PREPRINT

A new species, a new combination, and a new record of Crossotarsus Chapuis, 1865 (Coleoptera: Curculionidae: Platypodinae) from China

Shengchang Lai, Jianguo Wang, Ling Zhang, (D) You Li

Not peer-reviewed, not copy-edited manuscript.

Disclaimer on biological nomenclature and use of preprints

The preprints are preliminary versions of works accessible electronically in advance of publication of the final version. They are not issued for purposes of botanical, mycological or zoological nomenclature and are not effectively/validly published in the meaning of the Codes. Therefore, nomenclatural novelties (new names) or other nomenclatural acts (designations of type, choices of priority between names, choices between orthographic variants, or choices of gender of names) should NOT be posted in preprints. The following provisions in the Codes of Nomenclature define their status:

International Code of Nomenclature for algae, fungi, and plants (ICNafp)

Article 30.2: "An electronic publication is not effectively published if there is evidence within or associated with the publication that its content is merely preliminary and was, or is to be, replaced by content that the publisher considers final, in which case only the version with that final content is effectively published." In order to be validly published, a nomenclatural novelty must be effectively published (Art. 32.1(a)); in order to take effect, other nomenclatural acts must be effectively published (Art. 7.10, 11.5, 53.5, 61.3, and 62.3).

International Code of Zoological Nomenclature (ICZN)
Article: 21.8.3: "Some works are accessible online in preliminary versions before the publication date of the final version. Such advance electronic access does not advance the date of publication of a work, as preliminary versions are not published (Article 9.9)".

A new species, a new combination, and a new record of Crossotarsus

Chapuis, 1865 (Coleoptera: Curculionidae: Platypodinae) from China

Shengchang Lai ${ }^{1}$, Ling Zhang ${ }^{2}$, You Li ${ }^{3}$, Jianguo Wang ${ }^{2}$
${ }^{1}$ College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
${ }^{2}$ College of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi
330045, China

${ }^{3}$ School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA

Corresponding author: Jianguo Wang (jgwang@jxau.edu.cn)

Abstract

This study describes a new species, Crossotarsus beaveri Lai \& Wang, sp. nov., designates a new combination, C. brevis (Browne, 1975, from Platypus Herbst, 1793), comb. nov., and notes a new record, C. emorsus Beeson, 1937, from China. Genetic data from four genes indicate that the new species and C. brevis form a clade clustered with other Crossotarsus species. Molecular phylogeny and morphological characters support their taxonomic placement.

Key words

Ambrosia beetle, Fujian, Jiangxi, molecular phylogeny, pinhole borer, taxonomy

Introduction

The genus Crossotarsus Chapuis was erected for 29 species of pinhole borer (Curculionidae: Platypodinae) (Chapuis 1865). Crossotarsus wallacei (Thomson, 1858) was designated as the type species of the genus (Hopkins 1914). Wood (1993) revised the genera of Platypodidae and placed Crossotarsus in the subfamily Platypodinae, tribe Platypodini. Crossotarsus is distinguished from other Platypodine genera primarily by the following combination of characters (Browne 1961; Wood 1993; Beaver and Sanguansub 2015): 1. Labial palps two-segmented, with basal segments fused in the midline; 2. Sexually dimorphic protibiae, the outer face of the protibia transversely carinate in the male and finely granulate in the female; 3 . Pronotum without specialized mycangial pores in either sex, the femoral grooves angulate at the anterior extremity and gently rounded behind. Wood's (1993) generalisation that the female pronotum of

Crossotarsus species has numerous mycangial pores is incorrect (Beaver 2004); 4. Metacoxa strongly projecting with a deep vertical posterior face.

The catalog of Wood and Bright (1992) includes 118 species of Crossotarsus. As a result of taxonomic changes since that time, 116 species are currently recognised. Most species of Crossotarsus occur in the Oriental region, extending from India across Southeast Asia and Indonesia to Australia and the Pacific islands, and northward to Taiwan and Japan (Wood 1993). C. externedentatus (Fairmaire, 1849) is also widespread in the Afrotropical forests.

