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Abstract 11 

Crossing structures for large wildlife are increasingly being constructed at major roads and 12 

railways in many countries, and current guidelines for wildlife mitigation at linear 13 

infrastructures tend to advocate for large crossing structures sited at major movement 14 

corridors for the target species. The concept of movement corridors has however been 15 

challenged, and pinching animal movements into bottlenecks entail risks. In this paper, I 16 

address the SLOSS dilemma of road ecology, i.e., the discussion whether a Single Large Or 17 

Several Small crossing structures along a linear barrier would produce the most benefit for 18 

wildlife. I point out risks, ecological as well as practical, with investing in one large crossing 19 

structure, and list a number of situations where it may be more beneficial to distribute the 20 

conservation efforts in the landscape by constructing several smaller crossing structures; for 21 

example when the ecological knowledge is insufficient, when animal interactions are 22 

expected to be significant, when the landscape changes over time, or when future human 23 

development cannot be controlled. I argue that such situations are often what infrastructure 24 

planning faces, and that the default strategy therefore should be to distribute rather than to 25 

concentrate passage opportunities along major transport infrastructures. I suggest that 26 

distributing passage opportunities over several smaller crossing structures would convey a 27 

risk diversification, and that this strategy could facilitate the planning of wildlife mitigation. 28 

What to choose would however depend on, i.a., landscape composition and ecology, and on 29 

relationships among target species. A single large should be selected where it is likely that it 30 

can serve a large proportion of target animals, and where the long-term functionality of the 31 

crossing structure can be guaranteed. I illustrate how species and regional differences may 32 

influence the choice, using the case of ungulates in Sweden. New research is needed to 33 
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support trade-offs between size and number of crossing structures. Cost-effectiveness 34 

analyses of wildlife crossing structures are currently rare and need to be further explored. 35 

Camera trapping and video surveillance of crossing structures provide opportunities to 36 

analyze details concerning, for example, any individual biases according to sex, age, status 37 

and grouping, and any antagonism between species and individuals. Wildlife ecology research 38 

need to better address questions posed by road and railway planning regarding the importance 39 

of specific movement routes and movement distances.  40 

 41 

Key words: wildlife crossing structures, mitigation planning, Sweden, SLOSS 42 
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Introduction 44 

 45 

Crossing structures for wildlife 46 

 47 

One of the most significant ecological impacts of roads and railways are their barrier effects 48 

for terrestrial wildlife (Forman and Alexander 1998; O´Brien 2006; Beckman and Hilty 2010; 49 

Barrientos and Borda-de-Água 2017). By obstructing movements and thereby restricting the 50 

access to resources and the opportunities for migration and dispersal, linear infrastructures 51 

may inhibit the individual fitness and genetic diversity of wildlife, and negatively impact 52 

population demography and conservation status. After the emergence and growth of the 53 

applied scientific field of road ecology in the last decades (e.g., Forman et al. 2003; van der 54 

Ree et al. 2015), the barrier effects for large wildlife such as ungulates and large carnivores 55 

are now well recognized in countries worldwide (Clevenger and Huijser 2011; Wingard et al. 56 

2014; Georgiadis et al. 2015, 2018; Collinson and Patterson-Abrolat 2016; van der Grift et al. 57 

2018; Hlaváč et al. 2019). Accordingly, transport agencies increasingly construct adapted 58 

culverts, tunnels and vegetated bridges to provide wildlife with safe opportunities to cross 59 

major roads and railways (Iuell et al. 2003; Clevenger and Ford 2010; Rijkswaterstaat 2011; 60 

Smith et al. 2015).  61 

 62 

Monitoring of over- and underpasses for large wildlife has provided frequent proof that they 63 

are used by a variety of species (van der Ree et al. 2007; Smith et al. 2015). In general terms, 64 

larger (wider, higher) constructions are used by larger species, by a broader array of taxa, and 65 

by a larger proportion of target populations (Rodriguez et al. 1996; Clevenger and Waltho 66 

