

PREPRINT

Posted on 16/03/2021

DOI: https://doi.org/10.3897/arphapreprints.e65983

DNA barcodes from northern birds of Colombia

Paulo Pulgarín-R, Martha Olivera-Angel, Luisa Ortíz, Duván Nanclares, Sara Velásquez-Restrepo, ^(D) Juan Diaz-Nieto

Not peer-reviewed, not copy-edited manuscript.

Disclaimer on biological nomenclature and use of preprints

The preprints are preliminary versions of works accessible electronically in advance of publication of the final version. They are not issued for purposes of botanical, mycological or zoological nomenclature and **are not effectively/validly published in the meaning of the Codes**. Therefore, nomenclatural novelties (new names) or other nomenclatural acts (designations of type, choices of priority between names, choices between orthographic variants, or choices of gender of names) **should NOT be posted in preprints**. The following provisions in the Codes of Nomenclature define their status:

International Code of Nomenclature for algae, fungi, and plants (ICNafp)

Article 30.2: "An electronic publication is not effectively published if there is evidence within or associated with the publication that its content is merely preliminary and was, or is to be, replaced by content that the publisher considers final, in which case only the version with that final content is effectively published." In order to be validly published, a nomenclatural novelty must be effectively published (Art. 32.1(a)); in order to take effect, other nomenclatural acts must be effectively published (Art. 7.10, 11.5, 53.5, 61.3, and 62.3).

International Code of Zoological Nomenclature (ICZN)

Article: 21.8.3: "Some works are accessible online in preliminary versions before the publication date of the final version. Such advance electronic access does not advance the date of publication of a work, as preliminary versions are not published (Article 9.9)".

DNA barcodes from northern birds of Colombia

Paulo Cesar Pulgarín-R[‡], Martha Olivera-Angel[§], Luisa Ortíz[§], Duván Nanclares[§], Sara Velásquez-Restrepo^I, Juan Fernando Díaz-Nieto^I

‡ Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia

§ Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Cl. 73 #73A-79, Medellín, Colombia

| Grupo Biodiversidad, Evolución y Conservación (BEC), Departamento de Ciencias Biológicas, Escuela de Ciencias, Universidad EAFIT, Carrera 49 No. 7 sur-50, Medellín, Colombia

Corresponding author: Juan Fernando Díaz-Nieto (jdiazni@eafit.edu.co)

Abstract

DNA barcode datasets are a useful tool for conservation and aid in taxonomic identification, particularly in megadiverse tropical countries seeking to document and describe its biota, which is dropping at an alarming rate during recent decades. Here we report the barcodes for several low elevation bird species from northern Colombia with the goal to provide tools for species identification in this region of South America. We blood sampled birds in a lowland tropical forest with various degrees of intervention using standard 10 × 12 mist-nets. We extracted DNA and sequenced the COI barcode gene using standard primers and laboratory methods. We obtained 28 COI sequences from 19 species, 10 families and 3 orders and found that barcodes largely matched (but not always) phenotypic identification (>90%) and they also facilitated the identification of several challenging passerine species. Despite our reduced sampling, our study represents the first attempt to document COI barcodes for birds (from blood samples) in this part of Colombia, which fills a considerable gap of sampling in this part of South America.

Keywords

Aves, lowland tropical forest, mtDNA, northern Colombia

Introduction

DNA barcode reference libraries are a useful tool for conservation and aid in taxonomic identification (Gonzalez et al. 2009, Waugh 2007) for many biological groups (Hebert et al. 2003). Megadiverse countries such as Colombia are desperately in need to document and describe its biota, which is declining at an alarming rate during recent decades (Shaw et al. 2013), with emphasis on the putative cryptic diversity present in tropical areas (Crawford et al. 2012, Lohman et al. 2010, Stefan et al. 2018). Despite efforts to encourage sequence data collection and sharing through local and global initiatives (e.g. Barcode Life Data