The Platypodinae have been almost entirely neglected in China. Only a few papers include original records of Crossotarsus from the country. Yin and Huang (1987) recorded three species C. coniferae Stebbing, 1906, C. squamulatus Chapuis, 1865, C. wallacei (Thomson, 1858) from Yunnan; Yin et al. (2002) added two species C. externedentatus (Chapuis, 1894), C. terminatus Chapuis, 1865 from Hainan island; Zhang et al. (2008) provided 13 species records of Chinese Crossotarsus. After taxonomic changes (Beaver 2004; 2005; 2016; Bright 2014), the following 13 species are currently known from China: C. coniferae Stebbing, 1906 (Yunnan, Sichuan, Xizang); C. emancipatus Murayama, 1934 (Taiwan); C. externedentatus (Fairmaire, 1849) (Hainan, Taiwan); C. flavomaculatus Strohmeyer, 1912 (Taiwan); C. formosanus Strohmeyer, 1912 (Taiwan); C. niponicus Blandford, 1894 (Taiwan); C. piceus Chapuis, 1865 (Taiwan); C. saltatorinus (Schedl, 1954) (Fujian); C. sauteri (Strohmeyer, 1913) (Taiwan); C. simplex Murayama, 1925 (Taiwan); C. squamulatus Chapuis, 1865 (Yunnan); C. terminatus Chapuis, 1865 (Hainan, Yunnan, Xizang); C. wallacei (Thomson, 1858) (Hainan, Taiwan).

In this study, we describe a new species of Crossotarsus from China, give a new record, and a new combination of the genus, and provide molecular data of Chinese species for molecular phylogenetic analyses.

Materials and methods

Abbreviations used for collections
BMNH The Natural History Museum, London, United Kingdom.
JXAU Insect Collections, Jiangxi Agricultural University, Nanchang, China.
KIZCAS Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
NIAES National Institute of Agro-Environmental Sciences (ITLJ), Tsukuba, Ibaraki, Japan.
NMNS National Museum of Natural Science, Taichung, Taiwan.
NZMC National Zoological Museum of China, Institute of Zoology, Chinese Academy of Science, Beijing, China.
RAB Private collection of Roger A. Beaver, Chiang Mai, Thailand
RIFID Research Institute of Forest Insect Diversity, Namyangju, South Korea.
SYU Museum of Biology, Sun Yat-sen University, Guangzhou, China.
USNM National Museum of Natural History, Washington D.C., USA
ZIN Zoological Institute. Russian Academy of Sciences, St. Petersburg, Russia

Adults of the new species were collected by \log dissection. The samples were immediately preserved in tubes containing 99.9% ethyl alcohol, which were stored at $20^{\circ} \mathrm{C}$ for DNA extraction and examination. Specimens were examined using a Olympus SZX160 Stereoscopic Zoom microscope. Photographs were taken with a KEYENCE VHX-6000 Digital Microscope System. All photos were further adjusted and assembled with Adobe Photoshop CS6. Body length was measured between the anterior margin of the pronotum and the elytral apex (head not included).

Genomic DNA was extracted from the adult's head. The total genomic DNA was extracted from each individual using the Ezup Column Animal Genomic DNA Purification Kit (Sangon Biotech Co. Ltd.). Amplification of four gene fragments (COI, EF-1 α, CAD, 28S) was made by PCR, using primers (Table 1) and cycling conditions described previously (Jordal et al. 2011). The PCR products were sent to Sangon Biotech Co. Ltd. (Shanghai, China) for sequencing, and the sequences were analyzed using the software DNAstar. Additional information on Crossotarsus material was collected by the author in China or downloaded from NCBI (The National Center for Biotechnology Information) (Table 2). Concatenated DNA sequence data from Jordal (2013) were analysed in MrBayes v. 3.2.6 (Ronquist et al. 2012). Partitions and models were estimated by PartitionFinder 2 (Lanfear et al. 2017) and ModelFinder (Kalyaanamoorthy et al. 2017) respectively in PhyloSuite (Zhang et al. 2020), GTR $+\mathrm{G}+\mathrm{I}$ were selected for each partition. 10 million generations were run, with 25% of the generations as burn-in. PSRF close to 1.0 and standard deviation of split frequencies below 0.01 were accepted.

Results

New species

Crossotarsus beaveri Lai \& Wang, sp. n.

