of

plankton imagery (M et al. 2017), the CoralNet tool that allows researchers to analyse coral

images  (Williams  et  al.  2019),  and  FathomNet a  system  offering  machine  learning

algorithms and training data to analyse deep sea footage. Although these platforms have

pioneered the daily use of image analysis tools in marine science, they can not provide all

functions needed by the fast growing community of users. Archiving functions for example

often fall  under national  responsibility and can not be provided only by a single global

system. Also, training datasets need to be specifically developed for the region of interest

and for the scientific question at hand. For this reason, it is important to establish local

image analysis services, which can interoperate with larger and global platforms in the

future.

Here  we  present  a  system for  managing,  processing,  and  analysing large  amounts  of

subsea movie data for marine ecological research. The system allows scientists to upload

underwater movies to a customised citizen science website hosted by Zooniverse, where

volunteers from the public classify the footage. Classifications with high agreement among

citizen scientists are used to train machine learning algorithms. These algorithms can be

accessed through an application  programming interface  (API)  allowing  users  to  extract

species observations from new footage and test the performance of the algorithms under

different confidence and overlapping thresholds.
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Project description

Title:  Analysis of spatio-temporal trends in deep water habitat builders (Use case)

Study area description:  We piloted our data system to extract data on spatial distribution

and relative abundance of habitat-building species from deep-water recordings in a Marine

Protected Area, the Kosterhavets National Park in Sweden. The park contains a highly

diverse  and  unique  marine  ecosystem  that  has  been  under  active  protection  and

management  since  2009.  The  seafloor  in  the  deeper  waters  of  the  park  has  direct

oceanographic connections to the open Atlantic ocean and hence contains much of the

bottom-dwelling fauna, which is otherwise only found in deep oceanic waters (Lavaleye et

al. 2009). This fauna includes large habitat-building species (Costello et al. 2005) such as

sponges (e.g Geodia baretti, Phakellia ventilabrum) and cold-water corals (e.g. Lophelia

pertusa) as well as other large species which can be easily identified from camera footage

(e.g. starfish Porania pulvillus, Crossaster papposus, Echinus esculentus).

Design  description: Our  data  system  is divided  into  three  main  modules:  data

management, citizen science, and machine learning with high performance computing (Fig.

1).

• Module 1: Data management (Anton et al. 2019) 

In the data management module researchers store and process the data in ways that

maximises  efficiency,  convenience,  and  opportunities  for sharing  and  collaboration.

To store and access the raw data we use long term and short term storage servers. The

long term storage server, or cold storage, archives large amounts of files that don't need to

be accessed  frequently.  These  include  recordings  from  Remotely  Operated  Vehicles

(ROVs) managed by the Tjärnö Marine Biological Laboratory, Sweden. The movies (mp4

and mov formats) are on average 1-2 hours long and are systematically collected from all

expeditions since the late 1990s (Fig. 1).

The short term storage server, or hot storage, stores a small proportion of files that are

frequently used.  Here,  we transferred  60  movies  from the  cold  storage to  the  project-

specific  short term storage server  (Fig.  1).  The number  of  movies we selected was a

compromise between selecting a representative sample and efficiently using the limited

storage  of  our server.  This  "hot server"  was  Linux-based  and  hosted  by Chalmers

University  of  Technology,  Gothenburg. The  specifications  of  this  High  Performance

Computing server consisted of  a  GTX2080Ti  GPU  with 2  x  8  core  Intel(R)  Core(TM)

i9-9900 CPU @ 3.10GHz (total 16 cores) and 2GB DDR4 RAM.

We  created  a SQLite  database to  link  all  information  related  to  the  movies  and  the

classifications provided by both citizen scientists and machine learning algorithms (Fig. 1).

The  database  has  seven  interconnected  tables  (Fig.  2).  The  “movies”,  “sites”,  and

“species” tables have project-specific information from the underwater movie metadata, as

well as the species choices available for citizen scientists to annotate the clips, retrieved
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from Zooniverse. The “agg_annotations_frame” and “agg_annotations_clip” tables contain

information related to the annotations provided by citizen scientists. The “subjects” table

has information  related  to  the  clips  and  frames  uploaded  to  the  Koster  Seafloor

Observatory. The "model_annotations" table holds information related to the annotations

provided  by  the  machine  learning  algorithms.  The  database followed the  Darwin  Core

(DwC) standards to maximise the sharing, use and reuse of open-access biodiversity data.

• Module 2: Citizen science (Anton et al. 2019) 

In the citizen science module researchers and citizen scientists work together to efficiently

and accurately annotate raw data. To identify the species recorded in our footage we have

created a citizen science website, the Koster Seafloor Observatory. The Koster Seafloor

Observatory is hosted in Zooniverse, the largest citizen science platform in the world. The

website  contains  rich  supporting  material  (e.g.  background,  tutorials,  field  guides)  and

features two workflows that help citizen scientists to correctly classify biological objects in

video (workflow 1) and locate these in still images (workflow 2).

