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Abstract

Background

Here, we describe BIOVERA-Tree, a database on tree diversity, community composition,

forest  structure,  and  functional  traits  collected  in  120  forest  plots  distributed  along  an

extensive  elevational  gradient  in  Veracruz  State,  Mexico.  BIOVERA-Tree  includes

information on forest structure from three levels of forest-use intensity, namely old-growth,

degraded, and secondary forest, replicated across eight elevations from sea-level to near

the tree line at 3500 m and on size and location of 4549 tree individuals with a diameter at

breast height ≥  5 cm belonging to 216 species, 154 genera, and 80 families. We also

report  measurements  of  eight  functional  traits,  namely  wood  density  for  143 species,

maximum height for 216 species and leaf traits including: specific leaf area, lamina density,

leaf  thickness,  chlorophyll  content,  and  leaf  area  for  148 species  and  leaf  dry  matter

content for 145 species.

New information

BIOVERA-Tree is a new database comprising data collected in a rigorous sampling design

along forest-use intensity and elevational gradients, contributing to our understanding of

how interactive effects of forest-use intensity and elevation affect tree diversity, community

composition, and functional traits in tropical forests.
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Introduction

Mountains  are  fascinating  ecosystems  and  natural  laboratories  for  evolutionary and

ecological research as they encompass a wide variety of different climatic conditions over

short distances (Körner 2004, Malhi et al. 2010). Mountains have captivated and inspired

scientists since the seminal research by Alexander von Humboldt (von Humboldt 1806),

and  mountain  research  still  contributes  to  our  understanding  of  how  environmental

conditions affect plant distributions and how diversity may be impacted by global change

(McCain and Grytnes 2010, Körner 2004, Malhi et al. 2010,Morueta-Holme et al. 2016).

Mountains cover 25% of the Earth’s land surface and support an estimated one third of all

terrestrial species (Körner 2004). Tropical mountains account for 10% of the terrestrial land

area, and are reservoirs of species diversity and hotspots of endemism with the potential to

provide safe havens for species under current and predicted future anthropogenic global

warming  (Körner  2004,  Sundqvist  et  al.  2013,  Perrigo  et  al.  2020).  Finally,  tropical

mountain forests provide a plethora of important ecosystem functions, e.g. water storage

and yield, carbon storage, and pollination, that underpin ecosystem services and are a

basis for human well-being (Díaz et al. 2018). Yet increasing human population and land-

use  intensification  are  altering  forest  structure,  tree  species  diversity,  and  functional

diversity of tropical mountain forests around the world.

Land-use change and intensification are occurring at rapid rates and are strongly impacting

mountain  ecosystems  (Payne  et  al.  2017).  For  instance,  during  a  period  of  high

deforestation in Mexico between 1980-2010, the state of Veracruz experienced the second

highest rate of deforestation among all states, with 75% of its area being deforested (Ellis

et  al.  2011,  Secretaría  del  Medio  ambiente  y  recursos  naturales  2016).  Specifically

between  1990-2000,  Veracruz  lost  approximately  4.8%  of  its  natural  and  secondary

vegetation during this period, while only 8.6% of its vegetation remains conserved (Ellis et

al.  2011).  Afterwards,  however,  the region experienced a mild  recovery in  forest  cover

between 2000-2014 (Gómez-Díaz et  al.  2018).  Land-use change and intensification for

timber  extraction,  agriculture,  and  cattle  pastures  alter  tree  species  diversity  and

community  composition in  this  region (Monge‐González  et  al.  2020).  Further,  land-use

change is  not  only  a major  threat  to  species diversity,  but  also has consequences for

ecosystem functioning (Chapin et  al.  2000,  Newbold et  al.  2015,  Hooper  et  al.  2005).

Therefore, high-quality databases of tree diversity and ecosystem functions are essential to

understand the impacts of land-use change and elevation on tropical forests. Here, our

objective  is  to  contribute  to  the  knowledge  on  how  elevation  and  forest-use  intensity

interactively  affect  tropical  tree  diversity,  community  composition,  functional  traits,  and

forest structure.