Figures. 1A-D, 2 A-D.
Type Material. Holotype: male, China: Jiangxi Province, Ganzhou City, Longnan County, Jiulianshan national nature reserve of Jiangxi, Hualu Village, $24^{\circ} 37^{\prime} 19^{\prime \prime N}$, $114^{\circ} 29^{\prime} 57^{\prime \prime} \mathrm{E}, 2$. VII.2020, log dissection, host Paulownia fortunei, Shengchang Lai leg. (Deposited in NZMC IOZ(E)225775)

Allotype. female, same data as holotype (Deposited in NZMC IOZ(E)225776).
Paratypes. 6 male, 6 female, same data as holotype, but host Phoebe zhennan and Liquidambar formosana (5 male, 5 female JXAU; 1 male, 1 female NZMC); 11 male, 6 female, as holotype except: Xunwu County, Xiangshan Town, Congkeng Village, $24^{\circ} 54^{\prime} 20^{\prime \prime} \mathrm{N}, 115^{\circ} 52^{\prime} 44^{\prime \prime} \mathrm{E}$, ca $650 \mathrm{~m}, 15 . \mathrm{IX} .2017$, log dissection, host Castanopsis fargesi and Vernicia montana, Shengchang Lai leg. (10 male, 5 female JXAU; 1 male, 1 female RAB); 6 male, 6 female, as holotype except: Xunwu County, Liuche Town, Luanluozhang, $24^{\circ} 40^{\prime} 41^{\prime \prime} \mathrm{N}, 115^{\circ} 44^{\prime} 9^{\prime \prime} \mathrm{E}$, ca $640 \mathrm{~m}, 22$.VIII.2017, log dissection, host Castanopsis carlesii, Shengchang Lai leg. (5 male, 5 female JXAU; 1 male, 1 female RAB); 38 male, 38 female, China: Fujian Province, Zhangzhou City, Yunxiao County, Xiahe Town, Qigaoqi Village, $24^{\circ} 1^{\prime} 31^{\prime \prime} \mathrm{N}, 117^{\circ} 10^{\prime} 36{ }^{\prime \prime} \mathrm{E}, 8$. VII.2019, log dissection, host Castanopsis carlesii, Ling Zhang leg. (2 male, 2 female BMNH; 2 male, 2 female

KIZCAS [KIZ0121459-0121462]; 2 male, 2 female NIAES; 2 male, 2 female NMNS; 2 male, 2 female RAB; 2 male, 2 female RIFID; 2 male, 2 female SYU; 2 male, 2 female USNM; 2 male, 2 female ZIN; 20 male, 20 female JXAU).

Description. male. $3.58-3.84 \mathrm{~mm}$ long, $2.75-2.95$ times as long as wide. Head and pronotum dark brown, disc of elytra reddish brown becoming dark brown, declivity of elytra nearly black.

Head. Frons flat, slightly shining, with irregular large punctures; finely, sparsely punctured above the epistoma, bearing bristly, erect, long setae, weakly concave, smooth around short median line, upper part of frons with scattered, coarse punctures, the punctures with moderate, semierect, dorsally directed setae. Antennal scape clavate with scattered, forwardly directed hairs in apical half; club oval, flattened, evenly covered with short setae. Labial palps two-segmented, with basal segments fused in the midline.

Pronotum. About 1.2 times longer than wide, shining, no mycangial pores, the lateral femoral grooves angulate anteriorly, pronotum widest in front of the grooves, with finely, scattered, irregular punctures, a few semierect backwardly pointed hairs close to anterior margin, median line extending about $1 / 4$ from base.

Scutellum. Depressed below level of elytra, with a median longitudinal groove between lateral carinae.

Elytra. About 2.0 times as long as wide, about 1.4 times as long as pronotum. Surface of disc smooth, shining, striae distinctly impressed for almost their entire length, except striae 6 and 7 , other striae with circular, distinct, shallow punctures, the bases of striae 1 and 2 , striae 3 and 4 respectively conjoint, more impressed; interstriae slightly raised on disc, interstriae 1,3 and 5 distinctly raised and conjoint at base, interstriae 8 and 9 fused at apex of disc, forming ventral, rounded angle; cylindrical declivity obliquely truncate, acutely margined all around except at sutural apex, strongly concave, forming a cup-like structure, surface shining, with 4 rows of longitudinal granules bearing erect, long, golden setae, a row of sparse, medially directed, erect golden setae at the inner margin of declivity, elytralapex broadly emarginate, the main emargination approximately U-shaped, about as wide as deep, extending about one-third of the height of the declivity, at its inner end a much smaller, V-shaped second emargination (Fig 1A and Fig 1D).