© Pulgarín-R P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

System, BOLD), most taxa are underrepresented for barcodes. Naturally, although barcodes are particularly useful for advancing on the recognition of unknown diversity (in groups where alpha taxonomy is still developing or for highly diverse groups where many species remain to be described) it is also extremely useful for species identification in groups with better resolution in their taxonomy (Collins and Cruickshank 2012, Hebert and Gregory 2005, Hebert et al. 2003). Birds are one of the most well-known groups in terms of their taxonomy and systematics (Jarvis et al. 2014), but nonetheless new species are being described almost every year, particularly in the Neotropics (Avendaño et al. 2015), and some challenges still remain in the identification of species groups with very little phenotypic differentiation (Lara et al. 2012, Tavares et al. 2011, Cadena et al. 2016). Consequently, birds are an excellent group for implementing DNA barcoding for both species-identification and species-recognition purposes.

Barcode studies in Neotropical birds are on the increase particularly in Brazil and Argentina, where studies have focused on testing species limits and biogeographic patterns (Chaves et al. 2015, Kerr et al. 2009, Tavares et al. 2011, Vilaca et al. 2006). Despite that progress, a huge gap of information remains to be filled in northern South America, where very few studies have been completed (but see Mendoza et al. 2016). Here, we report the barcodes for several low elevation bird species from northern Colombia with the goal to provide tools for species identification and add to the existing gap of animal COI data in this part of South America.

Materials and Methods

Sample collection and processing

We sampled birds at "Hacienda Universidad de Antioquia", in the Municipality of Caucasia, Department of Antioquia, Colombia (8.003143 N, -75.400716 W; 70 m a.s.l., Fig. 1), from the 26th to 29th of October 2017. The landscape at the study site is composed by remnants of lowland tropical forests with various degrees of intervention, immersed in a matrix of pastures, second growth forest, bushes and small streams. Birds were caught at forest edges and in open areas between forest fragments using standard 10x12 mist-nets and were blood sampled from the brachial vein using small gauge needles and non-heparinized capillary tubes (Pulgarín-R et al. 2018). All birds were processed and released in place. Blood samples were stored in 90-95% ethanol and kept at room temperature.

Laboratory procedures

We extracted total DNA from blood using the PureLink Genomic DNA Mini Kit (Invitrogen) according to the manufacturer's specifications. For blood samples, 20 μ l of Proteinase K, 20 μ l of RNase and 200 μ l of PureLink® Genomic Lysis/Binding buffer were added during the digestion phase. Later, each sample was transferred to a spin column and two washes were performed with Wash Buffer 1 and Wash Buffer 2 to perform a final elusion dividing the total volume in two consecutive sets of 50 μ l with Elution Buffer.

For molecular typing, we targeted the Cytochrome c oxidase subunit 1 (COI) barcode region using the primer combination from Ivanova et al. (2007) with the unique difference that all primers were M13-tailed to facilitate the sequencing process (Table 1). PCR amplifications were performed in 35 μ I reactions that contained: 2 mM of MgCl₂, 1 × of buffer PCR 10 × with KCl, 0.2 mM of each dNTP, 0.14 μ I of each primer cocktail, 1U of Taq DNA Polymerase (Fermentas) and 100 ng of DNA template. Thermal cycling conditions involved an initial denaturation at 95°C for 2 min followed by a single stage of 28 cycles that included denaturation at 95°C for 30 s, annealing at 52°C for 40 s, extension at 72°C for 1 min, and a final 10 min extension at 72°C. PCR products were visualized on a 1.5% agarose gel using a MiniBIS Pro-DNR Bio Imaging Systems. All amplification products were purified and sent to Macrogen (Seoul, Korea) to be sequenced on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA).