General description

Purpose: BIOVERA-Tree originated from the interdisciplinary research project BIOVERA,

which aims at  documenting and understanding biodiversity  patterns  along gradients  of
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altitude, climate, soil, and disturbance along an elevational transect at the Cofre de Perote

in  central  Veracruz,  Mexico (Carvajal‐Hernández et  al.  2017,  Gómez-Díaz et  al.  2017,

Bautista-Bello  et  al.  2019,  Guzmán‐Jacob  et  al.  2020,  Monge‐González  et  al.  2020).

BIOVERA-Tree comprises forest plot data from eight elevational sites and three levels of

forest-use  intensity,  namely  old-growth,  degraded,  and  secondary  forests.  It  contains

descriptionsof  120 non-permanent  forests plots of  20 × 20 m and a community matrix

including abundances for 216 species. Further, it contains measurements for 216 species

including diameter at breast height (DBH) > 5 cm and tree height (meters) of 4548 and

4549 individuals, respectively. BIOVERA-Tree also includes functional traits, with data for

wood density of 143 species calculated based on 483 individuals, maximun height for 216

species calculated based on 4549 individuals, and leaf traits for 148 species, specific leaf

area  (n  =  3148 leaves),  lamina  density  (n  =  3194 leaves),  chlorophyll  content  (n  =

3280 leaves), leaf area (n = 3214 leaves), leaf thickness (n = 3299) and leaf dry matter

content for 145 species (n = 3081 leaves).

Project description

Study area description:  

The study area is located along an elevational gradient from sea level close to the Gulf of

Mexico to near the tree line at  3545 m on the eastern slopes of  the Cofre de Perote

volcano, in the central part of the state of Veracruz, Mexico (Fig. 1). This region is located

at  the  intersection  of  the  Trans-Mexican  volcanic  belt  and  the  Sierra  Madre  Oriental,

resulting in complex geological conditions, and is a transition zone where floristic elements

from the Neotropics and Nearctic mix. Veracruz (including the study area) is part of the

Mesoamerican  biodiversity  hotspot  (Myers  et  al.  2000).  The  state  harbors  a  diverse

vascular flora of approximately 8500 species, which represents about 36% of the Mexican

flora (Villaseñor 2016). The elevational gradient is characterized by a wide range of

different  environmental  conditions.  For  instance,  climate  varies  between  tropical-dry  at

lower  elevations,  to  temperate-humid at  mid-elevations and cold-dry  at  high elevations

(Soto-Esparza and Giddings-Berger 2011). The mean annual temperature ranges from 26

°C near sea level to 9 °C at the highest site. Mean annual precipitation varies between

1222 mm at low elevations, 2952 mm at mid-elevations, and 708 mm at high elevations

(Servicio Meteorológico Nacional  2019).  Six main vegetation types along this elevation

gradient are typically recognized, including tropical  semi-humid deciduous, tropical  oak,

humid montane, pine-oak, pine, and fir forests (Leopold 1950, Carvajal-Hernández et al.

2020). However, land-use change has altered these ecosystems into mostly degraded and

secondary forests. The forests in the lowlands (0, 500, and 1000 m) have been largely

replaced by agricultural systems, e.g. sugar cane, corn, mango, and lemon plantations,

and grasslands for cattle (Travieso-Bello et al. 2006, Thiébaut et al. 2017), while the forests

at mid-elevations (1500, 2000, and 2500 m) have been transformed by illegal logging for

charcoal production and firewood and converted into cattle pastures, coffee plantations,

and agricultural fields (Cruz-Angón et al. 2010), and the forests in the highlands (3000 and

3500 m) have been altered by timber extraction, agricultural fields for potatoes and broad
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beans, as well  as pastures for  goats and sheep (Pineda-López et  al.  2013).  Land-use

modifications at every elevational site change with the primary economic activities.

