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Abstract 32 

Early detection and eradication of invasive plants are more cost-effective than managing 33 

well-established invasive plant populations and their impacts. However, there is high 34 

uncertainty around which taxa are likely to become invasive in a given area. Horizon 35 

scanning, which pairs rapid risk assessment with consensus building among experts, can help 36 

identify invasion threats. We performed a horizon scan of potential invasive plant threats to 37 

Florida, USA—a state with a high influx of introduced species, conditions that are favorable 38 

for plant establishment, and a history of negative impacts from invasive plants. We began 39 

with a list of 2128 non-native plant species and subspecies that are crop pests or invasive 40 

somewhere in the world and used publicly available data to prioritize 100 taxa for rapid risk 41 

assessment. We derived overall invasion risk scores by evaluating the likelihood and 42 

certainty of each of the 100 taxa arriving, establishing, and having an impact in Florida. 43 

Through the rapid risk assessments and a consensus-building discussion, we identified six 44 

plant taxa with high overall risk scores ranging from 75 to 100 out of a possible 125. The six 45 

taxa are globally distributed, easily transported to new areas, found in regions with climates 46 

similar to Florida’s, and can impact native plant communities, human health, or agriculture. 47 

We recommend more thorough risk assessments for each of these six species and, if 48 

appropriate, policy and management actions to limit invasive plant introduction and 49 

establishment in Florida.  50 

 51 

Keywords 52 

Avena fatua, certainty, Cytisus scoparius, horizon scan, Ligustrum vulgare, Phalaris 53 

arundinacea, rapid risk assessment, prevention  54 
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Introduction 55 

Potential impacts of invasive species, and invasive plants in particular, are daunting given the 56 

high numbers of species introduced to novel areas each year, with rates predicted to increase 57 

in the future (Seebens et al. 2020). Governments and private landowners take responsibility 58 

for controlling invasive plant populations and mitigating their negative impacts after they 59 

arrive (Lovell and Stone 2005, Pimentel 2009) after their arrival. Preventing the introduction 60 

and initial spread of invasive plants, however, is generally less expensive than managing 61 

established populations and avoids potential ecological and economic losses (Simberloff 62 

2003, Keller et al. 2007, Sheley et al. 2015). Unfortunately, the benefits of prevention are 63 

difficult to quantify and involve high uncertainty, making post-invasion control the more 64 

common approach (Simberloff 1997a, Finnoff et al. 2007, Early et al. 2016). Thus, programs 65 

that help identify which non-native plant taxa have a high probability of becoming 66 

problematic invaders in a given area are essential for providing the first lines of defense 67 

against plant invasions, such as informing trade policies and identifying control priorities if 68 

highly ranked taxa are discovered in a new habitat. 69 

 70 

Horizon scanning is the systematic examination of information to identify potential threats, 71 

risks, emerging issues, and opportunities that can inform policy (Sutherland and Woodroof 72 

2009, Amanatidou et al. 2012, Könnölä et al. 2012). This technique has been applied to a 73 

variety of topics including policy analysis (Könnölä et al. 2012), medical technology (van der 74 

Maaden et al. 2018), and various conservation issues (Gusset et al. 2014, Brown et al. 2016, 75 

Cooke et al. 2020, Sutherland et al. 2021). In Europe, horizon scanning of emerging invaders 76 

and their pathways for introduction has informed policy and guided resource allocation to 77 

research and prevention efforts (Parrott et al. 2009, Matthews et al. 2014, Roy et al. 2014, 78 

Gallardo et al. 2016, Lucy et al. 2020). However, horizon scanning has yet to be used to 79 

identify invasive species threats in the U.S. (but see Ricciardi et al. 2017), where non-native 80 

plant and animal introduction numbers are among the highest in the world (Seebens et al. 81 

2017). 82 

 83 

Florida is one of the most important states for regulating invasive plants in the U.S. because 84 

nearly 85% of all non-native plants imported to the contiguous U.S. enter through one of 35 85 

shipping ports and airports in Florida (Gordon and Thomas 1997, Enterprise Florida 2021). 86 

As international trade continues to grow, so does the frequency of intentional and accidental 87 

introductions (Early et al. 2016). In addition to being an entry point for invasive species to the 88 

rest of the country, Florida is particularly vulnerable to the establishment of invasive plants 89 

due to its tropical/subtropical climate and diverse ecosystems (Simberloff 1997b, Pyšek et al. 90 

2017). Management of invasive plants in Florida’s conservation areas costs nearly $45 91 

million per year (Hiatt et al. 2019) and invasive species (including plants, insects, and 92 

pathogens) cost Florida’s agriculture industry at least $179 million per year (Coffman et al. 93 

2001). Accordingly, Florida residents are highly supportive of preventing biological 94 

invasions (Huang and Lamm 2016). Identifying potential invaders before or soon after they 95 

enter Florida can reduce ecological and economic losses to the state as well as prevent the 96 

spread of invasive plants nationally—a goal of the U.S. Plant Protection Act (U.S. Congress 97 

2000). 98 

 99 

Our aim was to use horizon scanning to create a ranked list of non-native plants that are 100 

likely to arrive and establish in Florida and have an impact on native biodiversity, the 101 

economy, or human health within the next ten years (2020–2030). A successful horizon scan 102 

for potential invaders relies on the integration of risk assessment and consensus building 103 

(Roy et al. 2015). We began with a list of potential invasive species and subspecies generated 104 
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by the Centre for Agriculture and Biosciences International (CABI), and used publicly 105 

available data to identify the 100 plant taxa most likely to arrive and have impacts in Florida. 106 

Then, during the risk assessment phase, experts assigned scores for likelihood of arrival, 107 

establishment, and impacts in Florida to the 100 taxa. Risk assessments were peer-reviewed, 108 

and taxa were ranked based on their scores. Finally, in the consensus building phase, experts 109 

reviewed the ranked list and suggested modifications. Here, we present the ranked list of 110 

potential invasive plant threats to Florida, which can be used to inform research, 111 

management, and policy aimed at reducing invasive plant impacts in Florida.  112 

 113 

Methods 114 

We adapted the horizon scanning method outlined by Sutherland et al. (2011) and Roy et al. 115 

(2014, 2015) to develop a ranked list of invasive plant threats and their potential pathways for 116 

arrival to the state of Florida over the next ten years (2020–2030). We chose a ten year time 117 

frame to capture threats in the near future and to establish a minimum frequency (once every 118 

ten years) for updating the horizon scan with new information. 119 

 120 

Expert panel and workshop  121 

We (the authors) formed the expert panel, providing knowledge of Florida’s natural systems 122 

and existing invasive plants, including experience in invasion ecology, botany, policy, and 123 

data analysis. We are employed by governmental, academic, and non-profit organizations 124 