Data analysis

Sequences were edited, assembled, and examined with reference to translated amino-acid sequences using Geneious PRO 6.1.6. Nucleotide-sequences and complementary information were deposited in BOLD (www.barcodinglife.org) with the accession number data set (CANDE030-20 to CANDE055-20). For an initial sequence quality check and provisionary identification, all assembled sequences were searched in the National Centre Information for Biotechnology (NCBI) database through BLAST (http:// BLAST.ncbi.nlm.nih.gov/BLAST.cgi) using the Geneious Pro 6.1.6 match tool. We used the top-matching hit having the highest (>98%) maximal percent identity score as criteria for successful conspecific/congeneric identification. After the initial BLAST-based identification on the NCBI database, we used the Animal Identification (COI) tool from the BOLD Identification System (IDS) using the Species Level Barcode Records database. For all our sequences we recovered the species identification, closest matching BIN (Table 2), and a Neighbor-Joining topology using Kimura-2-Parameter (K2P) substitution model as implemented in the BOLD portal (Suppl. material 1).

Results

We obtained 26 COI sequences from 18 species, 10 families and 4 orders, and when analyzed by BOLD, the species were grouped into 18 existing BINS (access numbers in Table 2). Most bird species were residents, but four species (*Catharus minimus, Catharus ustulatus, Myiodynastes luteiventris,* and *Parkesia noveboracensis*) were boreal migrants (Table 2). For all species, sequence length varied from 642 to 702 bp (Table 2). Since most bird species are under sampled for DNA barcodes (Mendoza et al. 2016) in this part of the tropics, our report represents an important contribution to expand the geographic sampling (for COI sequences) of several species in South America, and it also includes the first sequences for Colombia for the following species: buff-breasted wren (*Cantorchilus leucotis*), short-tailed swift (*Chaetura brachyura*), rufous-tailed jacamar (*Galbula ruficauda*), sulphur-bellied flycatcher (*Myiodynastes luteiventris*), rusty-margined flycatcher (

Myiozetetes cayanensis), yellow-olive flatbill (*Tolmomyias sulphurescens*), and the cocoa woodcreeper (*Xiphorhynchus susurrans*).

Most COI barcodes matched our initial phenotypic identification, however, for 6 species (10 individuals) we found differences between our field identification, the query hits from BOLD's IDS and the NCBI BLAST search (Table 2). One bird species originally identified in the field as the streaked flycatcher (Myiodynastes maculatus, field ID LCA21) was positively identified as the sulphur-bellied flycatcher (Myiodynastes luteiventris, Fig. 2) by BOLD and NCBI analyses. Another passerine species correctly identified in the field (field ID's LCA31, LCA36, LCA38) and by the NCBI BLAST as the white-bearded manakin (Manacus manacus, Fig. 3) was recovered as the Central American restricted species, the orange-collared manakin (Manacus aurantiacus) by BOLD's IDS. A third species was identified in the field (and NCBI BLAST search) as the whooping motmot (Momotus subrufescens, Fig. 4), but BOLD IDS recovered its former nominal assignation, Momotus momota, the name of a widely distributed form of motmot before it was divided into five species-level taxa (Stiles 2009). Additionally, other three species (Ramphocellus dimidiatus, Sporophila funerea, Xiphorhynchus susurrans) were positively identified in the field and by BOLD but exhibited erroneous identifications by the NCBI BLAST apparently because of the absence of COI sequences for either species in the latter portal. Finally, in six instances, DNA sequences helped to confirm the identification of the Buff-throated Foliage-gleaner (Automolus ochrolaemus), the short-tailed swift (Chaetura brachyura) and the yellow-olive flatbill (Tolmomyias sulphurescens), which are all species difficult to identify in the field, even in hand, particularly the swifts.

Discussion

Our assessment of species identification using the COI barcodes shows a strong correspondence (90%) with field identification based on research expertise and photo ID (Table 2, Suppl. material 1). However, DNA barcodes were able to help with the identification of challenging species that can be problematic even for trained neotropical ornithologists. This was the case of field ID LCA21, identified initially as the Striped Flycatcher (*Myiodynastes maculatus*), however, both NCBI BLAST and the BOLD identification tool later recovered it as the sulfur-bellied flycatcher (*Myiodynastes luteiventris*, Fig. 2). Similarly, barcodes might help to identify the breeding areas or population origin for species exhibiting migratory divide or genetic structure, as happened with passing through northern South America species, *Catharus minimus* and *Catharus ustulatus* (Topp et al. 2013, Pulgarín-R et al. 2018). Additionally, barcodes can be of great help in resident species with little phenotypic variation, such as the swifts in the genus *Chaetura*, which are hardly captured in mist-nets and hard to identify in the field.