Sampling methods

Sampling description: We selected eight sites along the elevational gradient, separated

by about 500 m in elevation (Fig. 1). At each site, we established 15 plots of 20 × 20 m,

with five plots located in old-growth, degraded, and secondary forests, respectively, (Suppl.

material 1). This study design led to a total of 120 non-permanent forest plots (120 × 0.04

ha = 4.8 ha) inventoried along the elevation gradient.

Old-growth  forests  were  defined  as  mature  forests  with  low  forest-use  intensity  and

showed no signs of recent human use. Degraded forests were classified as intermediate

forest-use intensity which had been subjected to selective logging, and grazing by cattle or

goats  at  high  elevations.  Finally,  secondary  forests  were  defined  as  high  forest-use

intensity, having regenerated following clearcutting 15-20 years prior or with cattle grazing

(Gómez-Díaz et al. 2017). In each plot, we inventoried all trees with a DBH > 5 cm and

identified individual trees to the highest taxonomic resolution possible. For each individual

we measured its DBH (in cm) and tree height (in m), which was measured with a Leica

laser (Homeier et al. 2010, Monge‐González et al. 2020). We calculated maximum tree

height  for  each species following King et  al.  (2006) and classified the trees into three

groups: 1) species with more than 20 individuals, 2) species with between 5-19 individuals,

and 3) species with less than five individuals. For the first group, we calculated maximum

tree height as the mean of the tallest three individuals. For the second group, we estimated

maximum tree height as the mean of the tallest two individuals; and for the third group, we

used the height of the tallest individual (King et al. 2006).

In addition, we measured the following functional traits: maximum height, wood density,

specific leaf area, leaf dry matter content, lamina density, leaf thickness, chlorophyll

content, and leaf area (Table 1). We selected these traits because they are expected to

respond to both elevation and forest-use intensity (Díaz et al.  2016).  For instance, the

abundance of species with slow growth and conservative resource acquisition is expected

to decrease, while that of species with fast growth and acquisition rates should increase

with forest-use intensity (Table 1) (Lavorel and Garnier 2002, Díaz et al. 2016). For trait

measurements, we selected one to three tree individuals per species and collected at least

five  to  ten  leaves  per  individual,  and  one to  three  wood cores  per  species  along  the

gradients of elevation and forest-use intensity.

For wood density,  we collected wood samples using an increment borer.  We used the

water-displacement method for measuring wood sample volume and oven-dried samples

at 70 °C for 48 to 72 hours until they reached a constant dry weight (Chave 2005). We

determined maximum height for each species following King et al. (2006). For leaf traits,

we followed standardized trait measurement protocols (Pérez-Harguindeguy et al. 2016).

We weighed the fresh leaves and then oven dried them at 60 °C for 48 hours, or until they

had reached a constant dry weight. We measured leaf thickness with a digital caliper. For
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chlorophyll concentration, we used a SPAD-502 chlorophyll meter (Spectrum Technologies,

Plainfield,  IL,  USA) and converted measurements to chlorophyll  concentration following

(Coste et al. 2010). We calculated leaf area using WinFOLIA (Version 2016b Pro, Regent

Instruments Canada, 2016). In total, we collected wood samples for 143 species and leaf

samples for 148 species, except leaf dry matter content for which we have samples for 145

species. We followed the definition and categories according to Darwin Core, Functional

Diversity thesaurus (Suppl. material 6).

Geographic coverage

Description: The BIOVERA elevational gradient is located close to the Gulf of Mexico and

spans from close to sea level (19.5894 N, -96.375167 W) to close to the treeline at 3545 m

elevation (19.5182 N, -97.154525 W) along the eastern slopes of Cofre de Perote volcano

(4282 m) in Veracruz State, Mexico (Fig. 1).

Coordinates: ; .

Taxonomic coverage

Description: Taxonomic  information  on  valid  species,  genus,  and  family  names  was

obtained from The Plant List version 1.1 (2013). Individuals were identified to the species

level by specialists (Dr. Francisco Lorea-Hernández, M.Sc. Claudia Gallardo-Hernández,

and Biol. Carlos M. Durán-Espinosa, Instituto de Ecología, A. C.), while some individuals

could only be identified to the family or genus level, or could not be identified. Vouchers of

specimens were deposited at the herbarium XAL of Instituto de Ecología, A.C. at Xalapa,

Mexico.