2000; Bhardwaj et al. 2020), although other aspects of their design may affect the frequency 67 

of use, such as human disturbances, occurrence of vegetation and cover, and siting in relation 68 

to preferred habitats (Clevenger and Waltho 2000, 2005; Ascensão and Mira 2007; Glista et 69 

al. 2009; van der Ree and van der Grift 2015; Andis et al. 2017). 70 

 71 

Despite having recognized both the problem with barrier effects and its potential solution, in 72 

infrastructure planning practice many transport agencies still seem to consider crossing 73 

structures for wildlife to entail external or unexpected costs. Accordingly, such constructions 74 

have to be argued for on a case-by-case basis, and often end up being rather few. In response, 75 

environmental planners tend to advocate for as large wildlife crossing structures as possible, 76 

and put much effort into finding the ideal locations for those crucial constructions. This 77 
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situation is reflected not least in current European guidelines for mitigation of barrier effects 78 

at transport infrastructures; many of these have their focus on methods to identify major 79 

wildlife corridors, and state ideal rather than optimal dimensions of crossing structures (Iuell 80 

et al. 2003; Alterra 2008; Jędrzejewski et al. 2009; Nowak et al. 2010; Vejdirektoratet 2011; 81 

Statens Vegvesen 2014; Ciabo et al. 2015; Reck et al. 2018; Hlaváč et al. 2019).  82 

 83 

Size vs. number of crossing structures 84 

 85 

While crossing structures may be necessary measures to safeguard the connectivity for 86 

wildlife across large linear infrastructures, they inevitably create bottlenecks for animal 87 

movements, irrespective of location and size. Funneling animals from larger areas into 88 

movement bottlenecks may have a number of ecological disadvantages, for example increased 89 

predation (Little et al. 2002; Mata et al. 2015) or exaggerated social interactions between 90 

animals. Moreover the concept of natural movement corridors has been criticized for lacking 91 

solid theoretical and empirical foundation (Simberloff et al. 1992), and that its frequent 92 

application in land use planning satisfies political and economic interests rather than 93 

ecological requirements (Van Der Windt and Swart 2008; Shilling 2020). For large terrestrial 94 

wildlife, well-defined, predictable migratory paths do occur in some populations (Andersen 95 

1991; Berger et al. 2006), but seem to be the exception rather than the rule to how animals 96 

move between areas. 97 

 98 

The size is one of the most cost driving factors for crossing structures, and in the 99 

infrastructure planning reality the cost-effectiveness of measures have to be considered. 100 

Wildlife crossing structures, from culverts to viaducts and green bridges, may range in 101 

investment cost by orders of magnitude (Sijtsma et al. 2020), and considerable savings can be 102 

made if the optimal trade-off is found between number and size of crossing structures with the 103 

aim of reaching the maximum infrastructure permeability for wildlife. While some guidelines 104 

for wildlife measures at transport infrastructures do acknowledge that a large number of 105 

narrow wildlife crossings may be more effective than a single, wide one (Iuell et al. 2003; 106 

Jakobi and Adelsköld 2011; Reck et al. 2018), the required cost-benefit analyses are rarely 107 

conducted (Sijtsma et al. 2020).  108 

 109 

The question of size vs. number of wildlife crossing structures is analogous with that of the 110 

so-called SLOSS dilemma in conservation, i.e., the question whether a Single Large Or 111 
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Several Small protected areas would be more effective for species conservation (Diamond 112 

1975; Simberloff and Abele 1976). That question remains a dilemma as it has no universal 113 

answer; the best strategy depends on, i.a., to what extent the smaller areas share species, on 114 

the environmental variability in and among areas, and on the distance between areas 115 

(Simberloff and Abele 1976; Akcakaya and Ginzburg 1991; Ovaskainen 2002). The SLOSS 116 

dilemma of road ecology – the trade-off between single large or several small crossing 117 

structures (Karlson et al. 2017) – is likely to share many characteristics with that of protected 118 

area designation. 119 

 120 

The issue of SLOSS wildlife crossing structures has previously been addressed by Karlson et 121 

al. (2017), using a theoretical approach comparing outcome in model landscapes with 122 

different level of habitat contrast and aggregation. They concluded that in homogenous (low-123 

contrast, low-aggregation) landscapes, a number of smaller crossing structures are better than 124 

one large, given that each still meets minimum ecological design criteria. This conclusion 125 

derived simply from geometry; with passage opportunities evenly distributed along an 126 

infrastructure, the distance to a crossing structure from an average point in the landscape will 127 

be shorter. In heterogeneous landscapes on the other hand, the outcome will depend on the 128 

habitat quality in and around the crossing structures; fewer animals would cross through a 129 

structure located in low quality habitat. Accordingly, in heterogeneous landscapes, more care 130 

must be taken to the location of crossing structures in relation to the habitat requirements of 131 

target species. 132 

 133 

Aim of the paper 134 

 135 

In this paper, I develop the SLOSS dilemma of road ecology using ecological and pragmatical 136 

arguments, and list a number of situations where it may be more beneficial to distribute the 137 

conservation efforts in the landscape by constructing several small crossing structures rather 138 

than one or few large. For the sake of tangibility, I focus on Scandinavian ungulates (moose 139 