We also found some discrepancies between IDs recovered by the NCBI BLAST tool, those recovered by BOLD and our initial identifications made in the field. For example, three specimens identified in the field (Fig. 3) and by the NCBI BLAST tool as the white-bearded manakin (*Manacus manacus*) were recovered by BOLD as the orange-collared manakin (*M. aurantiacus*). The BIN containing our sequences (Table 2) groups several phenotypes

that in the past have been treated as the same species (e.g., Snow 1975) and also as a superspecies with up to four species (*M. aurantiacus, M. candei, M. manacus* and *M. vitellinus*) (Snow et al. 2004). Taxonomy within this group is not fully resolved so far that *M. aurantiacus* has been considered a subspecies of *M. vitellinus* (Snow 1975), an independent allopatrically distributed species of the genus (Brumfield and Braun 2001, Brumfield et al. 2001,Brumfield et al. 2008), and even as a paraphyletic clade based on mtDNA (Brumfield and Braun 2001). Moreover, it has been found that species of *Manacus* can hybridize in areas of sympatric distribution with other species of genus and even the family (Brumfield and Braun 2001, Brumfield et al. 2001, Höglund and Shorey 2004). All the above-mentioned scenario indicates that although the phenotype of all our sequences corresponds to what is known as *M. manacus* (Fig. 3), in the absence of a clear phylogenetic arrangement and poor knowledge on the species limits within the genus *Manacus*, the DNA barcode by itself is not able to reconcile the morphological and molecular information and is only the reflection of a poorly understood taxonomy.

Another result that showed some inconsistencies was the identification of LCA4 and LCA7 sequences, which were recovered by BOLD as *Momotus momota*. This used to be a widely distributed species in Central and South America, until it was divided into five species-level taxa (*M. aequatorialis, M. bahamensis, M. lessonii, M. momota, M. subrufescens*) using a combined analysis of plumage, biometrics and voice (Stiles 2009). Currently, *Momotus momota* is considered a cis-Andean distributed species from eastern Colombia to southern Venezuela, Guianas, northwestern Argentina, and most of Brazil. Particularly, the specific epithet associated with the populations and phenotype obtained in this study corresponds to *M. subrufescens*, however, despite the presence of 8 different BINs that span much of the distribution of all the mentioned species within the genus, the taxonomy within the BOLD portal has yet to be updated and consequently our sequence is part of a BIN based on a haplotype with geographical proximity that bears the outdated *M. momota* taxon name.

A final group of inconsistencies between identification methods corresponds to 3 species for which no COI sequence data is available at the NCBI portal and consequently their closest matching sequences are inconsistent with their correct field- and BOLD-based identifications. In the case of the genera *Ramphocellus* and *Xiphorhynchus*, the BLAST search tool identified our samples as the cis-Andean distributed congeneric species (*Ramphocellus carbo* and *Xiphorhynchus guttatus*) and not as the correct trans-Andean species (*R. dimidiatus* and *X. sussurrans*). For the genus *Sporophila*, although the chestnut-bellied ceed-finch (*Sporophila angolensis*) and the thick-billed seed-Finch (*Sporophila funerea*) can show sympatric distributions, the morphology exhibited by their males is strikingly different and leaves no room to discussion on their morphological identification.

Even though we found some discrepancies between our identification methods compared to BOLD's IDS, a close inspection to the K2P trees from BOLD (Fig. 4) showed that individuals across all sampled species are closely related to other individuals from nearby populations/areas. This is an important fact because even in the presence of outdated or incorrect assignment of names to a barcode sequence (and consequently to its

corresponding BIN) the K2P topologies are able to group individuals that based even on geography itself can putatively represent the current taxonomical treatment of the species (as is the case with the Whooping Motmot in Fig. 4).