Tree diversity and community composition 

The  database  contains  information  of  216 tree  species  (Suppl.  material  2)  distributed

among 80 families and 154 genera and tree abundances across plots along the forest-use

intensity  and elevation gradients  (Suppl.  material  3, Suppl.  material  4).  The number  of

species per plot ranged from 1 to 18, with a mean 8.1 species (Table 2).

The number of individuals per plot ranged from 4 to 120 with a mean of 8.19 individuals

(Table 2). Species-abundance distributions across levels of forest-use intensity indicated a

higher proportion of rare species in old-growth and degraded forests than in secondary

forests (Fig. 2A). Species-abundance distributions across elevations revealed that forests

at  high elevations (3000-3500 m)  are  dominated by a  small  number  of  species,  while

forests at low elevations (0-1000 m) and mid-elevations (1500-2000 m) exhibited higher

evenness (Fig. 2B).

Forest structure 
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Across all plots, DBH ranged from 5 to 148 cm, with a mean of 14 ± 15.5 SD (Fig. 3). DBH

mean per forest-use intensity varied from 20.84 ± 17.6 SD in old-growth forests, 19.3 ±

15.2 SD in degraded forests, and 17.4 ± 13.3 SD in secondary forests. The four species

with the highest mean DBH were Pseudobombax ellipticum, Salix humboldtiana, Diphysa

robinioides, and Pachira aquatica.

Traits coverage

Tree functional traits 

This dataset contains eight functional traits (Table 1, Fig. 4). The number of species per

functional trait varies, from 216 species for maximum height, to 143 for wood density, and

143- 148 species for leaf traits.

Usage licence

Usage licence:  Creative Commons Public Domain Waiver (CC-Zero)

Data resources

Data package title:  Data package title BIOVERA-Tree: community, functional traits, and

forest structure along forest-use intensity and elevational gradients in Veracruz, Mexico.

Number of data sets:  6

Data set name: BIOVERA-Tree forest plots description

Description: Location of the 120 plots along the elevational gradient at the eastern

slopes of Cofre de Perote in Veracruz, Mexico. Available as Suppl. material 1.

Column label Column description

locationID An identifier for the set of location information (data associated with

dcterms:Location). May be a global unique identifier or an identifier specific to the

data set.

roundElevation round meters above sea level

verbatimElevation The original description of the elevation (altitude, usually above sea level) of the

Location.

habitat A category or description of the habitat in which the Event occurred.

forestUseIntensity Old growth forest (OF) a mature forest with low forest-use intensity, degraded

forest (DF) classified as intermediate forest-use intensity, and secondary forest

(SF) high forest-use intensity
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verbatimLatitude The verbatim original latitude of the Location. The coordinate ellipsoid,

geodeticDatum, or full Spatial Reference System (SRS) for these coordinates

should be stored in verbatimSRS and the coordinate system should be stored in

verbatimCoordinateSystem.

verbatimLongitude The verbatim original longitude of the Location. The coordinate ellipsoid,

geodeticDatum, or full Spatial Reference System (SRS) for these coordinates

should be stored in verbatimSRS and the coordinate system should be stored in

verbatimCoordinateSystem.

temperature Mean annual temperature (in degrees Celsius)

precipitation Mean annual precipitation (in milimeters)

country The name of the country or major administrative unit in which the Location occurs.

eventDate The date or interval during which an Event occurred. For occurrences, this is the

date when the event was recorded.

coordinateUncertaintyInMeters The horizontal distance (in meters) from the given decimalLatitude and

decimalLongitude describing the smallest circle containing the whole of the

Location.

geodeticDatum The ellipsoid, geodetic datum, or spatial reference system (SRS) upon which the

geographic coordinates given in decimalLatitude and decimalLongitude are based.

Here: WGS84

Data set name: BIOVERA-Tree scientific name

Description: List of tree species along the elevational gradient and different levels of

forest-use intensity. Available as Suppl. material 2.