Protibia. 5 transverse carinations at tibial apex, transverse rugae at base.
Abdomen. Abdominal ventrites 1 to 4 moderately finely punctured, with irregular rows of erect, short hairs at both sides posteriorly, ventrite 5 strongly concave at middle, with dense, large, circular punctures.

Female. 3.64-3.84 mm long, 2.79-2.93 times as long as wide. Head and pronotum brown, disc of elytra reddish brown becoming dark brown to apex.

Head. Similar to male, but frons more flat, very shining, smooth, with shallow, small punctures; finely, sparsely punctured above the epistoma, bearing bristly, erect, long setae; very shallowly concave in median line, upper part of frons with scattered, shallow, small punctures, the punctures with moderate, semierect, dorsally directed setae.

Pronotum. Similar to male.
Elytra. About 1.8 times as long as wide, about 1.5 times as long as pronotum sides subparallel. Similar to male, but disc of elytra shining, with dense, longitudinal, semierect, backwardly pointed hairs at apex and declivity, striae weakly impressed, interstriae more smooth, declivity vertical, a few irregularly granules, sparsely hairy.

Protibia. 3 transverse carination at tibial apex, fine, confused granules at base.
Abdomen. Surface of abdominal ventrites smooth, rounded, sparsely hairy, ventrites 5 without concavity, punctures shallow.

Etymology. The species is named for Roger A. Beaver to honor his contributions to the study of platypodines and scolytines.

Host plants. Euphorbiaceae (Vernicia montana), Fagaceae (Castanopsis carlesii, Castanopsis fargesi), Hamamelidaceae (Liquidambar formosana), Lauraceae (Phoebe zhennan), Scrophulariaceae (Paulownia fortunei).

Distribution. China (Jiangxi, Fujian).
Diagnosis. The species is placed in Crossotarsus because it possesses combination of characters: labial palps two-segmented, with basal segments fused in the midline; sexually dimorphic protibiae, male with 5 transverse carinations at tibial apex, transverse rugae at base and female with 3 transverse carination at tibial apex, fine, confused granules at base; pronotum without mycangial pores in either sex, the femoral grooves angulate at the anterior extremity and gently rounded behind.

Crossotarsus beaveri is very similar to Crossotarsus brevis (Browne, 1975) (new combination, see below) and Crossotarsus platypoides (Browne, 1955). They can be easily distinguished from other Crossotarsus species by the male elytral apex truncate with a large, circular, concave declivity. But the male of C. beaveri and C. brevis elytral apex possesses a deep, acutely margined declivity, with a broad, almost circular, apical emargination.

Key to the species of Crossotarsus with a circular, truncate elytral declivity

1 Male elytral apex truncate with a circular, shallow, concave, bluntly margined declivity; sutural apex of declivity slightly dehiscent without apical emargination. Female smaller and stouter, $2.60-2.70 \mathrm{~mm}$ long, $2.70-2.75$ times as long as wide
C. platypoides Browne

- Male elytral apex truncate with a circular, deep, concave, acutely margined declivity, with a broad, almost circular, apical emargination. Female larger and more elongate, $3.00-3.90 \mathrm{~mm}$ long, $2.79-3.44$ times as long as wide2

2 Male striae weakly impressed on disc of elytra (Fig 1A); declivity gradually, obliquely truncate, its face shining, cylindrical, apex rounded with a double sutural emargination, borders of inner emargination weakly elevated, outer emargination forming pointed angles; surface of declivity with 4 longitudinal rows of granules, bearing erect, long golden setae (Fig 1D). Female frons flat, more shining, smoother, very shallowly concave in median line; dense, shallow, small punctures bearing semierect hairs on upper part; almost flat above the epistoma below median line (Fig 2B); striae weakly impressed on disc of elytra (Fig 2A). 3.64-

> 3.90 mm long
> C. beaveri sp. n.