(Environmental Defense Fund, Florida Department of Agriculture and Consumer Services, 125 

Florida Fish and Wildlife Commission, University of Florida, and United States Geological 126 

Survey), which supported our participation. We organized and attended a workshop in 127 

December 2019, during which we designed criteria for selecting taxa to assess (see 128 

Assembling a list), discussed the rapid risk assessment tool (see Assessing and scoring the 129 

taxa), and identified online resources for completing the rapid risk assessments.  130 

 131 

Assembling a list 132 

Using the horizon scan tool developed by CABI (an inter-governmental not-for-profit 133 

organization that provides information and expertise on agriculture and the environment), we 134 

generated a preliminary list of invasive taxa and crop pests that are not known to be present 135 

in Florida based on CABI’s databases (CABI 2018). The tool consolidates information from 136 

the CABI Invasive Species Compendium and Crop Protection Compendium, which are 137 

science-based encyclopedic databases. The tool generated a list of 9629 taxa, 2128 of which 138 

were in the kingdom Plantae.  139 

 140 

We first corrected the preliminary list for synonyms by compiling accepted names and 141 

synonyms from the Atlas of Florida Plants (Wunderlin et al. 2019), the Taxonomic Name 142 

Resolution Service (TNRS; Boyle et al. 2015), and the Integrated Taxonomic Information 143 

System (ITIS; ITIS n.d.; see Suppl. material 1: Methods S1 for more details), which increased 144 

our list to 2360 taxa. The modified CABI list was then trimmed based on several criteria (Fig. 145 

1), including: climatically matched to Florida, not naturalized in Florida (i.e., a self-146 

sustaining population), not on a Florida or federal noxious weed list, naturalized outside of its 147 

native range, historically weedy, and commonness (Suppl. material 2: Table S1). If taxa met a 148 

criterion, they were retained for further assessment in the next stage. We assessed 149 

commonness by the number of global occurrences (GBIF.org 2021a) and selected the top 100 150 

(12%) for further assessment, which was the largest number of taxa that the experts felt they 151 

could feasibly evaluate.  152 

 153 
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 154 
Figure 1. Criteria for selecting taxa for rapid risk assessment. The criteria included the 155 

following systematic steps: (1) a preliminary list of 2128 taxa; (2) correcting for synonyms, 156 

which increased the original list to 2360; (3) climate matching with Köppen-Geiger climate 157 

zones (Kottek et al. 2006, CABI 2018), which identified 1504 taxa that could potentially 158 

become established in Florida if climate were the only limiting variable; (4) 197 taxa were 159 

already naturalized in Florida (Wunderlin et al. 2019) and removed from the list; (5) 57 taxa 160 

were already listed on state or federal noxious weed lists (State of Florida 2008, 2020, USDA 161 

2017, FISC 2019) and were removed from the list; (6) taxa that were naturalized somewhere 162 

outside of their native range (van Kleunen et al. 2019), suggesting the ability to establish in 163 

habitats where they did not co-evolve with other species, were selected (912 taxa); (7) taxa 164 

with a record of “weediness”, suggesting the ability to produce a self-sustaining population 165 

and have at least mild impacts on the surrounding environment (Randall 2017), were selected 166 
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(808 taxa); (8) the top 100 taxa, ranked by number of global occurrences (GBIF.org 2021a), 167 

were selected. More details on the datasets used to inform these criteria can be found in 168 

Suppl. material 1: Methods S1. 169 

 170 

We used expert opinion to remove and add taxa from the list before and after finalizing the 171 

top 100. Pastinaca sativa was previously assessed by one of the experts and determined to be 172 

not a threat to Florida (removed before commonness was assessed). Two taxa were removed 173 

from the list of 100 taxa: Rosmarinus officinalis and Galeopsis tetrahit. Rosmarinus 174 

officinalis was known by experts to be naturalized in Florida and found to have 13 recent 175 

herbarium records. There was not enough information on Galeopsis tetrahit available to 176 

complete the rapid risk assessment and very few of its GBIF occurrences were inside 177 

Florida’s Köppen-Geiger climatic zones (Galeopsis tetrahit L. in GBIF Secretariat 2021). 178 

Because GloNAF, the database used for criterion 6 (Fig. 1), only included vascular plants 179 

(van Kleunen et al. 2019), an undesirable side effect of the filtering process was that non-180 

vascular plants were removed without taking other criteria into account. To more rigorously 181 

evaluate non-vascular plants, we added the non-parasitic terrestrial and freshwater taxa from 182 

the initial CABI list that were in the phyla Chlorophyta, Heterokontophyta, Phaeophyta, 183 

Rhodophyta, or Streptophyta (the phyla Bryophyta, Marchantiophyta, and Anthocerophyta 184 

were not in the original list) to the list: Aegagropila linnaei and Campylopus introflexus. We 185 

therefore ended with 100 taxa (two removed and two added). 186 

 187 

Assessing and scoring the taxa 188 

Nine of us evaluated taxa using a rapid risk assessment tool modified from Roy et al. (2014). 189 

First, we used a species not included in the final list to assess the tool for clarity of 190 

instructions, the time it took to complete the assessment, and inconsistencies across 191 

assessments. Then, we completed rapid risk assessments with a standardized set of resources: 192 

the tool, instructions, a list of taxa to assess and their synonyms, the list of websites compiled 193 

during the workshop, information about Florida’s plant hardiness zones (USDA 2012) and 194 

Köppen-Geiger climate zones (Kottek et al. 2006), and a list of search terms for search 195 

engines. Because the risk assessment tool is designed to be completed rapidly, we aimed to 196 

spend less than two hours assessing each taxon. Eight of us completed ten assessments each 197 

and one of us completed twenty. 198 

 199 

We scored the likelihood of arrival, establishment, and negative impacts (environmental, 200 

socioeconomic, and human health) on a scale of 1 (very low) to 5 (very high). To estimate the 201 

likelihood of arrival, experts considered the current distribution of the taxon, the availability 202 

of the taxon for purchase, history of invasion by the taxon in other regions, and the presence 203 

of a plausible arrival pathway (Table 1). To estimate the likelihood of establishment (i.e., 204 

developing a self-sustaining population), experts considered the occurrences and distribution 205 

of the taxon within regions with Köppen-Geiger climate zones matching Florida (Table 1). 206 