Workflow 1 (species identification):

Citizen scientists are presented with 10s clips of underwater footage and need to select at

least one of the 27 available choices (Fig. 3). The choices include species of scientific

importance, animals grouped at different taxonomic levels (e.g. “gastropods” or “fish”), as

well as a few miscellaneous options (“Nothing here”, “Human objects”). If citizen scientists

select a species or animal, they also need to specify the number of individuals of the taxon

selected  and  the  time  (in  seconds)  when  any  of  the  individuals  fully  appears  on  the

screen. Each  clip  is  annotated  by  at  least  three  different  citizen  scientists.  If  the

annotations provided by the different citizen scientists match, the clip is “retired” from the

website, meaning the clip is not displayed to new users anymore. If the annotations did not

match, the clip is annotated by more citizen scientists (up to nine citizen scientists per clip).

Workflow 2 (object location):

Citizen scientists are presented with a still image of a species of interest. To annotate the

image, citizen scientists need to draw rectangles around the individuals of the species of

interest (Fig. 4). If citizen scientists can not identify any individual of the species of interest

in the frame they will not draw any rectangle. Each still image is annotated by five different

citizen scientists before it is “retired” from the website.

We used a four-stage image processing framework to upload clips and still images to the

Koster Seafloor Observatory and download the annotations provided by citizen scientists

(Fig. 5).

Stage 1: Generate and upload clips (Fig. 5, circle a). In this stage we split the +1 hour long

movies into 10s clips. After the clips were created, we randomly selected 5,702 clips from

the  original  60 movies  and  uploaded them  to  the  workflow  1  of  the  Koster  Seafloor

Observatory.
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Stage 2: Process clip annotations (Fig. 5, circle b). We retrieved the annotations provided

by citizen scientists in workflow 1 and aggregated them on a per-clip basis. To aggregate

the workflow 1 annotations, we grouped the annotations each clip received and retained

only  those  choices  that  were  selected  by  at  least  80%  of  the  citizen scientists  that

annotated the  clip  (Table  1).  In  our  study,  there  were  194  clips  for  which cold-water

coral was identified at least by 80% of the citizen scientists. We also averaged the answers

from citizen scientists to the question "When is the first time the species appears fully in

the video?".

Stage 3: Generate and upload frames (Fig. 5, circle c). We extracted up to three frames

per  clip from the  194  clips  containing  cold-water  corals,  and  extracted  one  frame per

second  after  the  first  time  the  species  fully  appeared  in  the  clip.  After

extracting 533 frames, we then uploaded them to the workflow 2 of the Koster Seafloor

Observatory.

Stage  4: Process  frame  annotations  (Fig.  5,  circle  d).  We  retrieved  the  workflow

2 annotations provided by citizen scientists and aggregated them on a per-frame basis. To

aggregate the workflow 2 annotations, we retained the area of overlapping between those

rectangles  drawn by  80% of  the  citizen scientists  who annotated  the  frame.  Once we

aggregated the  annotations,  we  formatted  them  appropriately to  train  YOLOv3

algorithms Redmon and Farhadi 2018 (Table 2)

• Module 3: Machine learning and High Performance Computing (Germishuys

et al. 2019) 

In the machine learning and High Performance Computing module researchers train, test

and  expose  state-of-the-art  machine  learning  models.  The  aggregated  citizen  scientist

annotations  are  used  to  train  object  detection  models  in  tracking  and  identifying  the

species of interest. In our case study we used 544 user-annotated ground-truth frames

obtained from workflow 2 (Suppl. material 1) to train an algorithm to identify deep water

corals  (Lophelia  pertusa).  We  augmented  this  data  by  using  a  frame  tracker  which

filled subsequent  movie  frames  with  bounding  boxes  with  the  highest  probability  of

containing the object of interest. This typically increased the amount of data by a factor of

10.  The  frames  were  then  pre-processed  to  remove  background  distortion  (as  far  as

possible), since colours often lose intensity underwater, mainly due to poor visibility. Three

datasets were then created, one for training the model, another for validation (which is

used to tune the model hyperparameters) and finally a testing set. Once the data were

prepared,  the  model  training  was  done  until  satisfactory  metrics  were  achieved  on

evaluation measures including F1, Recall, Precision and mAP@0.5 (Table 3). The trained

model could then be used to detect species of interest in new footage, whether it be from a

webcam, video or a still image.

We made the trained model available through an application programming interface (API),

where it can be used by researchers to run predictions of the species of interest in new

recordings (Fig. 1). To this end we used FastAPI (Ramírez 2020) as it provides the speed,

scalability and reliability required to have multiple users making use of the service at the
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same time. The API was also supplied with a user-friendly front-end, using the Streamlit

(Teixeira 2020) framework, allowing a broader audience of scientific users (i.e. ecologists,

ROV and  AUV-pilots,  students)  to  access  the  service  through  a  web  application.  The

interface allows researchers to browse through already-classified footage, or upload their

own footage as either images or video. Once the media has been uploaded/selected, users

are able to manipulate hyperparameter thresholds (IOU threshold, confidence threshold)

and interactively see the impact on the model output. The API is described by Germishuys

et al. (2019).