Column label Column description

treeIdentificationID An identifier for the nomenclatural (not taxonomic) details of a scientific name.

treeIdentification The full scientific name, with authorship and date information if known. When forming part of

an Identification, this should be the name in lowest level taxonomic rank that can be

determined.

family The full scientific name of the family in which the taxon is classified

Data set name: BIOVERA-Tree community matrix

Description: Tree  community  matrix  composition  along  eight  elevational  sites  and

three different forest-use intensity levels of 216 tree species (n = 5 plots per forest-use

intensity within elevation). The numbers within the matrix are the number of individuals.

Available as Suppl. material 3.

Column label Column description
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locationID Forest plot identifier from supplementary table 1 (rows)

treeIdentificationID Scientific name identifier from supplementary table 1 (columns)

Data set name: BIOVERA-Tree forest structure

Description: Diameter  at  breast  height  (DBH)  > 5  cm and tree  height  (meters)  for

216 species  along  the  elevational  gradient,  and  different  levels  of  forest-use

intensity. Available as Suppl. material 4.

Column label Column description

locationID An identifier for the set of location information (data associated with dcterms:Location). May be

a global unique identifier or an identifier specific to the data set.

treeIdentificationID An identifier for the nomenclatural (not taxonomic) details of a scientific name.

organismID An identifier for the Organism instance (as opposed to a particular digital record of the

Organism). May be a globally unique identifier or an identifier specific to the data set.

variableName name of the variable 

variableValue value

Data set name: BIOVERA-Tree functional traits

Description: Plant  functional  traits  measured  along  the  elevational  gradient  and

different levels of forest-use intensity; including leaf traits, wood density, and maximum

height. Available as Suppl. material 5 .

Column label Column description

treeIdentificationID An identifier for the nomenclatural (not taxonomic) details of a scientific name.

organismID An identifier for the Organism instance (as opposed to a particular digital record of the

Organism). May be a globally unique identifier or an identifier specific to the data set.

leafID An identifier for leaf 

heightGroup it is the classification of trees into three groups: 1) species with more than 20 individuals, 2)

species with between 5-19 individuals, and 3) species with less than five individuals.

resolution scale 

traitName functional trait

traitValue functional trait value

Data set name: BIOVERA Tree metadata

Character set: metadata
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Description: Definition  and  categories  according  with  Darwin  Core,  Functional

Diversity thesaurus and this research.

Column label Column description

According Type of terminological resource for plant characteristics. 

Concept term, name of the variable

Definition Explanation of  concepts and variables
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Figure 1. 

Location of the eight study sites along the elevational gradient at the eastern slopes of Cofre

de Perote in Veracruz, Mexico. Black dots show the location of sites along the elevational

gradient 1) 0 m; 2) 500 m; 3) 1000 m; 4) 1500 m; 5) 2000 m; 6) 2500 m; 7) 3000 m; 8) 3500

m.
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Figure 2. 

Species-abundance distributions (n = 120 plots)  using an empirical  cumulative distribution

function A for different levels of forest-use intensity and B for eight sites along the elevation

gradient. Vertical axis shows each species from most to least abundant. Horizontal axis shows

the relative abundance of the species on a logarithm scale. Forest-use intensity levels are old-

growth forest (OF), degraded forest (DF), and secondary forest (SF).
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Figure 3. 

Diameter  at  breast  height  (DBH;  n  = 4127 individuals)  for  A different  levels  of  forest-use

intensity and for B eight sites along the elevation gradient. Vertical axis shows tree diameter at

breast height (DBH) on a logarithm scale. Forest-use intensity levels are old-growth forest

(OF), degraded forest (DF), and secondary forest (SF). Boxes are second and third quartile,

whiskers upper and lower quartile and horizontal lines indicate mean values.
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Figure 4. 