Experts also considered ecological properties of both the taxon and Florida habitats, 207 

including time to reproductive maturity, reproduction rate, dispersal mechanism, propagule 208 

pressure, tolerance of a broad range of environmental conditions, amount of nurturing 209 

required, resource availability, and natural enemies. To estimate the likelihood of negative 210 

impacts, experts used a scoring rubric modified from the Invasive Species Environmental 211 

Impact assessment protocol (Branquart 2009), the Environmental Impact Classification of 212 

Alien Taxa (EICAT; Blackburn et al. 2014, Hawkins et al. 2015), and the Socio-Economic 213 

Impact Classification of Alien Taxa (SEICAT; Bacher et al. 2018; Table 1). The overall risk 214 

score was the product of arrival, establishment, and impact likelihood scores. We provided 215 

brief justifications for our scores and assigned certainty scores that ranged from very low 216 

Author-formatted, not peer-reviewed document posted on 18/10/2021. DOI:  https://doi.org/10.3897/arphapreprints.e76705



 

7 

(i.e., all scores were equally likely) to high (i.e., could confidently eliminate all other scores). 217 

The overall certainty score was the score most consistent with three component certainty 218 

scores. 219 

 220 

Table 1. Rubrics for scoring likelihood of arrival, establishment, and impacts of potential 221 

invasive plants in Florida.  222 

Category Criteria Score 

Arrival† Closest observation to Florida‡ and closest online seller to Florida§ are outside of the 

contiguous U.S. 

1 

Closest observation to Florida is within the contiguous U.S., but not in the southeastern | 

U.S., and the closest online seller to Florida is outside of the contiguous U.S. 

2 

Closest observation to Florida and closest online seller to Florida are within the 

contiguous U.S., but not in the southeastern U.S. or closest observation to Florida is in 

the southeastern U.S., but not in Florida, and the closest online seller to Florida is 

outside the contiguous U.S. 

3 

Closest observation to Florida is within the southeastern U.S., but not in Florida, and 

the closest online seller is within the contiguous U.S. or the southeastern U.S., but not 

in Florida. 

4 

The taxon has been observed or sold within Florida. 5 

Establish

ment† 

No observations in areas with matching Köppen-Geiger (KG) zones to Florida¶. 1 

Few observations in one area with matching KG zones to Florida. 2 

Many observations in one area or few observations in multiple areas with matching KG 

zones to Florida. 

3 

Many observations in multiple areas with matching KG zones to Florida. 4 

Criteria for score 4 plus evidence of a biological strategy that aids establishment or 

evidence of establishment in Florida. 

5 

Impact Unlikely to cause negative impacts on the native biota or abiotic environment, human 

well‐being, or economic systems. 

1 

Likely to cause (a) declines in the performance (e.g., biomass, body size) of native 

biota, but no decline in native population sizes or (b) income loss, minor health 

problems, higher effort or expense to participate in activities, increased difficulty in 

accessing goods, or minor disruption of social activities, but no significant impact on 

participation in normal activities. The taxon has no other impacts that would cause it to 

be classified in a higher impact category.  

2 

Likely to cause (a) declines in the population size(s) of native species, but no changes 

to the structure of communities or to the abiotic or biotic composition of ecosystems or 

(b) changes in the size of social activities, with fewer people participating, but the 

activity is still carried out. These changes to social activities could be linked to 

accessibility to the activity area or mild effects to human health (e.g., allergies). The 

taxon has no impacts that would cause it to be classified in a higher impact category. 

3 

Likely to cause (a) the local or population extinction of at least one native species, 

leading to reversible changes  in the structure of communities, the abiotic or biotic 

composition of ecosystems or (b) the local disappearance of a social or economic 

activity from all or part of the area invaded by the alien taxon, collapse of the specific 

activity, switch to other activities, abandonment of activity without replacement, 

emigration from region, or moderate effects to human health. The taxon has no impacts 

that would cause it to be classified in a higher impact category. 

4 

Likely to cause (a) the replacement and local extinction of native species and will 

produce irreversible  changes in the structure of communities and the abiotic or biotic 

5 
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composition of ecosystems or (b) local disappearance of a social or economic activity 

from all or part of the area invaded by the alien taxon or major effects to human health. 

†Arrival and Establishment rubrics were applied during the review phase rather than the 223 

assessment phase. Scores were adjusted by up to one point based on additional information in 224 

the assessments. 225 
‡Observations based on GBIF.org (2020) or information provided by the assessor or reviewer. 226 
§Sellers located with PlantScout (2020), Betrock’s Plant Search (Rosenthal 2020), and 227 

google.com. 228 
|For our purposes (proximity to Florida), southeastern states include Georgia, Alabama, South 229 

Carolina, North Carolina, Tennessee, and Mississippi. 230 
¶Observations based on GBIF.org (2020) or information provided by the assessor or reviewer. 231 

Florida’s Köppen-Geiger zones include Af, Am, Aw, and Cfa (Kottek et al. 2006). 232 

 233 

We identified one or more potential pathways for the taxa to arrive in Florida based on an 234 

established framework (Hulme et al. 2008, CBD 2014, Harrower et al. 2018). Briefly, the 235 

pathways included “release in nature” (intentional release, such as for erosion control), 236 

“escape from confinement” (intentional commodity that escapes, such as a horticultural 237 

taxon), “transport contaminant” (associated with the transport of a specific commodity, such 238 

as a seed contaminant), “transport stowaway” (other forms of unintentional transport, such as 239 

through soil on equipment), “corridor” (through human infrastructure linking previously 240 

unconnected areas, such as a waterway), and unaided (natural dispersal).  241 

 242 

Reviewing and modifying scores 243 

In the first round of reviews, ten of us reviewed ten assessments each. We searched for each 244 

taxon in references that we found helpful when completing risk assessments and filled in 245 

information where the assessor indicated that the certainty was "low" or “very low”. We 246 

changed scores, edited justifications, and wrote comments, differentiating our text from the 247 

original assessor by using red font (Suppl. material 3: Table S2). We aimed to complete the 248 

reviews efficiently, spending 30 minutes or fewer on each. We then ranked the taxa by their 249 

overall risk score and all group members read the reviewed risk assessments. 250 

 251 

Consensus building 252 

During the two hour virtual meeting, we discussed taxa in descending order of scores. We 253 

spent extra time discussing taxa with more controversial scores, such as taxa with large 254 

discrepancies between scores assigned by the assessor and reviewer, which were reviewed 255 

again following consensus building. In addition, Solidago canadensis was removed from the 256 

list, creating a final list of 99 taxa. Taxonomic subunits of S. canadensis are difficult to 257 

distinguish (CABI 2021), creating ambiguity about whether S. canadensis is already 258 

established in Florida (Wunderlin et al. 2019, GBIF.org 2021b). We therefore could not 259 

evaluate the risk of S. canadensis arriving in Florida.  260 

 261 

We determined overall risk score thresholds to categorize taxa as high, medium, or low risk: 262 

a taxon scoring ≥ 64 (i.e., an average score of 4 for each variable of arrival, establishment, 263 

and impact) was categorized as high risk, a taxon with a score between 27 (i.e., an average 264 

score of 3 for each variable) and 63 as medium risk, and a taxon with a score less than 27 as 265 

low risk. 266 

 267 

Analysis of risk scores 268 

We evaluated whether peer-review and consensus building significantly affected overall risk 269 

scores with a paired two-sample t-test, comparing scores from the first assessments to those 270 