The last component of this module is a data visualization toolkit that enables researchers

to explore and visualise the ecological  data extracted from the outputs of  the machine

learning model (Fig. 1). In our case study, we tested the ability of the model to estimate the

relative abundance of cold-water corals over time. To this end, we created 20 standardized

recordings (i.e. same length) from a revisited area in the Kosterhavets National Park during

the years 2000-2015. These movies were analysed with the trained model  to obtain a

timeline for the relative abundance of coral heads in the area before and after the national

park was established (Fig. 6).

Discussion 

The  system  described  here  has  been  tested  in  a  scientific  case  study,  estimating

abundance levels of the habitat builder Lophelia pertusa in a Marine Protected Area across

a period of 15 years (Fig. 6). Results show a steep decline of this key ecological species in

the national park during the investigated period. We also found no indication of recovery of

corals as a consequence of the establishment of the national park in 2009. These results

suggest that physical protection alone may not lead to recovery of the coral stocks, and

that  external  climatic  pressures, changes  in  water  quality,  and  oceanographic

connectivity may strongly impact the coral populations in the park.

Our scientific case study exemplifies how the presented system can be used to extract

ecological data on abundance and distribution for many benthic species from underwater

recordings.  Underwater  recordings  are  routinely  collected  by  research institutes,  which

may allow for a concerted analysis of such data over broad spatial and temporal scales in

the future. Such analyses may calculate data products for biological  state variables on

regional or even global level, so-called Essential Biodiversity Variables or EBVs (Pereira et

al. 2013, Hardisty et al. 2019). A recent study by Kissling et al. (2018) suggests that image-

based  sensor  networks  are  promising  candidates  for  EBVs.  Our  case  study  provides

empirical  support  that  these  data  products  can  indeed  be  derived  from  image-based

sensors,  and  importantly  from  marine  environments  which  are  particularly  difficult  to

access and survey. The case study also shows that hincasts of species occurrence and

abundance are possible if archived video material is available.

In order to scale up analysis of underwater imagery in the future to extract ecological data

for larger regions, longer time periods, and more species several  technical  bottlenecks

have to be addressed. Currently, underwater recordings are locally archived and often can

not be discovered. We suggest making underwater recordings discoverable by publishing
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metadata in national and/or European archives and data portals (e.g. European Marine

Data Archive, EMODnet portal). Another important technical bottleneck is the disconnection

between many essential data services that need to interact to successfully analyse image

data.  We suggest  that  seamless links should  be developed especially  between citizen

science  platforms  (for  training  of  machine  learning  models)  and  high-performance

computation services (for extracting ecological data from large amounts of imagery). In this

development national and European research infrastructures should take a leading role.
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Figure 1. 

High-level overview of Koster Seafloor Observatory process.
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Figure 2. 

Entity relationship diagram of the SQLite database used by the Koster Seafloor Observatory.
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Figure 3. 

Screenshot of the Zooniverse annotation interface. On the left, display of the clips. On the

right, species choices available.
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Figure 4. 

Example of a frame containing deep water coral displayed to the citizen scientists (left) and

the same frame with annotated rectangles provided by a citizen scientist (right).
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Figure 5. 

Four-stage image processing framework used to identify species of interest.
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Figure 6. 

Model observations of Lophelia pertusa in the reef area Säcken between 2000-2015, where n

denotes  the number  of  instances of  Lophelia  Pertusa (as  a  count).  Observed counts  are

shown by the thick blue line, along with linearly interpolated values between 2004 and 2012

(shown  as  a  dashed  blue  line),  and  quadratic smoothed fitted  to  the  data (shown  in

gray). Protection status refers to the date at which Kosterhavets National Park was granted

protection status and serves as a reference point for monitoring purposes.
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Number of

classified clips

Median number of

users per clip

Median agreement

proportion per clip

Number of clips with agreement

proportion exceeding 0.8

1945 9 0.44 194

 

Table 1. 

Clip Annotation Summary for cold water corals (Lophelia pertusa).
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Number of classified

frames

Median number of classifications

per frame

Number of frames with agreement proportion

exceeding 0.8

533 5 409

Table 2. 

Frame Annotation Summary (Lophelia pertusa).
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 Precision Recall mAP@0.5 F1 Score

0.979 0.962 0.962 0.970

Table 3. 

Classification metrics: Lophelia Pertusa.
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Supplementary material

Suppl. material 1: Lophelia pertusa Dataset

Authors:  Victor Anton, Jannes Germishuys, Matthias Obst

Data type:  images

Brief description:  Instances of Lophelia pertusa used to train Koster YOLO machine learning

model

Download file (33.00 MB) 
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