Alces alces, red deer Cervus elaphus, fallow deer Dama dama, roe deer Capreolus capreolus, 140 

wildboar Sus scrofa) and large carnivores (primarily wolf Canis lupus, bear Ursus arctos, 141 

lynx Lynx lynx). I believe, however, that the situation described is not unique but may be 142 

applicable to other taxa and geographical regions. I conclude by suggesting how the SLOSS 143 

discussion could inform the planning of wildlife mitigation at linear infrastructures, and by 144 

proposing some directions for future research in the field.   145 
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 146 

Where and when may several small crossing structures be better than a single large? 147 

 148 

1. In relatively intact or homogenous landscapes where animal movements are dispersed  149 

In Sweden, natural or semi-natural habitats such as forest, wetland or mountain make up some 150 

80% of the land area (Gerell et al. 1996). Populations of many large mammal species are 151 

currently relatively strong and range over large parts of the country (Bergström and Danell 152 

2008; Liberg et al. 2010; Chapron et al. 2014). While most large mammals do show some 153 

preferences for forested areas, they also use agricultural land and built-up areas, particularly 154 

in nighttime when the human disturbance is low (Winsa 2008; Godvik et al. 2009; Milleret et 155 

al. 2018; Fattebert et al. 2019; Richter et al. 2020), or during seasons with available crop 156 

(Thurfjell et al. 2009; Olsson et al. 2011). In effect, these species tend to occur in most 157 

habitats and most landscapes, and their movements are less likely to be strongly funneled to 158 

specific habitat corridors or confined to certain areas.  159 

 160 

2. In situations where the animal movement routes are expected to gradually change over 161 

time due to landscape changes 162 

Boreal ungulates may show preferences for certain stand types in the managed boreal forest, 163 

e.g., clear-cuts, young or dense forest stands, and linear landscape elements such as riparian 164 

areas and edge zones (Winsa 2008; Thurfjell et al. 2009; Bjørneraas et al. 2011). Most of their 165 

movements, circadian as well as seasonal, are expected to occur in and along preferred 166 

habitats (Lindberg 2013; Allen et al. 2014; Bartzke et al. 2015). While these types of habitats 167 

may be stable in the perspective of a few years, they are likely to change over decades, i.e., 168 

within the expected life span of a bridge or culvert, due to forest growth or management 169 

activities. Also in less intensively managed landscapes, habitats are expected to undergo 170 

changes due to natural disturbances or succession, with potential change in animal movement 171 

patterns over time as a result. Future scenarios of climate change may further amplify changes 172 

of spatial distribution of habitats, and accordingly animal movement patterns.  173 

 174 

3. In areas where future human development cannot be controlled, and natural habitats 175 

surrounding crossing structures may suddenly deteriorate 176 

Animal movements may also change due to sudden human influences in the surrounding 177 

landscape. For example, new housing, mining or industry and increased outdoor recreation 178 

adjacent to crossing structures can impede their function for wildlife (Clevenger and Waltho 179 
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2000). While such developments should be addressed in landscape level physical plans and 180 

strategic impact assessment (Clevenger and Ford 2010), not all can be foreseen during the 181 

planning stage of fauna mitigation schemes. Moreover, transport agencies have limited 182 

authority over the land use outside the road or railway right-of-way, so the long-term 183 

functionality of a wildlife crossing structure depends on the compliance of surrounding 184 

landowners and land users.  185 

 186 

4. In situations where animal movement habits simply are not known 187 

Extensive site-specific empirical data on wildlife movements are typically difficult and 188 

expensive to access and are therefore in short supply (Clevenger and Ford 2010). 189 