Author-formatted, not peer-reviewed document posted on 18/10/2021. DOI:  https://doi.org/10.3897/arphapreprints.e76705



 

9 

of the final list. We also evaluated how variation among experts and characteristics of the 271 

taxa affected the overall risk scores. We fit a generalized linear regression with a negative 272 

binomial error structure to the overall risk scores with the expert who completed the 273 

assessment (N = 9), expert certainty about the overall score (very low, low, medium, or high), 274 

whether the typical habitat of the plant taxon is terrestrial or aquatic, the number of records of 275 

the taxon in the U.S., and the year of the earliest record of the taxon in the U.S. as 276 

independent variables. To determine the number of records and the earliest record of each 277 

taxon in the U.S., we used the package ‘rgbif’ (Chamberlain et al. 2021) to extract all GBIF 278 

records in the U.S. for each taxon, selecting records that had coordinates and no geospatial 279 

issues (GBIF.org 2021b). One taxon had no records in the U.S., so we used the current year 280 

for its earliest record value. Number of records and earliest record were centered and scaled 281 

and were not significantly correlated with each other (r = 0.04, P = 0.68). We fit the model 282 

using the ‘MASS’ package (Venables and Ripley 2002), evaluated the fit using the 283 

‘DHARMa’ package (Hartig and Lohse 2020), tested the significance of each independent 284 

variable using likelihood ratio tests, and compared factor levels using the ‘emmeans’ package 285 

(Lenth et al. 2021). All analyses were conducted in R version 4.0.2 (R Core Team 2020). 286 

 287 

Taxa characteristics 288 

We evaluated whether plant taxonomic families were under- or overrepresented in the CABI 289 

plant list and in the final list using a resampling procedure (Daehler 1998). We first extracted 290 

all accepted species names and their family names from The Plant List using the taxize 291 

package (Chamberlain and Szoecs 2013, TPL 2013), resulting in a dataset of 373,847 taxa. 292 

The CABI list contained 158 families (with 2091 taxa) in The Plant List (vascular plants and 293 

bryophytes). We re-sampled 2091 taxa without replacement from The Plant List dataset 294 

10,000 times. Taxa were replaced between iterations and we counted the number of taxa per 295 

family each iteration. We set the threshold for statistical significance to P < 0.0003 (0.05 296 

divided by the number of families, consistent with a Bonferroni correction; Daehler 1998). 297 

Therefore, families with fewer than three iterations during which the sampled number of taxa 298 

was greater (less) than or equal to the number of taxa in the CABI list from that family were 299 

considered overrepresented (underrepresented). We repeated this procedure with different 300 

values for the final list: 34 families with 98 taxa, 1,000 iterations, P < 0.0015, and families 301 

with one or fewer iterations. 302 

 303 

To evaluate the native and introduced ranges of taxa in the final list, we researched the their 304 

distributions using the Plants of the World database (for 95 of the 99 taxa; POWO 2021), the 305 

CABI Invasive Species Compendium (CABI 2021), the Global Compendium of Weeds 306 

(Randall 2017), and GBIF (GBIF.org 2020). One species, Aegagropila linnaei, was removed 307 

from the analysis because its native range is unclear. We summarized distributions using the 308 

World Bank Development Indicator regions in the ‘countrycode’ package (Arel-Bundock et 309 

al. 2018). 310 

 311 

Results  312 

High risk taxa 313 

Six plant taxa received risk scores greater than or equal to 64 (Fig. 2), indicating that these 314 

taxa are likely to invade Florida in the next 10 years. We had high certainty about the risk 315 

scores for four taxa: Ligustrum vulgare, Cytisus scoparius, Phalaris arundinacea, and Avena 316 

fatua. We had medium certainty for the other two taxa: Agrostis capillaris and Persicaria 317 

hydropiper. Three of the taxa were considered very likely to arrive in Florida (arrival score = 318 

5 out of 5): L. vulgare, A. fatua, and P. hydropiper. This conclusion was based on: herbarium 319 

specimens indicating historic, but not current, presence in Florida; observations of presence 320 
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without naturalization within the last 20 years (fewer than three records in wild areas); and 321 

records of seeds sold within the U.S. at the time of the assessment (Suppl. material 3: Table 322 

S2). All six taxa were considered very likely to establish in Florida (establishment score = 5 323 

out of 5) because they occur in other regions of the world with climates similar to Florida and 324 

in some cases, the taxon is known to have high reproductive capacity (Suppl. material 3: 325 

Table S2). While none of the taxa were considered very likely to cause economic or 326 

environmental impacts in Florida, four taxa received the next highest impact score (impact 327 

score = 4 out of 5; L. vulgare, C. scoparius, P.  arundinacea, and A. capillaris). These four 328 

taxa have impacted native vegetation through competition, produce pollen that can be a 329 

human allergen, and some are agricultural weeds (Suppl. material 3: Table S2). Information 330 

about the six species from a handful of sources can help inform potential future policy actions 331 

(Table 2): the taxa are native to a number of regions in the eastern hemisphere and have 332 

global distributions; they have cultural and economic uses that have facilitated their 333 

introduction to new regions in the past; they can disperse through unintentional pathways; 334 

they are managed through various, often integrated, approaches; and they are included in U.S. 335 

state noxious weed lists or laws. 336 

 337 

 338 
Figure 2. The six taxa that were designated as high risk for invasion potential in Florida. 339 

Overall risk scores are in white circles (maximum possible score is 125). (Photos: Meneerke 340 

bloem, Isidre blanc, Andreas Eichler, Stefan.lefnaer, CC BY-SA 4.0;  Robert Flogaus-Faust, 341 

