

PREPRINT

Author-formatted, not peer-reviewed document posted on 08/11/2021

DOI: https://doi.org/10.3897/arphapreprints.e77780

Curvicladiella paphiopedili sp. nov., a new species on orchid (*Paphiopedilum* sp.) from Guizhou, China

Llan-chai Song, Lu Huang, Yao Feng, Li-li Wang, Xing-yu An, Zuo-yi Liu

Disclaimer on biological nomenclature and use of preprints

The preprints are preliminary versions of works accessible electronically in advance of publication of the final version. They are not issued for purposes of botanical, mycological or zoological nomenclature and **are not effectively/validly published in the meaning of the Codes**. Therefore, nomenclatural novelties (new names) or other nomenclatural acts (designations of type, choices of priority between names, choices between orthographic variants, or choices of gender of names) **should NOT be posted in preprints**. The following provisions in the Codes of Nomenclature define their status:

International Code of Nomenclature for algae, fungi, and plants (ICNafp)

Article 30.2: "An electronic publication is not effectively published if there is evidence within or associated with the publication that its content is merely preliminary and was, or is to be, replaced by content that the publisher considers final, in which case only the version with that final content is effectively published." In order to be validly published, a nomenclatural novelty must be effectively published (Art. 32.1(a)); in order to take effect, other nomenclatural acts must be effectively published (Art. 7.10, 11.5, 53.5, 61.3, and 62.3).

International Code of Zoological Nomenclature (ICZN)

Article: 21.8.3: "Some works are accessible online in preliminary versions before the publication date of the final version. Such advance electronic access does not advance the date of publication of a work, as preliminary versions are not published (Article 9.9)".

ARPHA Preprints Author-formatted, not peer-reviewed document posted on 08/11/2021. DOI: https://doi.org/10.3897/arphapreprints.e77780

Curvicladiella paphiopedili sp. nov., a new species on orchid (Paphiopedilum sp.) from Guizhou, China

Lian-chai Song^{‡,§}, Lu Huang^I, Yao Feng[‡], Li-li Wang[§], Xing-yu An^I, Zuo-yi Liu[¶]

‡ College of Agriculture, Guizhou University, Guiyang, China

§ Scientific research administration office, Guizhou Academy of Agricultural Sciences, Guiyang, China

| Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China

¶ Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China

Corresponding author: Zuo-yi Liu (gzliuzuoyi@163.com)

Abstract

Background

Paphiopedilum is known as "slipper orchids", which has a high ornamental value and can be used as household bonsai and garden plants. *Paphiopedilum* is also one of the most beautiful plants in the world due to their exotic and unique flowers. An asexual fungus was collected from diseased leaves of *Paphiopedilum* sp. from Guizhou Province, China, is described and illustrated on the basis of morphological characters and molecular evidence.

New information

The morphologies of *Curvicladiella paphiopedili* sp. nov. were characterized by penicillate conidiophores with a stipe, dull, tapering towards the apex and the curved stipe extension, cylindrical conidia. In the phylogenetic analyses of combined LSU, cmdA, his3, ITS, tef1 and tub2 sequence data, this taxon was clustered as sister to *Curvicladiella cignea* within Nectriaceae.

Keywords

morphology, phylogeny, taxonomy

Introduction

Nectriaceae (Hypocreales, class) includes many important plant and human pathogens, and some species were used as biodegraders and biocontrol agents in industrial and

© Song L et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

commercial applications (Lombard et al. 2015). Based on molecular studies, many sexual genera in Nectriaceae were placed in *Nectria sensu lato* (Rehner and Samuels 1995, Rossman et al. 1999). However, *Nectria* sensu stricto is restricted to the type species *N. cinnabarina* (Tode) Fr et al. with tubercularia-like asexual morphs (Rossman 2000, Hirooka et al. 2012). A number of studies have treated taxonomic concepts within Nectriaceae based on multi-gene phylogenetic inference (Lombard et al. 2010a, Lombard et al. 2010b, Lombard and Crous 2012a, Lombard et al. 2014a, Lombard et al. 2014b, Lombard and Crous 2012b, Chaverri et al. 2011, Gräfenhan et al. 2011, Schroers et al. 2011, Hirooka et al. 2012). Lombard et al. (2015) provided a phylogenetic backbone tree for Nectriaceae based on a combined sequence data of 10 gene regions.