- Male striae moderately impressed on disc of elytra (Fig 3A); declivity abruptly, vertically truncate, its face subnitid, cylindrical, apex rounded with a double sutural emargination, borders of inner emargination distinctly elevated and dilated, outer emargination forming obtuse angles; surface of declivity with sparse, obscure granules, bearing erect, long golden setae (Fig 3D). Female frons slightly shining, reticulate, very distinctly concave, smooth around median line; dense, deep, large punctures bearing semierect hairs on upper part; weakly, irregularly impressed above the epistoma below median line (Fig 4B); striae moderately impressed on disc of elytra (Fig 4A). 2.96-3.44 mm long
C. brevis Browne

Crossotarsus brevis (Browne, 1975) comb. n.

Platypus brevis Browne: Beaver \& Browne, 1975: 306.
Dinoplatypus brevis Browne: Beaver 1998:184.
Figures. 3A-D, 4 A-D.
Material examined. 7 males, 5 females (JXAU); 1 male, 1 female (RAB): China: Yunnan Province, Xishuangbanna Dai Autonomous Prefecture, Jinghong City, Damanmi Village, $22^{\circ} 02^{\prime} 50^{\prime \prime} \mathrm{N}, 100^{\circ} 48^{\prime} 27^{\prime \prime} \mathrm{E}$, ca $580 \mathrm{~m}, 20 . \mathrm{I} .2018$, log dissection, host unknown, Shengchang Lai leg.

Taxonomy. The specimens in RAB have been compared to a paratype of the species in RAB, and their identity confirmed. Browne put this species in Platypus Herbst noting that the apical emargination of the elytra was rather similar to that of Platypus caliculus Chapuis 1865 (Beaver and Browne 1975). In fact, C. brevis has the typical characters of Crossotarsus: labial palps two-segmented, with basal segments fused in the midline, whereas Platypus has the labial palps three-segmented, with separate basal segments. Beaver (1998) transferred the species from Platypus to Dinoplatypus Wood following Wood's (1993) attempt to split up the genus Platypus. Wood diagnosed Dinoplatypus largely on the basis of the circular, truncate, elytral declivity of the male, with the sutural apex emarginate. However, this is an adaptive character of the declivity which has evolved independently more than once in the Platypodinae, as it has in the Scolytinae (Hulcr et al. 2015). Molecular phylogenetic study also shows that the few morphological characters used by Wood (1993) to erect several groups of Neotropical and Indo-Malayan/ Australasian species in Platypodini to new genera are not sufficiently diagnosable for all those groups (Jordal 2015).

Browne (1961) and Beaver \& Sanguansub (2015) suggested that the adult generic characters of primary value in Crossotarsus included the structure of the labial and maxillary palps, the form of the pronotum, the sexual dimorphism of the protibia, and various modifications of the abdominal sternites in the male. Based on the twosegmented labial palps, the lateral pronotal emarginations angulate anteriorly, the pronotum without mycangial pores, and the sexual dimorphism of the protibiae, Platypus brevis belongs in the genus Crossotarsus, and is here transferred to that genus.

Distribution. Thailand (Beaver and Liu 2013). New to China (Yunnan).
Host. Fagaceae (Castanopsis sp.) (Beaver and Liu 2013).

New record

Crossotarsus emorsus Beeson, 1937

Crossotarsus emorsus Beeson, 1937: 87.
Figures. 5A-D, 6 A-D.
Material examined. 4 males, 1 female (JXAU) China: Yunnan Province, Xi-shuang-ban-na Dai Autonomous Prefecture, Jinghong City, Nabanhe River Watershed National Nature Reserve, Guomenshan, ca 1030 m , N22 ${ }^{\circ} 14^{\prime} 46^{\prime \prime}$, E100 ${ }^{\circ} 36^{\prime} 10^{\prime \prime}$, 27.I.2018, log dissection, host Dalbergia assamica, Shengchang Lai leg.; 1 male, 1 female (RAB); 1 male (JXAU) China: Yunnan Province, Xishuangbanna Dai Autonomous Prefecture, Jinghong City, Damanmi Village, ca 580 m , N22 ${ }^{\circ} 02^{\prime} 50^{\prime \prime}$, E100 ${ }^{\circ} 48^{\prime} 27^{\prime \prime}$, 20.I.2018, log dissection, host Cassia siamea, Shengchang Lai leg.

Diagnosis. C. emorsus is similar to C. terminatus, but they can be distinguished using the characters given in Table 3.

Distribution. Myanmar, Thailand, Laos (Beaver and Liu 2013; Beaver 2016). New to China (Yunnan).