CC BY 4.0; Rasbak, CC BY-SA 3.0; Willow, CC-BY 2.5; Mary Joyce, Katrice Baur, scottq1, 342 

rae117, CC BY-NC 4.0; Christian Grenier, CC0 1.0).  343 

 344 

Table 2. Characteristics of the six high risk species. 345 

Species Native range† Introduced 

countries‡ 

Arrival pathways and 

uses§ 

Management 

approaches| 

States 

listed¶ 

Ligustrum 

vulgare 

Europe, western 

Asia, northern 

Africa 

Argentina, Australia, 

Brazil, Canada, New 

Zealand, South 

Africa, United States, 

agroforestry, escape from 

confinement/garden, graft 

stock, landscape 

improvement, medicinal, 

ornamental, shade 

mechanical 

(pulling, digging, 

cuttting), chemical 

(cut and spray, stem 

injections) 

11 

Phalaris 

arundinacea 

Asia, Europe, 

Central America, 

Ethiopia, Kenya, 

Tanzania, Uganda 

erosion control, fodder 

crop, fiber, ornamental 

burning, discing, 

mowing, herbicides 

10 
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North America#, 

southern/eastern/ 

northern Africa 

Cytisus 

scoparius 

Europe Argentina, Australia, 

Bolivia, Brazil, 

Canada, Chile, 

China, India, Iran, 

Japan, New Zealand, 

South Africa, United 

States 

animal-assisted, ballast 

water, botanical gardens 

and zoos, disturbance, 

escape from 

confinement/garden, fiber, 

garden waste disposal, 

hedge/windbreak, 

medicinal, transport 

stowaway, ornamental, 

waterways 

burning (with other 

approaches), 

grazing, mulching, 

pulling (outlying 

plants), chemical 

(cut and spray, 

foliar spray, stem 

injections), 

biological control 

14 

Agrostis 

capillaris 

central/western/ 

southwestern Asia, 

Europe, North 

Africa, 

Argentina, Australia, 

Bhutan, Brazil, 

Canada, Chile, 

Greenland, India, 

New Zealand, Saint 

Helena, Saint Pierre 

and Miquelon, South 

Georgia and the 

South Sandwich 

Islands, United States 

animal-assisted, 

disturbance, erosion 

control, fodder, grass 

contaminant, horticulture, 

pasture, landscape 

rehabilitation, turf grass 

(lawns and golf), wind and 

water 

crop rotations, 

mechanical 

(pulling, ploughing, 

grubbing and 

harrowing), 

herbicides 

5 

Avena fatua Central Asia Canada, United 

States (present in 74 

other countries, but 

“introduced” status 

not provided) 

fodder, forage, gene source 

for disease and drought 

resistance, medicinal, seed 

contaminant, transport 

stowaway 

burning, crop 

rotation, herbicides, 

soil cultivation, soil 

solarization 

4 

Persicaria 

hydropiper 

Europe “Introduced” status 

not provided, but 

present in 48 

countries 

culinary, medicinal herbicides, pulled 1 

†Geographic regions where the taxon is native (CABI 2021, Native Plant Trust 2021) 346 
‡Countries where the taxon has been introduced (CABI 2021) 347 
§Known pathways for arrival and human uses (CABI 2021) 348 
|Approaches used to control the taxon (CABI 2021) 349 
¶U.S. states in which the taxon is included in a prohibited list or law (EDDMapS 2021) 350 
#See Taxa characteristics section for more details 351 

 352 

Medium risk taxa 353 

Twenty-three taxa received medium risk scores (greater than or equal to 27, but less than 64; 354 

Fig. 3). Two taxa, Matricaria chamomilla and Symphytum officinale, were considered very 355 

likely to arrive in Florida (score = 5) because there were occurrence records in Florida, 356 

including two for S. officinale that suggested escape (it is planted as an ornamental, Table 357 

S2). Symphytum officinale was considered likely to establish in Florida (establishment score 358 

= 4), but unlikely to have impacts (impact score = 2). Four taxa were considered very likely 359 

to establish in Florida (establishment score = 5)—Hypericum perforatum, Malva sylvestris, 360 

Matricaria chamomilla, and Mentha aquatica—because they occur in areas with climate 361 

similar to Florida and M. chamomilla readily self-seeds (Table S2). Hypericum perforatum, 362 

M. sylvestris, and M. aquatica were considered likely to arrive in Florida (arrival score = 4) 363 

and potentially likely to have negative impacts (impact score = 3), but M. chamomilla was 364 

considered likely to have only minimal negative impacts (impact score = 2). These four taxa 365 

are sold as ornamental plants within the U.S., have been reported in the southeastern U.S. in 366 

the past 20 years, and can naturally disperse (Table S2). None of the plant taxa in the medium 367 
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risk group were considered very likely to have negative impacts. We had high certainty about 368 

the scores of two taxa, medium certainty about the scores for 18 taxa, and low certainty about 369 

the scores for three taxa. The three taxa for which we had low certainty about their scores 370 

received relatively low risk scores: Symphytum officinale (overall risk score = 40), Jacobaea 371 

vulgaris (overall risk score = 27), and Calystegia sepium spp. sepium (overall risk score = 372 

27).  373 

 374 
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 375 
Figure 3. Horizon scan scores. A The overall risk scores for 99 taxa, divided into groups of 376 

high risk (score ≥ 64), medium risk (27 ≤ score < 64), and low risk (score < 27) and shaded 377 

by overall certainty score. B The number of taxa associated with each of the pathways of 378 

arrival. Multiple pathways could be assigned to a single taxon. C The relationship between 379 
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certainty and the overall risk score, averaged across all taxa. Letters above bars indicate 380 

significant differences in overall risk score among certainty scores with P < 0.05. 381 

 382 

Low risk taxa 383 

Seventy taxa received low risk scores (less than 27; Fig. 3). One taxon, Poa trivalis (overall 384 

risk score = 20, overall certainty = high), was considered very likely to arrive in Florida 385 

(arrival score = 5) because it is in the southeastern U.S., has been used in at least one research 386 

experiment in Florida, and it is planted in golf courses in the southeast both intentionally and 387 

unintentionally (seed contaminant). Poa trivalis, however, is unlikely to establish in Florida 388 

(establishment score = 2) and have impacts (impact score = 2). Sambucus nigra ssp. nigra 389 

(overall risk score = 10, overall certainty = very low), was considered very likely to establish 390 

in Florida (establishment score = 5) because the species Sambucus nigra occurs in multiple 391 

locations with climate similar to Florida (Table S2). However, the subspecies has few 392 

recorded occurrences globally, which led to very low certainty about the establishment score. 393 

In addition, Sambucus nigra ssp. nigra is very unlikely to arrive in Florida (arrival score = 1) 394 

and unlikely to have impacts (impact score = 2). None of the plant taxa in the low risk group 395 

were considered very likely to have negative impacts. We had high certainty about the scores 396 

of eight taxa, medium certainty about the scores of 43 taxa, low certainty about the scores of 397 