Conclusions

Despite our reduced sampling, this study represents the first attempt to document COI barcodes for birds (from blood samples) in this part of Colombia, which fills a considerable gap of sampling in northwestern South America. Particularly, a call for broader sampling for barcodes might provide hints on cryptic species across barriers (Barreira et al. 2016) or might facilitate the identification of highly-traded species in Colombia such as parrots (Mendoza et al. 2016, Restrepo-R and Pulgarin-R 2017).

Acknowledgements

Research group Biogénesis, sostenibilidad 2016-2017 Codi, Universidad de Antioquia.

References

- Avendaño JE, Cuervo A, Lpez-O JP, Gutirrez-Pinto N, Corts-Diago A, Cadena CD (2015) A new species of tapaculo (Rhinocryptidae: Scytalopus) from the Serrania de Perija of Colombia and Venezuela. The Auk 132 (2): 450-466. <u>https://doi.org/10.1642/AUK-14-166.1</u>
- Barreira A, Lijtmaer D, Tubaro P (2016) The multiple applications of DNA barcodes in avian evolutionary studies. Genome 59 (11): 899-911. <u>https://doi.org/10.1139/ gen-2016-0086</u>
- Beckman Coulter, Inc (2020) Beckman Coulter, Inc. Definitions<u>https://doi.org/10.32388/</u>
 <u>kfqmki</u>
- Brumfield R, Braun M (2001) Phylogenetic relationships in bearded manakins (Pipridae: Manacus) indicate that male plumage color is a misleading taxonomic marker. The Condor 103 (2): 248-258. <u>https://doi.org/10.1093/condor/103.2.248</u>
- Brumfield R, Jernigan R, McDonald D, Braun M (2001) Evolutionary implications of divergent clines in avian (Manacus: Aves hybrid zone. Evolution 55 (10). <u>https://doi.org/</u> 10.1554/0014-3820(2001)055[2070:eiodci]2.0.co;2
- Brumfield RT, Liu L, Lum DE, Edwards SV (2008) Comparison of species tree methods for reconstructing the phylogeny of bearded manakins (Aves: Pipridae, *Manacus*) from multilocus sequence data. Systematic Biology 57 (5): 719-31. <u>https://doi.org/</u> <u>10.1080/10635150802422290</u>
- Cadena CD, Caro ML, Caycedo-Rosales PC, Cuervo AM, Bowie RCK, Slabbekoorn H (2016) *Henicorhina Anachoreta* (Troglodytidae), another endemic bird species for the Sierra Nevada De Santa Marta, Colombia. Ornitología Colombiana 15 (May): 82-89.
- Chaves BN, Chaves A, Nascimento AA, Chevitarese J, Vasconcelos M, Santos F (2015) Barcoding neotropical birds: assessing the impact of nonmonophyly in a highly

diverse group. Molecular Ecology Resources 15 (4): 921-931. <u>https://doi.org/</u> 10.1111/1755-0998.12344.