Decock and Crous (1998) established *Curvicladium* (as *Curvicladiella*) with *C. cigneum* (as *Curvicladiella cignea*) as the type species. The genus is distinct from morphologically similar genera, such as *Cylindrocladium* Morgan, *Cylindrocladiella* Boesew, *Gliocladiopsis* Saksena, *Falcocladium* Silveira, Alfenas, Crous, Wingf and *Xenocylindrocladium* Decock, Hennebert, Crous by having cylindrical conidia and stipe extensions (Decock and Crous 1998). *Curvicladiella cignea* is the only species in the genus.

Based on the phylogenetic analyses and morphological characters, the fungus collected from diseased leaves of *Paphiopedilum* sp. was identified as a new species in *Curvicladiella*, which has been proved to be a plant pathogen (Song et al. 2020).

Materials and methods

Sample collection and isolation

Diseased orchid leaves were collected from Guizhou botanical garden, Guizhou Province, China (in August 2019). The samples were brought to laboratory in envelopes, photographed and identified. Pieces of leaves (5 × 5 mm), each with half part diseased and half healthy, were sterilized by 75% ethanol for 5–10 s, rinsed three times with sterilized distilled water, placed on potato dextrose agar (PDA) and incubated at 25°C for two days (Fang 2001). Mycelia were transferred to PDA, incubated for ten days at 25°C to get the pure cultures. Morphological characters were observed using Nikon SMZ 745 stereomicroscope. Measurements were made using Image Frame Work.

Pure cultures were deposited in Guizhou Culture Collection (GZCC) Guizhou, China and Mae Fah Luang University Culture Collection (MFLUCC), Chiang Rai, Thailand. Herbarium specimens were deposited in the Guizhou Academy of Agricultural Sciences (GZAAS), Guiyang, China and the herbarium of Mae Fah Luang University (MFLU), Chiang Rai, Thailand.

DNA extraction, PCR amplification and sequencing

The fungal mycelia were scraped from the pure culture growing on PDA for ten days at 25°C. DNA was extracted using Ezup Column Fungi Genomic DNA Purification Kit

(Sangon Biotech, China). Gene sequences were determined for 28S large subunit (LSU) nrDNA, calmodulin (cmdA), histone H3 (his3), internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), translation elongation factor 1-alpha (tef1) and β -tubulin (tub2). Primer pairs used for amplifying each gene region were listed in Table 1. Polymerase chain reaction (PCR) was carried out in 25 ul reaction volume containing 12.5 ul 2 × PCR Master Mix (Sangon Biotech, China), 9.5 ul ddH₂O, 1ul of each primer and 1ul DNA template. The PCR products were examined by using 1.2% agarose electrophoresis gel stained with ethidium bromide and were purified and sequenced by Sangon Biotech (Shanghai) Co., Ltd, China. The nucleotide sequences were submitted in GenBank.

Phylogenetic analyses

Phylogenetic analyses were performed using a combined sequence data with six gene regions, LSU, cmdA, his3, ITS, tef1 and tub2. Related strains of *Curvicladiella* (Table 2) were referred to Lombard et al. (2015). Sequences were obtained from GenBank. The sequences were aligned using the online multiple alignment program MAFFT v.7 (http://mafft.cbrc.jp/alignment/server/) (Standley 2013). The alignments were checked visually and optimized manually by using BioEdit v 7.2.6.1.

Maximum likelihood (ML) analysis was performed using raxmlGUI 1.3.1 (Silvestro and Michalak 2012). The optimal raxML tree search was conducted with 1000 bootstrap replicates and the default algorithm was used from a random starting tree for each replicate. The final tree was selected among suboptimal trees from each replicate by comparing likelihood scores under the GTR+GAMMA substitution model.

Maximum parsimony (MP) analysis was performed with the heuristic search in PAUP v. 4.0b10 (Swofford 2002). All characters were equally weight and unordered. Gaps were treated as missing in the alignment. Maxtrees were unlimited. All multiple, equally parsimonious trees were saved. The zero length of branches were collapsed. Clade stability was assessed by using a bootstrap (BT) analysis with 1000 replicates, each with 10 replicates of random stepwise addition of taxa (Hillis and Bull 1993).

Bayesian analyses were carried out using MrBayes 3.2 (Huelsenbeck 2012). MrModeltest 2.2 was used to choose the best-fit evolutionary model (Nylander 2004). Posterior probabilities (PP) (Rannala and Yang 1996, Zhaxybayeva and Gogarten 2002) were determined by Markov Chain Monte Carlo sampling (MCMC) in MrBayes v. 3.2. Six simultaneous Markov chains were run for 100000000 generations and trees were sampled every 1000th generation. The temperature values were lowered to 0.15, burn-in was set to 0.25, and the run was automatically stopped as soon as the average standard deviation of split frequencies reached below 0.01.