16 taxa, and very low certainty about the scores of three taxa. The three taxa for which we 398 

had very low certainty about their scores were Filipendula vulgaris (overall risk score = 12), 399 

S. nigra ssp. nigra (overall risk score = 10), and Gnaphalium uliginosum (overall risk score = 400 

4). 401 

 402 

Pathways of arrival 403 

The most likely pathway of arrival for the taxa on the final list was escape from confinement 404 

(Fig. 3B). Taxa are also likely to arrive in Florida as transport contaminants, transport 405 

stowaways, or with unaided dispersal. It is less likely that plants will arrive through 406 

intentional release into nature or through a constructed corridor. 407 

 408 

Analysis of risk scores 409 

There was no significant difference in the overall risk scores before and after peer-review and 410 

consensus building (t = -1.41, 95% CI = -4.43–1.61, df = 97, P = 0.357) with an average 411 

score (± SE) of 21.3 ± 2.1 before and 22.7 ± 2.1 after. The assessor (𝜒2 = 27.0, df = 8, P < 412 

0.001), certainty level (𝜒2 = 21.4, df = 3, P < 0.001), and earliest record in the U.S. (𝜒2 = 3.9, 413 

df = 1, P = 0.050) significantly affected the overall risk score, while the habitat (terrestrial vs. 414 

aquatic; 𝜒2 = 0.07, df = 1, P = 0.787) and number of records in the U.S. (𝜒2 = 1.7, df = 1, P = 415 

0.196) did not. Four out of 36 pairwise comparisons of assessors were significantly different 416 

with P < 0.05. Taxa with higher overall certainty scores also had higher overall risk scores 417 

(Fig. 3C). Taxa with earlier first records in the U.S. received higher overall risk scores than 418 

taxa with later first records (Fig. 4A), but taxa with more records in the U.S. did not receive 419 

significantly higher overall risk scores than taxa with fewer records, although there was a 420 

positive trend (Fig. 4B). 421 

 422 
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 423 
Figure 4. Earliest record and number of records. The overall risk score and A the year of the 424 

earliest record in the U.S. and B the number of records (displayed on a log10 scale for clarity) 425 

in the U.S. for the 99 taxa on the final list. Points represent data while lines and shading 426 

represent model-estimated mean ± SE. 427 

  428 

Taxa characteristics 429 

Four families were significantly overrepresented in the final list of 99 taxa compared to the 430 

number of accepted species in the family (Suppl. material 4: Table S3): Juncacea (3 taxa out 431 

of 581 accepted species), Poaceae (21 taxa/11883 accepted species), Polygonaceae (4 432 

taxa/1584 accepted species), and Rosaceae (7 taxa/5325 accepted species). These four 433 

families were also significantly overrepresented in the CABI list (Suppl. material 5: Table 434 

S4): 21 taxa (1% of the CABI list) were in Juncaceae, 226 taxa (11%) were in Poaceae, 37 435 

taxa (2%) were in Polygonaceae, and 80 taxa (4%) were in Rosaceae. None of the families 436 

present on the final list were significantly underrepresented. 437 

 438 

Ninety three percent of taxa on the final list had native ranges that included Europe and 439 

Central Asia, 75% included the Middle East and North Africa, and 67% included East Asia 440 

and the Pacific (Fig. 5A). Other regions were included in 43% or fewer of the taxa’s native 441 

ranges. The United States was included in the native ranges of 11 taxa: Bolboschoenus 442 

maritimus, Carex nigra, Deschampsia cespitosa, Elodea nuttallii, Fragaria vesca, Geranium 443 

robertianum, Juncus articulatus, Lupinus polyphyllus, Phalaris arundinacea, Potamogeton 444 

natans, and Sanguisorba officinalis. Although some native populations of P. arundinacea 445 

exist in North America, the majority of populations are Eurasian genotypes (Jakubowski et al. 446 

2014, Kettenring et al. 2019). The remaining ten taxa are native to some U.S. states, but are 447 

not in Florida (USDA 2019). Eighty nine percent of the taxa on the final list have been 448 

introduced to North America (Fig. 5B). This region was followed closely by East Asia and 449 

the Pacific (79% of taxa), Europe and Central Asia (71% of taxa), and Latin America and the 450 

Caribbean (69% of taxa). Other regions were included in 40% or fewer of the taxa’s 451 

introduced  ranges.  452 

 453 
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 454 
Figure 5. Ranges of taxa. A Native and B introduced ranges of the final list of taxa 455 

generalized at the country level. Countries with darker shades indicate a greater number of 456 

taxa native or introduced to the area. The state of Florida is in red. 457 

 458 

Discussion 459 

Our analysis of the 99 plant taxa most likely to be introduced to Florida identified six that 460 

have a high risk of becoming invasive in the state in the next ten years (2020–2030). The 461 

horizon scanning process helped us identify taxa that should undergo more thorough risk 462 

assessments and potentially receive policy restrictions or research priority. The process we 463 

used is a reproducible methodology that can be applied to future horizon scans. 464 

 465 

Four taxa (Ligustrum vulgare, Cytisus scoparius, Phalaris arundinacea, and Avena fatua) 466 

had high risk scores with high certainty. We recommend that these taxa receive more 467 

thorough risk assessments followed by consideration for monitoring or regulation by the 468 

relevant state agencies. Phalaris arundinacea was assessed by the University of Florida 469 

Institute of Food and Agricultural Sciences Assessment of Non-native Plants in Florida’s 470 

Natural Areas, which uses a predictive tool of 49 questions, and found to be a high invasion 471 

risk (University of Florida 2014). In our rapid risk assessments, two taxa (Agrostis capillaris 472 

and Persicaria hydropiper) had high risk scores, but assessors had medium certainty about 473 

these scores. Competition studies should be conducted with A. capillaris to increase certainty, 474 

as experts were unsure how A. capillaris would fare in competition with native Florida 475 

grasses. Experts also identified the need for agricultural impact studies of P. hydropiper, 476 

which interferes with crops and grazing in other regions (Suppl. material 3: Table S2). If the 477 

high level of risk assigned to the top six taxa is supported following additional research and 478 

more thorough risk assessments, we recommend regulators consider policy actions to limit 479 

the introduction of these taxa to Florida. Specifically, the industries that use or 480 

unintentionally disperse these taxa (Table 2) should limit their potential for escape. U.S. 481 

states in which the taxa are included in noxious weed lists or laws (EDDMapS 2021) could be 482 

consulted for prevention approaches.  483 

 484 
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We identified “escape from confinement” as the most likely pathway for taxa on our final list 485 

to arrive in Florida’s natural areas. This pathway includes escape from agriculture, botanical 486 

gardens, forestry, horticulture, ornamental sources other than horticulture, and research (CBD 487 