Identification of movement corridors in the planning practice often have to rely on the 190 

distribution of natural or wildlife habitat, wildlife accident data or expert opinion (van der 191 

Grift and Pouwels 2006; Alterra 2008; Jedrzejewski et al. 2009; Clevenger and Ford 2010; 192 

Reck et al. 2018; Hlaváč et al. 2019; in Sweden e.g. Olsson et al. 2019). However, such 193 

indirect approaches have their flaws (Clevenger and Ford 2010; Helldin and Souropetsis 194 

2017; Sjölund et al. 2020), and accordingly the true distribution of animal movement are often 195 

obscure.  196 

 197 

5. When wildlife mitigation targets multiple species with different habitat choices, and no 198 

ideal site can be appointed 199 

At some occasions, one single species is identified as the target for a mitigation scheme and 200 

the siting of a crossing structure could then be fine-tuned in relation to the habitat choice and 201 

movement patterns of that particular species. More common, however, is that wildlife 202 

crossing structures are intended to serve an entire group of species, for example ungulates or 203 

large mammals (Iuell et al. 2003; Trafikverket 2019), each having its own habits and habitat 204 

requirements. While it may be possible to identify some common patterns, such as a tendency 205 

for large mammals to dwell in larger forest tracts or other areas with less human disturbance, 206 

no ideal site for a single crossing structure can be appointed.  207 

 208 

6. When target species are territorial or competitors, and there is a risk that some individuals 209 

or species monopolize the area in and around the crossing structure 210 

Some large mammal species are territorial (in Scandinavia, e.g., roe deer and large carnivores; 211 

Linnell and Andersson 1998; Mattisson et al. 2011), and may therefore expel other individuals 212 

of the same species and gender from a crossing structure. Similarly, interspecific competition 213 
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occur frequently among ungulates (Putman 1996; Latham et al. 1997; Feretti 2011; Pfeffer 214 

2021; La Morgia et al. in review) and among carnivores (Mattisson et al. 2011), which may 215 

also lead to a dominant species effectively expelling subdominants. Although such an 216 

“ecological plug” is probably only partial, it could inhibit the movement of subdominant 217 

individuals or species through a crossing structure.  218 

 219 

7. When target species are sensitive to hunting, poaching or predation; enemies (human or 220 

natural predators) may ambush at sites where movements of prey are pinched 221 

Game and prey species, such as ungulates, may adapt their spatial distribution, habitat choice 222 

and activity patterns to the risk of being hunted or predated (Cromsigt et al. 2013; Lone et al. 223 

2014, 2015; Zbyryt et al. 2018). Similarly, hunting and poaching are main causes of mortality 224 

for large carnivores in Scandinavia (Andrén et al. 2006; Liberg et al. 2012), and consequently 225 

these species avoid human interaction (Ordíz et al. 2011; Carricondo-Sanchez et al. 2020). 226 

Hunting in the direct vicinity of over- or underpasses occurs in Sweden (own observations), 227 

but how frequent this happens is not known. Incidents of natural predation on ungulates near 228 

wildlife crossing structures have been reported but appear to be rare (Little et al. 2002; 229 

Plaschke et al. 2021). Yet only the presence of ambushing predators or hunters in the area 230 

may temporarily inhibit the structure´s effectiveness for target species (Mata et al. 2015).  231 

 232 

Implications for the planning of wildlife mitigation 233 

 234 

The situations described in the previous section are often what infrastructure planning faces. 235 

Site-specific knowledge of animal movement patterns tends to be sparse, and in many biomes 236 

it is likely that movement routes will change over time due to natural landscape dynamics or 237 

anthropogenic impacts. With mitigation schemes targeted to multiple wildlife species it will 238 

be difficult to find the perfect site for a crossing structure, and target species are likely to 239 

interact at the site. In these cases, the connectivity delivered by each individual crossing 240 

structure cannot be guaranteed, and distributing investment over several structures would 241 

convey a risk diversification. Moreover, this is not only an economical or practical 242 

consideration; transport agencies should aim at allowing dispersed or flexible animal 243 

movements wherever they occur, and avoid the ecological predicaments that pinched animal 244 

movements may entail.  245 

 246 
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Following this line of argument, and with support from the results from the modelling 247 

approach adopted by Karlson et al. (2017), the default strategy for transport agencies should 248 

be to construct several small crossing structures rather than concentrating the passage 249 

opportunities along major transport infrastructures to a single large structure. What to choose 250 

should however depend on the context, for example the degree of habitat heterogeneity 251 