The resulting trees of maximum likelihood, maximum parsimony and bayesian were visualized with Fig Tree v1.4.0. The layouts were done in the program of Microsoft powerpoint 2010 and Adobe Photoshop CS6.

Taxon treatment

Curvicladiella paphiopedili Lian-Chai Song , Jing Yang, Zuo-Yi Liu, 2019, sp. nov.

- IndexFungorum http://www.indexfungorum.org/names:IF558310
- Species-ID Facesoffungi number: FOF 09697

Materials

Holotype:

scientificName: Curvicladiella paphiopedili; class: Sordariomycetes; order: Hypocreales; family: Nectriaceae; genus: Curvicladiella; locationRemarks: China, Gui Zhou Province, Guiyang City, Guizhou botanical garden, 26°37'N, 106°43'E,13 August 2019; habitat: Terrestrial; fieldNotes: diseased leaves of Paphiopedilum sp.; recordNumber: zwy-dl4-2; recordedBy: Lian Chai Song; type: StillImage; language: English; collectionID: MFLU 20-0203

Isotype:

a. collectionID: GZAAS 19-2061

Description

Pathogenic fungi on *Paphiopedilum* sp. through an artificial infection test. **Asexual morph:** Colonies white, scattered, hairy. Conidiophores straight to flexuous, consisting of a stipe bearing a penicillate arrangement of fertile branches, stipe septate, hyaline, smooth; stipe extensions septate, straight or curved, dull and tapering towards the apex, $128.5-549.9 \ \mu m$ long, (\bar{x} = $288.1 \ \mu m$, n = 20). The primary branches aseptate of conidiogenous apparatus, $9.3-17.5 \times 2.6-3.7 \ \mu m$; secondary branches aseptate, $9.9-19.1 \times 2.5-3.9 \ \mu m$; tertiary branches aseptate, $9.5-17.6 \times 2.6-3.7 \ \mu m$; quaternary and additional branches (-6) aseptate, $11-16.3 \times 2.5-3.9 \ \mu m$, each terminal branch producing 2–4 phialides; phialides doliiform to reniform, hyaline, aseptate, apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight, 1-septate, hyaline, (30.5–) 31.2–37.2 (-42.0) × (2.6–) 2.9–3.5 (-3.9) \ \mu m, (\bar{x} = $34.2 \times 3.2 \ \mu m$, n = 20) (Fig. 1). **Sexual morph:** not observed.

Culture characters: After 10 days at 25°C on PDA, colonies reached 47 mm in diam. Beige to pale yellow colony on the surface, brown in reverse with irregular margins, extensive sporulation on the medium surface. Conidiophores straight to flexuous, consisting of a stipe bearing a penicillate arrangement of fertile branches, stipe extensions septate, straight or slightly flexuous, 104.4–153.0 µm long, (\bar{x} = 128.7 µm, n = 10). The primary branches aseptate of conidiogenous apparatus, 8.9–17.8 × 2.7–3.4 µm; secondary branches aseptate, 7.8–14.0 × 2.5–5.9 µm; tertiary branches aseptate, 8.9–17.7 × 2.3–3.5 µm; quaternary and additional branches (–6) aseptate, 9.3–16.7 × 2.3–3.7 µm, each terminal branch producing 2–4 phialides; phialides doliiform to reniform, hyaline, aseptate, apex with minute periclinal thickening and inconspicuous collarette. Conidia cylindrical, rounded at both ends, straight, 1-septate, hyaline, (38.5–) 45.2–56.6 (–63.2) × (2.2–) 2.9–4.2 (–4.9) μ m, (\bar{x} = 50.9 × 3.5 μ m, n = 40). Chlamydospores thick-walled, ellipsoidal or sphaeropedunculate, brown to hyaline, (9.0–) 11.9–20.7 (–23.1) × (8.1–) 8.9–12.8 (–15.4) μ m, (\bar{x} = 16.3 × 10.8 μ m, n = 20) (Fig. 2).

Material: ex-type living culture, MFLUCC 20-0110.

Etymology

Refers to the host name Paphiopedilum sp.

Analysis

Phylogenetic analyses

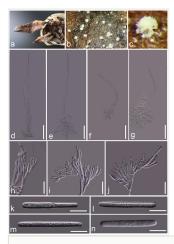
The alignment of combined LSU, cmdA, his3, ITS, tef1 and tub2 sequence data comprised a total of 3872 characters with gaps (840bp for LSU, 734bp for cmdA, 529bp for his3, 611bp for ITS, 548bp for tef1 and 610bp for tub2). The dataset composed 38 taxa with *Campylocarpon fasciculare* and *C. pseudofasciculare* as the outgroup taxa. The best scoring RAxML tree was shown in Fig. 3, the MP and bayesian tree (not shown) had a similar topology with the ML tree. *Curvicladiella paphiopedili* was clustered as sister taxon to *C. cignea* within Nectriaceae with high support (99/98/1.00) (Fig. 3).