2014). Indeed, most terrestrial plant species in a global database of invasive species and in 488 

lists of non-native species in Europe arrived by escaping confinement (Hulme et al. 2008). 489 

Domestication of species for food, ornamental purposes, and biofuel can select for traits that 490 

increase invasion risk, including fast growth rates, high fecundity, and the ability to hybridize 491 

(Petri et al. 2021). However, selection for traits that reduce invasion risk and do not interfere 492 

with the commercial purposes of plants could help prevent escape from confinement (Petri et 493 

al. 2021). For example, scientists at the University of Florida have developed sterile, low risk 494 

cultivars of the invasive species Lantana camara for landscape use within the state 495 

(Czarnecki et al. 2012).  496 

 497 

Taxa on our final list were also likely to arrive in Florida’s natural areas as transport 498 

contaminants, transport stowaways, or through unaided dispersal. Florida’s seaports are some 499 

of the most active in the country (US Army Corps of Engineers 2018), hosting global and 500 

domestic imports and exports, as well as millions of cruise passengers (Florida Department of 501 

Transportation 2017). Florida is also a top tourist destination, attracting well over 100 million 502 

visitors from within and outside of the U.S. each year (VISIT FLORIDA 2020). These high 503 

movement rates provide ample opportunities for plant propagules to enter the state. The risk 504 

of introducing taxa through consistent trade routes, however, can be mitigated by identifying 505 

steps in the process of importing, processing, and storing goods that can be modified to 506 

reduce plant survival (Hulme 2009). 507 

 508 

The identity of the assessor, the assessor’s certainty level, and the invasion history of the taxa 509 

in the U.S. significantly affected the overall risk scores of the assessed taxa. Two experts, 510 

who had extensive experience completing plant risk assessments, scored taxa consistently 511 

higher than two other experts, who had less experience completing plant risk assessments. To 512 

address this issue, future horizon scans could calibrate scores among experts with a set of test 513 

taxa prior to beginning the rapid risk assessments. We hypothesize that overall risk scores are 514 

correlated with overall certainty scores because more available data on a taxon contributes to 515 

higher certainty and can provide more pieces of evidence that a taxon may arrive, establish, 516 

or have impacts. Similarly, we hypothesize that taxa with earlier and more records of 517 

occurrence in the U.S. are likely to be better represented in English-language texts than taxa 518 

that are less common or more recently detected, leading to more evidence for arrival, 519 

establishment, and impacts, which could explain their generally higher risk scores. Efforts to 520 

synthesize and standardize information about invasive species (Simpson et al. 2019, CABI 521 

2021) could reduce these potential sources of bias. 522 

 523 

The families Juncacea, Poaceae, Polygonaceae, and Rosaceae were significantly 524 

overrepresented in both the final horizon scan list and the initial CABI list compared to the 525 

number of accepted species in these families. These families, especially Poaceae, 526 

Polygonaceae, and Rosaceae, are similarly overrepresented in global lists of naturalized 527 

plants (Daehler 1998, Pyšek 1998, Pyšek et al. 2017). Rushes (Juncaceae) can produce large 528 

amounts of seed, expand clonally, and resist herbivory through low palatability (Ashby et al. 529 

2020). Grasses (Poaceae) have wide ranges of environmental tolerance, are frequently 530 

transported for human uses, and can grow quickly, outcompete resident species, tolerate 531 

disturbances, and alter ecosystem processes (Pyšek 1998, Canavan et al. 2019). In addition, 532 

mis-identified invasive rushes and grasses may go undiscovered for long periods, allowing 533 

them to establish self-sustaining populations before being controlled (Scott and Hallam 2003, 534 
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Pyšek et al. 2013). Knotweeds (Polygonaceae) are diverse in growth form (i.e., perennial 535 

herbs, shrubs, trees, and vines) and include some aggressive invasive species (Brandbyge 536 

1993, Gerber et al. 2008). Roses (Rosaceae) are also diverse in growth form and are 537 

frequently planted by humans as crops, ornamentals, and medicinals (Hummer and Janick 538 

2009). Although none of the families included in the final horizon scan list were significantly 539 

underrepresented, some large families, such as Orchidaceae, were completely absent and are 540 

underrepresented in larger lists of naturalized species (Daehler 1998, Pyšek 1998, Pyšek et al. 541 

2017). Such general trends can help identify families on which  to concentrate risk 542 

assessment resources. 543 

 544 

Most of the taxa that made our final list were native to Europe, Asia, and North Africa. 545 

Europe is the native range for a disproportionately high number of naturalized plant species 546 

relative to the number of native plant species (van Kleunen et al. 2015), which may be 547 

influenced by plant adaptations to European pastoralism and cultivation—practices that have 548 

been adopted in regions outside of Europe (MacDougall et al. 2018)—and historical 549 

exchange between Europe and other geographic regions (Pyšek et al. 2015). Temperate Asia 550 

is also a major source of global naturalized plant species (van Kleunen et al. 2015). Because 551 

Florida’s Köppen-Geiger climate zones most consistently overlap with Central and South 552 

America, central Africa, and southern and eastern Asia (Kottek et al. 2006), our final list 553 

likely omits key high-risk taxa. However, propagule pressure significantly contributes to 554 

invasive species success (Lockwood et al. 2005, Cassey et al. 2018) and Europe is one of the 555 

top sources of tourists and merchandise imports for Florida (VISIT FLORIDA 2020, U.S. 556 

Department of Commerce 2021), suggesting that the taxa in the final list are of legitimate 557 

concern. Future horizon scans could focus on taxa from geographic regions with strong trade 558 

and tourism ties to the focal area, allowing for more targeted assessments.  559 

 560 

GBIF is a powerful tool, connecting organizations and institutions that collect and store 561 

biodiversity data and making that data publicly available (GBIF.org 2020). We used GBIF 562 

data multiple times during our horizon scan: to select the top 100 taxa based on global 563 

occurrences, to evaluate arrival risk based on how close occurrences were to Florida, and to 564 

evaluate establishment risk based on whether taxa were found in areas with the same 565 

Köppen-Geiger zones as Florida. Two potential sources of bias introduced by the GBIF 566 

dataset are amateur identification of plants and records collected non-systematically across 567 

geographies. Some plant species and subspecies are difficult to differentiate from one 568 

another, leading to inaccurate records by amateur botanists (Scott and Hallam 2003). 569 