Host. The species is recorded from trees in the families Lecythidaceae, Leguminosae (now Fabaceae), Sterculiaceae and Verbenaceae (Beeson 1937), and is presumably polyphagous (Beaver 2016). Host plants recorded here are: Fabaceae (Cassia siamea and Dalbergia assamica).

Molecular data. The phylogenetic tree for analyzing the evolutionary relationships of 13 taxa including the ingroups (Crossotarsus species) and the outgroups (P. contaminatus) was constructed based on four genes (Fig. 7). BI tree shows the new species (C. beaveri) and the new combination (C. brevis) forming a clade, with high node support. These group with Schedl's (1972) 'Crossotarsi coleoptrati' (C. fractus, C. squamulatus, and C. terminatus) and cluster with all remaining Crossotarsus species. It confirms that the taxonomic changes and the relationship of C. brevis and C. brevis are correct. It also indicates that Crossotarsus emorsus, C. fractus, C. squamulatus, and C. terminatus should be considered as distinct species (as in Beaver and Liu (2013)), and not considered as synonyms or subspecies (Schedl 1972).

Discussion

Crossotarsus beaveri is clearly related to C. brevis. They are the sister lineage to the group Crossotarsi coleoptrati, not the genus Dinoplatypus. This is a good example of the fact that the declivity of male is an adaptive character, and not of generic significance. We consider morphologically diagnosable characters of the genus Crossotarsus should refer to summary of Browne (1961), Beaver and Sanguansub $(2015,2020)$ as aforesaid.

The genus Crossotarsus is one of the biggest genera of Platypodinae, with more than 100 species. Although there are 13 species of Chinese Crossotarsus in previous records (Yin and Huang 1987; Yin et al. 2002; Zhang et al. 2008), many species which have been reported from China's neighboring countries (Beaver and Shih 2003; Goto 2009; Beaver and Liu 2013; Beaver 2016) have still not been found in China. This
indicates quite strongly that many more species remain to be discovered, especially on the Chinese mainland. Crossotarsus is monophyletic in the latest molecular phylogeny (Jordal 2015). There is only a little molecular data for the genus in GenBank, less than 10 percent of the whole. More taxonomic samples are needed.

Acknowledgements

We thank Roger Beaver for reviewing earlier manuscript drafts and kindly commenting on the status of the new species. We also appreciate the help provided by Jiaxin Liao, Yufeng Cao to help our field investigated work. This research was funded by grant CARS-33-BC2-JX01 from Survey of Bark Beetles on the Rubber Tree in China Project and the National Natural Science Foundation of China (no. 31760543).

References

Beaver RA (1998) New synonymy, new combinations and taxonomic notes on Scolytidae and Platypodidae (Insecta: Coleoptera). Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie 100: 179-192.
Beaver RA (2004) The genus Crossotarsinulus Schedl (Coleoptera: Platypodidae). Entomologist's Monthly Magazine 140: 243-245.
Beaver RA (2005) New synonymy in Taiwanese ambrosia beetles (Coleoptera: Curculionidae: Platypodinae). Plant Protection Bulletin 47: 195-200.
Beaver RA (2016) The platypodine ambrosia beetles of Laos (Coleoptera: Curculionidae: Platypodinae). Entomologica Basiliensia et Collectionis Frey 35: 487-504.
Beaver RA, Browne FG (1975) The Scolytidae and Platypodidae (Coleoptera) of Thailand: A checklist with biological and zoogeographical notes. Oriental Insects 9(3): 283-211. https://doi.org/10.1080/00305316.1975.10434499
Beaver RA, Liu LY (2013) A synopsis of the pin-hole borers of Thailand (Coleoptera: Curculionidae: Platypodinae). Zootaxa 3646(4): 447-486. http://dx.doi.org/10.11646/zootaxa.3646.4.7
Beaver RA, Sanguansub S (2015) A review of the genus Carchesiopygus Schedl (Coleoptera: Curculionidae: Platypodinae), with keys to species. Zootaxa 3931(1): 401-412. http://dx.doi.org/ 10.11646/zootaxa.3931.3.4
Beaver RA, Sanguansub S (2020) New synonymy and taxonomic changes in Australian and oriental pin-hole borers (Coleoptera: Curculionidae, Platypodinae). Entomologist's Monthly Magazine 156(2): 79-86. http://doi: 10.31184/M00138908.1562.4024