- Collins RA, Cruickshank RH (2012) The seven deadly sins of DNA barcoding. Molecular Ecology Resources 13 (6): 969-975. <u>https://doi.org/10.1111/1755-0998.12046</u>
- Crawford A, Cruz C, Griffith E, Ross H, Ibáñez R, Lips K, Driskell A, Bermingham E, Crump P (2012) DNA barcoding applied toex situtropical amphibian conservation programme reveals cryptic diversity in captive populations. Molecular Ecology Resources 8 (6). https://doi.org/10.1111/1755-0998.12054
- Gonzalez MA, Baraloto C, Engel J, Mori S, Pétronelli P, Riéra B, Roger A, Thébaud C, Chave J (2009) Identification of amazonian trees with DNA barcodes. PLOS One 4 (10). <u>https://doi.org/10.1371/journal.pone.0007483</u>
- Hebert PN, Cywinska A, Ball S, deWaard J (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270 (1512): 313-321. <u>https://doi.org/10.1098/rspb.2002.2218</u>
- Hebert PN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Systematic Biology 54 (5): 852-859. <u>https://doi.org/10.1080/10635150500354886</u>
- Höglund J, Shorey L (2004) Genetic divergence in the superspecies *Manacus*. Biological Journal of the Linnean Society 81 (3): 439-447. <u>https://doi.org/10.1111/j</u>. <u>1095-8312.2003.00297.x</u>
- Ivanova N, Zemlak T, Hanner R, Hebert PN (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7 (4): 544-548. <u>https://doi.org/10.1111/j. 1471-8286.2007.01748.x</u>
- Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Vargas Velazguez AM, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli K, O'Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MTP, Zhang G, et al. (2014) Wholegenome analyses resolve early branches in the tree of life of modern birds. Science (New York, N.Y.) 346 (6215): 1320-31. https://doi.org/10.1126/science.1253451
- Kerr KR, Lijtmaer D, Barreira A, Hebert PN, Tubaro P (2009) Probing evolutionary patterns in neotropical birds through DNA barcodes. PLOS One 4 (2). <u>https://doi.org/</u> <u>10.1371/journal.pone.0004379</u>
- Lara CE, Cuervo AM, Valderrama SV, Calderón D, Cadena D (2012) A new species of wren (Troglodytidae:Thryophilus) from the dry Cauca River Canyon, northwestern Colombia. The Auk 129 (3): 537-550. <u>https://doi.org/10.1525/auk.2012.12028</u>
- Lohman D, Ingram K, Prawiradilaga D, Winker K, Sheldon F, Moyle R, Ng PL, Ong P, Wang LK, Braile T, Astuti D, Meier R, et al. (2010) Cryptic genetic diversity in "widespread" Southeast Asian bird species suggests that Philippine avian endemism is

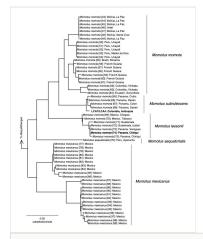
gravely underestimated. Biological Conservation 143 (8): 1885-1890. <u>https://doi.org/</u> 10.1016/j.biocon.2010.04.042

- Mendoza ÁM, Torres MF, Paz A, Trujillo-Arias N, López-Alvarez D, Sierra S, Forero F, Gonzalez M (2016) Cryptic diversity revealed by DNA barcoding in Colombian illegally traded bird species. Molecular Ecology Resources 16 (4): 862-873. <u>https://doi.org/ 10.1111/1755-0998.12515</u>
- Pulgarín-R P, Gómez C, Bayly N, Bensch S, FitzGerald A, Starkloff N, Kirchman J, González-Prieto A, Hobson K, Ungvari-Martin J, Skeen H, Castaño MI, Cadena CD (2018) Migratory birds as vehicles for parasite dispersal? Infection by avian haemosporidians over the year and throughout the range of a long-distance migrant. Journal of Biogeography 46 (1): 83-96. https://doi.org/10.1111/jbi.13453
- Restrepo-R DC, Pulgarin-R PC (2017) Dinámicas dee los loros en cautiverio en Colombia: tráfico, mortalidad y liberación. Ornitología Colombiana 16 (December): eA1-eA23.
- Shaw D, Escalante P, Rappole J, Ramos M, Oehlenschlager R, Warner D, Winker K (2013) Decadal changes and delayed avian species losses due to deforestation in the northern Neotropics. PeerJ 1 <u>https://doi.org/10.7717/peerj.179</u>
- Snow D (1975) The classification of the manakins. Bulletin of the British Ornithological Club 95: 20-27.
- Snow D, Del Hoyo J, Elliot A, Christie D (2004) Familly Pipridae (Manakins). Bulletin of British Ornithological Club 95.
- Stefan L, Gómez-Díaz E, Mironov S, González-Solís J, McCoy K (2018) "More than meets the eye": Cryptic diversity and contrasting patterns of host-specificity in feather mites inhabiting seabirds. Frontiers in Ecology and Evolution 6: 1-97 <u>https://doi.org/</u> <u>10.3389/fevo.2018.00097</u>
- Stiles FG (2009) A review of the genus *Momotus* (Coraciiformes: Momotidae) in northern South America and adjacent areas. Ornitología Colombiana 8: 29-75. URL: <u>http://zoobank.org/c135a921-ca07-4c6a-be68-07ff3a710d17</u>
- Tavares ES, Gonçalves P, Miyaki CY, Baker A (2011) DNA Barcode detects high genetic structure within neotropical bird species. PLOS One 6 (12). <u>https://doi.org/10.1371/journal.pone.0028543</u>
- Topp C, Pruett C, McCracken K, Winker K (2013) How migratory thrushes conquered northern North America: a comparative phylogeography approach. PeerJ 1 <u>https:// doi.org/10.7717/peerj.206</u>
- Vilaca TS, Lacerda DR, Sari HR, Santos FR (2006) DNA-based identification applied to Thamnophilidae (Passeriformes) species: the first barcodes of neotropical birds. Revista Brasileira De Ornitologia 14 (1): 7-13.
- Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29 (2): 188-197. <u>https://doi.org/10.1002/bies.20529</u>