However, of the 461,876 U.S. occurrences in GBIF for taxa in our final list, only 0.06% of 570 

them were recorded by iNaturalist users (GBIF.org 2021b, iNaturalist 2021), who include 571 

amateur botanists. Non-systematic sampling likely concentrates records in populated areas. 572 

Therefore, taxa that can inhabit disturbed areas, are moved around by people, and that are 573 

visually charismatic likely have more records. These traits, however, are associated with non-574 

native species introductions (Hobbs and Huenneke 1992, Hulme et al. 2008, Jarić et al. 575 

2020), so they would bias our estimates of arrival risk appropriately. 576 

 577 

This horizon scan of invasive plant threats to Florida provides a first step in reducing the 578 

impacts of invasive species on Florida’s natural systems. Like other horizon scans of invasive 579 

species, the generated list informs future research efforts and policy (e.g., Matthews et al. 580 

2014, Roy et al. 2014, Gallardo et al. 2016, Lucy et al. 2020). Our horizon scan departs from 581 

previous invasive species horizon scans, however, in important ways. First, we began with a 582 

list of 2128 potential invasive taxa that was too large to perform rapid risk assessments in a 583 

reasonable timeline. We therefore developed data-based criteria to filter the list to 100 taxa. 584 
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These methods could be applied to other horizon scans with similar resource constraints. 585 

Second, the rapid risk assessment tool and associated rubrics led to enough consensus among 586 

experts that our final rankings relied much more on scores than on discussion and consensus 587 

building (e.g., in contrast to Roy et al. 2014, Lucy et al. 2020). A drawback of this approach 588 

is the loss of nuanced expert opinion that falls outside of the rubrics, which is an important 589 

component of horizon scans when information on a potential invasive species is limited in 590 

peer-reviewed literature (Verbrugge et al. 2019). A major advantage, however, is that this 591 

approach can be used with non-experts, which is relevant for efforts limited by available 592 

expertise (Meyers et al. 2020).  593 

 594 

Conclusion 595 

Here we presented a horizon scan of 2128 plant taxa, identifying six with a high invasion risk 596 

for Florida over the next ten years and 93 with medium or low invasion risk. The horizon 597 

scan process therefore can reduce the potential number of taxa requiring thorough risk 598 

assessments by three orders of magnitude. Although the process has room for improvement, 599 

the results provide researchers, regulators, and private and public land managers with a clear 600 

list of high risk species to focus on. Given the substantial impacts and costs of invaders in 601 

Florida, the ability to differentiate and focus efforts on high probability bad actors is critical. 602 
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 991 

Figure legends 992 

Figure 1. Criteria for selecting taxa for rapid risk assessment. The criteria included the 993 

following systematic steps: (1) a preliminary list of 2128 taxa; (2) correcting for synonyms, 994 

which increased the original list to 2360; (3) climate matching with Köppen-Geiger climate 995 

zones (Kottek et al. 2006, CABI 2018), which identified 1504 taxa that could potentially 996 

become established in Florida if climate were the only limiting variable; (4) 197 taxa were 997 

already naturalized in Florida (Wunderlin et al. 2019) and removed from the list; (5) 57 taxa 998 

were already listed on state or federal noxious weed lists (State of Florida 2008, 2020, USDA 999 

2017, FISC 2019) and were removed from the list; (6) taxa that were naturalized somewhere 1000 

outside of their native range (van Kleunen et al. 2019), suggesting the ability to establish in 1001 

habitats where they did not co-evolve with other species, were selected (912 taxa); (7) taxa 1002 

with a record of “weediness”, suggesting the ability to produce a self-sustaining population 1003 

and have at least mild impacts on the surrounding environment (Randall 2017), were selected 1004 

(808 taxa); (8) the top 100 taxa, ranked by number of global occurrences (GBIF.org 2021a), 1005 

were selected. More details on the datasets used to inform these criteria can be found in 1006 

Suppl. material 1: Methods S1. 1007 

 1008 

Figure 2. The six taxa that were designated as high risk for invasion potential in Florida. 1009 

Overall risk scores are in white circles (maximum possible score is 125). (Photos: Meneerke 1010 

bloem, Isidre blanc, Andreas Eichler, Stefan.lefnaer, CC BY-SA 4.0;  Robert Flogaus-Faust, 1011 

CC BY 4.0; Rasbak, CC BY-SA 3.0; Willow, CC-BY 2.5; Mary Joyce, Katrice Baur, scottq1, 1012 

rae117, CC BY-NC 4.0; Christian Grenier, CC0 1.0).  1013 

 1014 

Figure 3. Horizon scan scores. A The overall risk scores for 99 taxa, divided into groups of 1015 

high risk (score ≥ 64), medium risk (27 ≤ score < 64), and low risk (score < 27) and shaded 1016 

by overall certainty score. B The number of taxa associated with each of the pathways of 1017 

arrival. Multiple pathways could be assigned to a single taxon. C The relationship between 1018 

certainty and the overall risk score, averaged across all taxa. Letters above bars indicate 1019 

significant differences in overall risk score among certainty scores with P < 0.05. 1020 

 1021 

Figure 4. Earliest record and number of records. The overall risk score and A the year of the 1022 

earliest record in the U.S. and B the number of records (displayed on a log10 scale for clarity) 1023 

in the U.S. for the 99 taxa on the final list. Points represent data while lines and shading 1024 

represent model-estimated mean ± SE. 1025 

 1026 

Figure 5. Ranges of taxa. A Native and B introduced ranges of the final list of taxa 1027 

generalized at the country level. Countries with darker shades indicate a greater number of 1028 

taxa native or introduced to the area. The state of Florida is in red. 1029 

 1030 

Supplementary materials 1031 

Suppl. material 1. Methods for trimming the list of potential invasive species based on 1032 

several criteria. 1033 
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 1034 

Suppl. material 2: Table S1. Potential invasive plant species provided by the CABI Horizon 1035 

Scan Tool, their synonyms, and their values for criteria described in Suppl. material 1. 1036 

 1037 

Suppl. material 3: Table S2. Reviewed rapid risk assessments of the 99 plant species in the 1038 

final list, ordered by overall score. 1039 

 1040 

Suppl. material 4: Table S3. Test of under- or overrepresentation of plant families in the 1041 

final horizon scan list based on resampling of accepted species from The Plant List database. 1042 

 1043 

Suppl. material 5: Table S4. Test of under- or overrepresentation of plant families in the 1044 

initial CABI list based on resampling of accepted species from The Plant List database. 1045 

 1046 

Data Availability 1047 

Raw data and code are available at https://github.com/aekendig/fl-plants-horizon-scan. This 1048 

repository will be assigned a DOI and archived with Zenodo following acceptance of the 1049 

manuscript. 1050 
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