(aggregation and contrast), habitat predictability, the dimension requirements of target 252 

species, and the spatial overlap between species (Mata et al. 2005; Karlson et al. 2017). Single 253 

large may be selected at sites where it is likely that the crossing structure can serve a large 254 

proportion of target animals (species and individuals), for example where animal movements 255 

follow distinct routes, and where target species have a large overlap in habitat requirements 256 

and little social or trophic interference. However, going for single large should require that the 257 

long-term functionality of the crossing structure could be guaranteed, for example in areas 258 

that are legally protected or when solid agreements can be made with adjacent land-users to 259 

protect the crossing structure and its surroundings from significant impacts. There may be 260 

situations where an intermediate or mixed (single large combined with several small) 261 

approach may be the best choice.  262 

 263 

A planning strategy aiming at several smaller crossing structures rather than a single large 264 

could facilitate the planning of wildlife mitigation in a few ways. It may not be necessary to 265 

put as much effort into finding the best siting or design of each crossing structure, which may 266 

save both time and costs at early planning stages. Instead crossing structures may have a 267 

standard design and be spaced out on pre-defined intervals along the infrastructure, or where 268 

the ground conditions (topography and soil) are ideal from a technical perspective. Non-269 

wildlife bridges or culverts used by wildlife may also be included in the wildlife mitigation 270 

plan. While the goal of wildlife mitigation plans should not be to save money but to minimize 271 

wildlife–traffic conflicts, the SLOSS issue will unfold the question how to get the most out of 272 

available investments or how to reach conservation goals with a minimum of cost, and it may 273 

therefore help the matter by redirecting the focus in planning from costs to savings.  274 

 275 

Planning for ungulate crossing structures in Sweden – a case 276 

 277 

The Swedish Transport Administration (STA), the responsible manager for the public road 278 

and railway network in Sweden, currently works along a strategy for landscape connectivity 279 

for large wildlife that partly take a SLOSS approach, though not expressly so. According to 280 
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the national ecological standards (Trafikverket 2019) safe passageways for large mammals 281 

(ungulates and large carnivores) should be provided at a maximum distance of 6 km along all 282 

major roads and railways; a requirement based on the assumption that large mammal 283 

movements are ubiquitous and dispersed, or at least ought to be so. Via supporting documents 284 

(Seiler et al. 2015 and references therein), the standards points out moose and roe deer as 285 

focal species (sensu Lambeck 1997); moose in particular because it is supposedly one of the 286 

most demanding large mammal species in Sweden when it comes to crossing structure design, 287 

and one of the most problematic when it comes to wildlife-vehicle accidents and barrier 288 

effects. 289 

 290 

The standards describes a range of larger to smaller crossing structures as suitable for moose 291 

and roe deer (Seiler et al. 2015; Trafikverket 2021), and it also takes into account the 292 

predicted wildlife connectivity provided by bridges constructed for other purposes, e.g. water 293 

courses, trails and low-traffic roads (Seiler et al. 2015). Accordingly, the standards provides a 294 

framework allowing, but not requiring, that trade-offs are made between functionality and 295 

number of crossing structures.  296 

 297 

Moose in Scandinavia are partly migratory; northwards from roughly 60°N, individuals 298 

within local moose populations conduct seasonal migrations, basically leaving upland 299 

pastures in winter to escape deep snow, starvation and predation (Sweanor and Sandegren 300 

1988; Singh et al. 2012). Both the proportion of individuals migrating and the migration 301 

distance increase with latitude. Archaeological records indicate that moose have undertaken 302 

these migrations in the Scandinavian mountain range for thousands of years (Andersen 1991). 303 

Studies of present-day moose populations have shown that migration routes largely follow 304 

river valleys and other topographic landscape elements, and may be maintained between 305 

moose generations (Sweanor and Sandegren 1988; Lindberg 2013). While less well described 306 

in the scientific literature, also other northern ungulates in Scandinavia may conduct seasonal, 307 

directional movements along routes that are relatively stable over time, not least the semi-308 

domestic and free-ranging reindeer (Rangifer tarandus; St John et al. 2016). 309 

 310 

In the perspective of planning for ungulate crossing structures using a SLOSS approach, these 311 

regional differences would imply different output depending on the region. In northern 312 