Discussion

Morphologically, *Curvicladiella paphiopedili* is similar to species in *Calonectria*, *Cylindrocladium* and *Xenocylindrocladium*, but distinct in having ellipsoidal or sphaeropedunculate chlamydospores (Fig. 2k), dull, tapering towards the apex (Fig. 1d, e, Fig. 2e–g), and curved extension stipes (Fig. 1f, g). Without obpyriform, ovoid, ellipsoidal or sphaeropedunculate vesicles (Lombard et al. 2010a, Pham et al. 2019) or coiled stipes (Decock et al. 1997). The morphology of *Curvicladiella paphiopedili* is different from the type species *Curvicladiella cignea* with in the size of extension stipes, conidia and chlamydospores, without swollen cell below the apical septum, on the other hand, the curved position of stipes are different. In the phylogenetic analyses, the two taxa of *Curvicladiella* formed a well-supported monoclade and *Curvicladiella aphiopedili* represented a distinct lineage (Fig. 3).

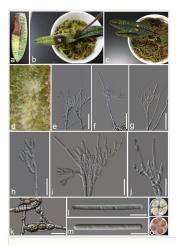
Acknowledgements

This research is supported by the following projects: National Natural Science Foundation of China (31660011), Guizhou Graduate Research Funding : Taxonomic and Phylogenetic studies of microfungi from Bamboo in Guizhou (Qianjiaohe YJSCXJH [2019]


022) for supporting this study. Lian-chai Song thanks Jing Yang for guiding the experiments and modifing the articles.

References

- Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91 (3): 553-556. <u>https://doi.org/10.2307/3761358</u>
- Chaverri P, Salgado C, Hirooka Y, Rossman AY, Samuels GJ (2011) Delimitation of *Neonectria* and *Cylindrocarpon* (Nectriaceae, Hypocreales, Ascomycota) and related genera with *Cylindrocarpon*-like anamorphs. Studies in Mycology 68 (1): 57-78. <u>https://</u> doi.org/10.3114/sim.2011.68.03
- Crous PW, Groenewald JZ, Risede J, Hyweljones N (2004) Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology 50 (2004): 415-430. <u>https://doi.org/10.1023/B:MYCO.0000012225.79969.29</u>
- Decock C, Hennebert GL, Crous PW (1997) *Nectria serpens* sp. nov. and its hyphomycetous anamorph *Xenocylindrocladium* gen. nov. Mycological Research 101 (7): 786-790. <u>https://doi.org/10.1017/S0953756296003334</u>
- Decock C, Crous PW (1998) Curvicladium gen. nov., a new hyphomycete genus from French Guiana. Mycologia 90 (2): 276-281. <u>https://doi.org/</u> <u>10.1080/00275514.1998.12026907</u>
- Fang ZD (2001) Research method of plant pathology. China Agriculture Press, Beijing, 427 pp. [In Chinese].
- Gräfenhan T, Schroers HJ, Nirenberg HI, Seifert KA (2011) An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in *Cosmospora*, *Acremonium, Fusarium, Stilbella*, and *Volutella*. Studies in Mycology 68 (68): 79-113.
- Groenewald JZ, Nakashima C, Nishikawa J, Shin HD, Crous PW (2013) Species concepts in *Cercospora*: spotting the weeds among the roses. Studies in Mycology 75 (1): 115-170. <u>https://doi.org/10.3114/sim0012</u>
- Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182-192. <u>https://doi.org/10.1093/sysbio/42.2.182</u>
- Hirooka Y, Rossman AY, Samuels GJ, Lechat C, Chaverri P (2012) A monograph of *Allantonectria*, *Nectria*, and *Pleonectria* (Nectriaceae, Hypocreales, Ascomycota) and their pycnidial, sporodochial, and synnematous anamorphs. Studies in Mycology 71 (1): 1-210. <u>https://doi.org/10.3114/sim0001</u>
- Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539-542. https://doi.org/10.1093/sysbio/sys029
- Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010a) Phylogeny and systematics of the genus *Calonectria*. Studies in Mycology 66 (1): 31-69. <u>https://doi.org/10.3114/sim.</u> 2010.66.03
- Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010b) Species concepts in Calonectria (Cylindrocladium). Studies in Mycology 66 (66): 1-13. <u>https://doi.org/</u> 10.3114/sim.2010.66.01
- Lombard L, Crous PW (2012a) Phylogeny and taxonomy of the genus *Gliocladiopsis*.
 Persoonia 28: 25-33. <u>https://doi.org/10.3767/003158512X635056</u>