Beaver RA, Shih HT (2003) Checklist of Platypodidae (Coleoptera: Curculionoidea) from Taiwan. Plant Protection Bulletin 44: 75-90.
Beeson CFC (1937) New Crossotarsus (Platypodidae, Col.). The Indian Forest Records 3: 47-103.
Bright DE (2014) A catalog of Scolytidae and Platypodidae (Coleoptera), Supplement 3 (2000-2010), with notes on subfamily and tribal reclassifications. Insecta Mundi 0356: 1-336.
Browne FG (1955) Synonymy and descriptions of some Oriental Scolytidae and

Platypodidae (Coleoptera). Sarawak Museum Journal 6(5): 343-373.
Browne FG (1961) Taxonomic notes on Platypodidae (Coleoptera). Annals and Magazine of Natural History 47: 641-656. http://dx.doi.org/10.1080/00222936108651189
Chapuis F (1865) Monographie des Platypides. H. Dessain, Liège, 344pp. http: //dx.doi. org/10.5962/bhl.title. 9204
Goto H (2009) Taxonomic history of Japanese bark and ambrosia beetles with a check list of them. Journal of Japanese Forest Society 91: 479-485. https://doi.org/10.4005/jjfs. 91.479
Hopkins AD (1914) List of generic names and their type-species in the coleopterous superfamily Scolytoidea. Proceedings of the United States National Museum 48(2066): 115-136.
Hulcr J, Atkinson TH, Cognato AI, Jordal BH, Mckenna DD (2015) Morphology, taxonomy, and phylogenetics of bark beetles. In: Vega FE, Hofstetter RW (Eds) Bark Beetles. Biology and Ecology of Native and Invasive Species. Academic Press, London, 41-84.
Jordal BH (2013) Deep phylogenetic divergence between Scolytoplatypus and Remansus, a new genus of Scolytoplatypodini from Madagascar (Coleoptera, Curculionidae, Scolytinae). ZooKeys 352: 9-33. https://doi.org/10.3897/zookeys.352.6212
Jordal BH (2015) Molecular phylogeny and biogeography of the weevil subfamily Platypodinae reveals evolutionarily conserved range patterns. Molecular Phylogenetics and Evolution, 92: 294-307. http://dx.doi.org/10.1016/j.ympev.2015.05.028
Jordal BH, Sequeira AS, Cognato AI (2011) The age and phylogeny of wood boring weevils and the origin of subsociality. Molecular Phylogenetics and Evolution 59: 708-724. https: //doi.org/10.1016/j.ympev.2011.03.016
Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587-589. https: 10.1038/nmeth. 4285
Lai SC, Liao JX, Dai XH, Wang YX, Wang JG (2019) Identification of hawthorn trunk borer (Platypus contaminates), an important insect pest on hawthorn. Plant Quarantine 33(1): 48-51. [in Chinese with English summary]
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34(3): 772-773. https:10.1093/molbev/msw260
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61: 539-542. https: //doi.org/10.1093/sysbio/sys029
Schedl KE (1972) Monographie der Familie Platypodidae Coleoptera. W. Junk, Den Haag, 322 pp.
Wood SL (1993) Revision of the genera of Platypodidae (Coleoptera). Great Basin

Naturalist 53(3): 259-281. https: 10.2307/41712783
Wood SL, Bright DE (1992) A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index. Great Basin Naturalist Memoirs 13: 1-1553.
Yin HF, Huang FS, (1987) Platypodidae. In: Huang FS, Zheng LY (Eds) Forest Insect of Yunnan. Yunnan Science and Technology Press, Kunming, 854-858. [in Chinese]
Yin HF, Huang FS, Zeng R, Li H (2002) Coleoptera: Platypodidae. In: Huang FS (Eds) Forest Insect of Hainan. Science Press, Beijing, 472-473. [in Chinese]
Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20(1): 348-355. https: 10.1111/1755-0998.13096
Zhang Y, Du YZ, Zhu HB, Gu J, Zhang YZ (2008) Species record of Chinese Crossotarsus. Entomological Journal of East China 17(3): 205-212. [in Chinese with English summary]

Figure 1. Male of Crossotarsus beaveri sp. n. A. Dorsal view, B. Head, C. Lateral view, D. Declivity. Scale bars= 0.5 mm .