Sweden, investing in few large crossing structures at moose migration routes may be 313 

warranted. Thorough ecological data should be collected and compiled to identify the ideal 314 
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sites for these crossing structures, and considerable efforts should be made to secure their 315 

long-term effectiveness. In more southern parts of the country, sufficient permeability of 316 

infrastructures may be achieved by several smaller crossing structures, including non-wildlife 317 

bridges which tend to be plentiful along most major roads and railways.  318 

 319 

As the current ecological standards does not recognize regional differences, nor the SLOSS 320 

approach, opportunities for better ecological function and more cost-effective mitigation 321 

measures may be missed. I suggest that explicitly integrating the trade-off between size and 322 

number of crossing structures in the planning for wildlife mitigation in Scandinavia will 323 

benefit the situation, and help achieving environmental goals regarding connectivity for 324 

wildlife. 325 

 326 

Some implications for future ecological research 327 

 328 

Trade-offs between size and number of crossing structures in wildlife mitigation schemes may 329 

require that road ecology research take a somewhat different angle than the current prevailing. 330 

Research and monitoring of over- and underpasses during the last decades have provided a 331 

basic understanding of how well different type of structures correspond to the demands of 332 

different species or taxa (Jędrzejewski et al. 2009; Clevenger and Ford 2010; Smith et al. 333 

2015), but comprehensive comparisons of structures of different size and design are still few 334 

(but see Clevenger and Waltho 2005; Mata et al. 2005; Taylor and Goldingay 2010; Cramer 335 

2012; Bhardwaj et al. 2020; Sijtsma et al. 2020). Moreover, the costs for the constructions, 336 

including any costs for planning, traffic diversion during construction, long-term maintenance 337 

etc., are rarely integrated into the analyses (Sijtsma et al. 2020). Seiler et al. (2016) and 338 

Sijtsma et al. (2020) point out some directions for how cost-effectiveness analyses of wildlife 339 

crossing structures can be set up, but the field needs to be further explored. Monitoring of 340 

wildlife-use of crossing structures should be conducted following a standardized protocol to 341 

be able to make a just comparison of the performance of a range of crossing structures, and to 342 

be able to add new monitoring results over time to a global analysis (Helldin and Olsson 343 

2015).  344 

 345 

A strategy to construct several small crossing structures should entail an increased demand for 346 

research on how to make also narrower crossing structures more functional for wildlife, e.g., 347 

by adapting vegetation and limiting human disturbance. However, squeezing down the size of 348 
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crossing structures would also mean approaching a lower limit for functionality, and in the 349 

light of this, a much better understanding of the ecology of narrow crossing structures is 350 

needed.  351 

 352 

I suggest a stronger emphasis in monitoring of crossing structures not only on how different 353 

species use them differentially (such as described by, e.g., Cramer 2012; Mata et al. 2015), 354 

but also differences between animal categories within species, for example between sexes and 355 

ages, individuals of different status or condition, and individuals in groups of different size 356 

and composition. It is likely that different animal individuals or categories show differences in 357 

vigilance and sensitivity to disturbance (Liley and Creel 2008), and crossing structures that 358 

consequently deter certain categories of animals are less likely to provide functional 359 

connectivity for the population, irrespective of the absolute number of individuals using the 360 

structure.  361 

 362 

To this, we need better knowledge of what happens between animals at crossing structures, 363 

for example predation risk (real and perceived), interference competition, territoriality, 364 

dominance, and other antagonistic behaviors that can expel some target animals from the 365 

sites. The well-developed methods using camera traps and video surveillance of crossing 366 

structures provide opportunities for studying both animal categories and behaviors to a larger 367 

extent than is currently done.  368 

 369 

Finally, I call for more efforts in wildlife ecology research to develop the knowledge of 370 

animal movements, to specifically address the questions posed by road and railway planning, 371 

of movement routes (importance of certain routes, their stability over time, and reliable 372 

methods to map them) and potential movement distances along fences to find safe passages 373 

(Bissonette and Adair 2008). While this has been studied for some large and charismatic 374 

species (e.g., moose in Sweden), these aspects are largely unknown for most species, 375 

including important target species for wildlife crossing structures.  376 

 377 
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