Figure 1.

Study area in the lowlands of northern Colombia.

Figure 2.


The sulphur-bellied flycatcher (*Myiodynastes luteiventris*), a boreal migrant, was initially identified in the field as *Myiodynastes maculatus* but was subsequently correctly reidentified with the help of its COI barcode.

ARPHA Preprints Not peer-reviewed, not copy-edited manuscript posted on March 16, 2021. DOI: https://doi.org/10.3897/arphapreprints.e65983

Figure 3.

The white-bearded manakin (*Manacus manacus*) was identified as a different manakin species according to BOLD.

Figure 4.

Kimura-2-parameter tree of the "*Momotus momota* complex" indicates that barcodes can group together recently split species.

Table 1.

Primers used for the amplification of COI sequences obtained in this study.

Name	Sequence + M13	Ratio	Source
LepF1_t1- M13FWD	GTAAAACGACGGCCAGTATTCAACCAATCATAAAGATATTGG	1	Ivanova et al. 2007
VF1_t1- M13FWD	GTAAAACGACGGCCAGTTTCTCAACCAACCACAAAGACATTGG	1	Ivanova et al. 2007
VF1d_t1- M13FWD	GTAAAACGACGGCCAGTTTCTCAACCAACCACAARGAYATYGG	1	Ivanova et al. 2007
VF1i_t1- M13FWD	GTAAAACGACGGCCAGTTTCTCAACCAACCAIAAIGAIATIGG	3	Ivanova et al. 2007
LepRI_t1- M13REV	CAGGAAACAGCTATGACCTAAACTTCTGGATGTCCAAAAAATCA	1	Ivanova et al. 2007
VR1d_t1- M13REV	CAGGAAACAGCTATGACCTAGACTTCTGGGTGGCCRAARAAYCA	1	Ivanova et al. 2007
VR1_t1- M13REV	CAGGAAACAGCTATGACCTAGACTTCTGGGTGGCCAAAGAATCA	1	Ivanova et al. 2007
VR1i_t1- M13REV	CAGGAAACAGCTATGACCTAGACTTCTGGGTGICCIAAIAAICA	3	Ivanova et al. 2007
M13REV	CAGGAAACAGCTATGACC	NA	Beckman Coulter, Inc 2020
M13FWD	GTAAAACGACGGCCAGT	NA	Beckman Coulter, Inc 2020

Table 2.

Individuals sampled and barcoded in this study. Individuals with * represent boreal migrants. Bolded taxa represent inconsistencies between our identification methods (see text).