Figure 2. Female of Crossotarsus beaveri sp. n. A. Dorsal view, B. Head, C. Lateral view, D. Declivity. Scale bars $=0.5 \mathrm{~mm}$.

Figure 3. Male of Crossotarsus brevis (Browne). A. Dorsal view, B. Head, C. Lateral view, D. Declivity. Scale bars $=0.5 \mathrm{~mm}$.

Figure 4. Female of Crossotarsus brevis (Browne). A. Dorsal view, B. Head, C. Lateral view, D. Declivity. Scale bars $=0.5 \mathrm{~mm}$.

Figure 5. Male of Crossotarsus emorsus Beeson. A. Dorsal view, B. Head, C. Lateral view, D. Declivity. Scale bars $=0.5 \mathrm{~mm}$.

Figure 6. Female of Crossotarsus emorsus Beeson. A. Dorsal view, B. Head, C. Lateral view, D. Declivity. Scale bars $=0.5 \mathrm{~mm}$.

Figure 7. Tree topology resulting from Bayesian analysis of four genes. Posterior probabilities are given on the nodes. New species and new combination indicated bold type.

Table 1. Gene fragments targeted for PCR and the primers used. Sequencing primers were identical to those used in PCR

Gene	Primer name	Annealing	Primer sequence	Reference
COI	S1718	$46^{\circ} \mathrm{C}$	5^{\prime}-GGAGGATTTGGAAATTGATTAGTTCC-3'	5'-GCTAATCATCTAAAAACTTTAATTCCWGTWG-3'

Table 2. Material used for phylogenetic analyses, including their GenBank accession numbers.

No.	Taxon	Country	COI	EF-1 α	28 S	CAD	Reference
1	Crossotarsus beaveri	China: Jiangxi	No....	No....	No....	No....	This study
2	Crossotarsus brevis	China: Yunnan	No....	No....	No...	No....	This study
3	Crossotarsus chalcographus	Papua New Guinea	KR261313	-	-	KR261163	Jordal 2015
4	Crossotarsus emorsus	China: Yunnan	No....	-	No....	No....	This study
5	Crossotarsus externedentatus	China: Yunnan	No....	No....	No....	No....	This study
6	Crossotarsus externedentatus	Tanzania	KR261312	-	KR261216	KR261162	Jordal 2015
7	Crossotarsus externedentatus	Madagascar	KR261316	KR261275	KR261218	KR261166	Jordal 2015
8	Crossotarsus fractus	Papua New Guinea	KR261315	KR261274	-	KR261165	Jordal 2015
9	Crossotarsus minusculus	Papua New Guinea	HQ883669	HQ883739	HQ883579	HQ883809	Jordal 2015
10	Crossotarsus niponicus	China: Sichuan	No....	-	No....	-	This study
11	Crossotarsus nitescens	Australia	KR261311	KR261272	-	KR261161	Jordal 2015
12	Crossotarsus sauteri	China: Jiangxi	No....	No....	No....	No....	This study
13	Crossotarsus squamulatus	China: Yunnan	No....	No....	No....	No....	This study
14	Crossotarsus terminatus	China: Jiangxi	No....	No....	No....	No....	This study
15	Crossotarsus wallacei	China: Yunnan	No....	No....	No....	No....	This study
16	Platypus contaminatus	China: Jiangxi	No....	No....	No....	No....	Lai et al. 2019

Table 3. Diagnostic characters separating Crossotarsus emorsus and Crossotarsus terminatus.
C. emorsus C. terminatus

Male size $4.56-4.80 \mathrm{~mm}$ long.
Body size

Frons

Elytra
Female size $4.8-5.34 \mathrm{~mm}$ long, $3.37-3.42$ times as long as wide.
Male frons almost flat, with shallower, irregularly placed
punctures; circularly concave in median line.
Female frons almost flat, without concave around median line.
Male without lateral emargination at declivity base, semicircular lateral borders with serrated, lateral tubercles.
C. emorsus C. terminatus

Male size 3.32-3.40 mm long.
Female size 3.9-4.2 mm long, 2.86-2.93 times as long as wide Male frons coarser, with deeper, irregularly placed punctures; linearly concave in median line.
Female frons concave forming a big, circular impression around concave median line.
Male with lateral emargination at declivity base, semicircular lateral borders rounded, without distinct serrated, lateral tubercles.