Distribution of eight functional traits along elevation and forest-use intensity gradients in the

BIOVERA-Tree.  Points represent  leaf-level  data for  specific  leaf  area (n = 3148),  leaf  dry

matter content (n = 3081), lamina density (n= 3194), leaf area (n = 3214), leaf thickness (n =

3299), and chlorophyll content (n = 3280); individual-level data for wood density (n = 483); and

species-level  data  for  maximum  height  (n  =  216).  Boxes  are  second  and  third  quartile,

whiskers upper and lower quartile and horizontal lines indicate mean values.
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Ecological relevance Functional Trait Unit Measured

individuals 

Number of

species 

Seed dispersion, competitive ability Maximum height m 4549 216

Structure and mechanical support Wood density g cm- 483 143

Leaf energy and water balance, physical

strength

Specific leaf area m kg 3148 148

Leaf dry matter

content

g g 3081 145

Leaf thickness mm 3299 148

Lamina density g cm 3194 148

Photosynthesis Leaf area cm 3214 148

Chlorophyll content μg cm 3280 148

Individual used to calculate mean species values reported as maximum height.

† 

3

2 -1

-1

-3

2

−

2

†

Table 1. 

Number of individuals and species with measurements of eight functional traits.
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Elevation (m) Species 

(mean ± SD)

Individuals 

(mean ± SD)

0 6.8 ± 4.16 17.46 ± 8.68

500 11.06 ± 3.63 36.4 ± 11.91

1000 13.33 ± 2.22 35.4 ± 12.7

1500 9.6 ± 4.56 44.73 ± 15.9

2000 13.13 ± 2.94 44.13 ± 10.4

2500  6.8 ± 2.99 42.20 ± 13.2

3000  3.06 ± 0.96 28.93 ± 10.5

3500  1.66 ± 0.72 51.4 ± 30.81

Table 2. 

Mean tree species and individual numbers per plot.
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Supplementary materials

Suppl. material 1: BIOVERA-Tree forest plots description

Authors:  María  Leticia  Monge-González,  Patrick  Weigelt,  Nathaly  Guerrero-Ramírez,  Dylan

Craven, Gonzalo Castillo-Campos, Thorsten Krömer, Holger Kreft.

Data type:  Location Data

Download file (11.50 kb) 

Suppl. material 2: BIOVERA-Tree scientific name

Authors:  María  Leticia  Monge-González,  Patrick  Weigelt,  Nathaly  Guerrero-Ramírez,  Dylan

Craven, Gonzalo Castillo-Campos, Thorsten Krömer, Holger Kreft.

Data type:  Taxonomy

Download file (9.06 kb) 

Suppl. material 3: BIOVERA-Tree community matrix

Authors:  María  Leticia  Monge-González,  Patrick  Weigelt,  Nathaly  Guerrero-Ramírez,  Dylan

Craven, Gonzalo Castillo-Campos, Thorsten Krömer, Holger Kreft.

Data type:  Species community data

Brief description:  Tree community matrix with abundances

Download file (52.50 kb) 

Suppl. material 4: BIOVERA-Tree forest structure

Authors:  María  Leticia  Monge-González,  Patrick  Weigelt,  Nathaly  Guerrero-Ramírez,  Dylan

Craven, Gonzalo Castillo-Campos, Thorsten Krömer, Holger Kreft.

Data type:  Forest structure, DBH, tree height

Download file (306.33 kb) 

Suppl. material 5: BIOVERA-Tree functional traits

Authors:  María  Leticia  Monge-González,  Patrick  Weigelt,  Nathaly  Guerrero-Ramírez,  Dylan

Craven, Gonzalo Castillo-Campos, Thorsten Krömer, Holger Kreft.

Data type:  Functional trait data

Download file (736.19 kb) 

Suppl. material 6: BIOVERA-Tree metadata

Authors:  María  Leticia  Monge-González,  Patrick  Weigelt,  Nathaly  Guerrero-Ramírez,  Dylan

Craven, Gonzalo Castillo-Campos, Thorsten Krömer, Holger Kreft.

Data type:  metadata

Brief description:  Definition and categories according with Darwin Core, Functional Diversity

thesaurus and this research.

Download file (3.38 kb) 
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