Cod e	Field ID	Bold ID	BOLD hit ¹ (%)	NCBI ID	NCBI hit ¹ (%)	Consensus sp BOLD ID	Seq length (bp)	BIN
LCA35	Automolus ochrolaemus	A. ochrolaemus	100	A. ochrolaemus	99.10	A. ochrolaemus	671	BOLD:ADM4531
LCA9	Cantorchilus leucotis	C. leucotis	100	C. leucotis	95.55	C. leucotis	690	BOLD:ABX4224
LCA12	Catharus minimus	C. minimus	100	C. minimus	100	C. minimus*	657	BOLD:AAA9441
LCA30	Catharus minimus	C. minimus	100	C. minimus*	100	C. minimus*	660	BOLD:AAA9441
LCA3	Catharus ustulatus	C. ustulatus	100	Catharus ustulatus	100	C. ustulatus*	702	BOLD:AAA9440
LCA26	Chaetura sp	C. brachyura	100	C. brachyura	100	C. brachyura	644	BOLD:AAK0488
LCA27	Chaetura sp	C. brachyura	100	C. brachyura	100	C. brachyura	642	BOLD:AAK0488
LCA28	Chaetura sp	C. brachyura	100	C. brachyura	100	C. brachyura	652	BOLD:AAK0488
LCA24	Coereba flaveola	C. flaveola	100	C. flaveola	100	C. flaveola	651	BOLD:AAA4006
LCA33	Dendrocincla fuliginosa	D. fuliginosa	99.85	D. fuliginosa	99.15	D. fuliginosa	673	BOLD:ABZ6107
LCA20	Elaenia flavogaster	E. flavogaster	99.85	E. flavogaster	98.93	E. flavogaster	681	BOLD:AAB3859
LCA6	Elaenia flavogaster	E. flavogaster	100	E. flavogaster	99.39	E. flavogaster	696	BOLD:AAB3859
LCA18	Galbula ruficauda	G. ruficauda	100	G. ruficauda	97.55	G. ruficauda	675	BOLD:ABX4491
LCA31	Manacus manacus	M. aurianticus	100	M. manacus	100	M. auranticus	667	BOLD:AAB9291
LCA36	Manacus manacus	M. aurianticus	100	M. manacus	100	M. aurianticus	663	BOLD:AAB9291
LCA38	Manacus manacus	M. aurianticus	100	M. manacus	100	M. aurianticus	667	BOLD:AAB9291
LCA4	Momotus subrufescens	M. momota	100	M. momota	96.92	M. momota	681	BOLD:ABX4186
LCA7	Momotus subrufescens	M. momota	100	M. momota	97.41	M. momota	657	BOLD:ABX4186
LCA21	Myiodinastes maculatus	M. luteiventris	100	M. luteiventris*	100	M. luteiventris*	651	BOLD:AAF5348

ARPHA Preprints Not peer-reviewed, not copy-edited manuscript posted on March 16, 2021. DOI: https://doi.org/10.3897/arphapreprints.e65983

LCA22	Myiozetetes cayanensis	M. cayanensis	99.85	M. cayanensis	98.77	M. cayanensis	660	BOLD:AAE6211
LCA13	Parkesia novevoracensis	P. novevoracensis	100	P. novevoracensis*	99.85	P. novevoracensis*	658	BOLD:AAB0401
LCA15	Ramphocellus dimidiatus	R. dimidiatus	100	R. carbo	99.39	R. dimidiatus	681	BOLD:AAD5047
LCA40	Ramphocellus dimidiatus	R. dimidiatus	100	R.carbo	99.23	R. dimidiatus	654	BOLD:AAD5047
LCA1	Sporophila funerea	S. funerea	100	S.ang ol ensis	98.92	S. funerea	687	BOLD:AAE5360
LCA19	Tolmomyias sulphurescens	T. sulphurescens	99.85	T. sulphurescens	97.89	T. sulphurescens	666	BOLD:ACI3658
LCA8	Xiphorhynchus susurrans	X. susurrans	99.54	X.guttatus	98.15	X. susurrans	670	BOLD:ACF1637

Supplementary material

Suppl. material 1: Suplementary Information

Authors: Pulgarin et al. Data type: DNA sequences, data Tables. Download file (31.54 kb)