- Lombard L, Crous PW (2012b) Phylogeny and taxonomy of the genus *Cylindrocladiella*. Mycological Progress 28 (1): 25-33. <u>https://doi.org/10.1007/s11557-011-0799-1</u>
- Lombard L, Serrato-Diaz LM, Cheewangkoonm R (2014a) Phylogeny and taxonomy of the genus *Gliocephalotrichum*. Persoonia 32 (3): 127-140.
- Lombard L, Merwe N, Groenewald JZ, Crous PW (2014b) Lineages in Nectriaceae: reevaluating the generic status of *Ilyonectria* and allied genera. Phytopathologia Mediterranea 53 (3): 340-357. <u>https://doi.org/10.14601/Phytopathol_Mediterr-14976</u>
- Lombard L, Merwe N, Groenewald JZ, Crous PW (2015) Generic concepts in Nectriaceae. Studies in Mycology 80: 189-245. <u>https://doi.org/10.1016/j.simyco.</u> 2014.12.002
- Nylander J (2004) MrModeltest v2. Program distributed by the author. Bioinformatics 24: 581-58. URL: <u>http://www.abc.se/~nylander/mrmodeltest2/mrmodeltest2.html</u>
- O'Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. Molecular Phylogenetics & Evolution 7 (1): 103-116. https://doi.org/10.1006/mpev.1996.0376
- O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutinary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genelogies. Proceedings of the National Academy of Sciences of the United States of America 95 (5): 2044-2044.
- Pham NQ, Barnes I, Chen SF, Liu FF, Dang QN, Pham TQ, Lombard L, Crous PW, Wingfield MJ (2019) Ten new species of *Calonectria* from Indonesia and Vietnam. Mycologia 111: 1-25.
- Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution 43: 304-311. <u>https:// doi.org/10.1007/BF02338839</u>
- Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98 (6): 625-634. <u>https://doi.org/10.1016/S0953-7562(09)80409-7</u>
- Rehner SA, Samuels GJ (1995) Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Canadian Journal of Botany 73 (S1): 816-823. <u>https://doi.org/10.1086/175815</u>
- Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999) Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Studies in Mycology 42 (42): 1-248.
- Rossman AY (2000) Towards monophyletic genera in the holomorphic Hypocreales. Studies in Mycology 45 (45): 27-34.
- Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organisms
 Diversity & Evolution 12 (4): 335-337. <u>https://doi.org/10.1007/s13127-011-0056-0</u>
- Song LC, Feng Y, Liu ZY (2020) First report of leaf blight on *Paphiopedilum* caused by *Curvicladiella* sp. (GZCC19-0342) in China. Plant Disease 104: 3079-3079. <u>https://doi.org/10.1094/PDIS-02-20-0223-PDN</u>
- Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. <u>https://doi.org/10.1093/molbev/mst010</u>

- Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. MA:Sinauer Associates Sunderland, UK.
- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172 (8): 4238-4246. <u>https://doi.org/doi.http://dx.doi.org/</u>
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, New York, 315 pp.
- Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3 (1). <u>https://doi.org/10.1186/1471-2164-3-4</u>

Figure 1.

Curvicladiella paphiopedili. **a** The diseased leaves were Withered **b**, **c** Conidiomata **d-g** Stipes extension and conidiogenous cells **h-j** Conidiogenous cells and conidiophores **k-n** Conidia. Scale bars: $d-g=50 \ \mu m$, $h-j=20 \ \mu m$, $k-n=10 \ \mu m$.

Figure 2.

Curvicladiella paphiopedili. (MFLU 20-0203, holotype) **a** *Paphiopedilum* diseased leaf in the field **b** *Curvicladiella paphiopedili* caused *Paphiopedilum* leaf diseased through an artificial infection test **c** The contrast **d** Colonies on PDA producing conidia masses **e–j** Conidiophores, conidiogenous cells and stipes extension **k** Chlamydosporae **I**, **m** Conidia **n**, **o** Culture on PDA, (**n**) from above, (**o**) from blow. Scale bars: **e–g**=50 µm, **h–k**=20 µm, **I**, **m**=10 µm.

- ARPHA Preprints Author-formatted, not peer-reviewed document posted on 08/11/2021. DOI: https://doi.org/10.3897/arphapreprints.e77780

Figure 3.

The RAxML tree based on analysis of LSU, cmdA, his3, ITS, tef1 and tub2 sequnces data. Bootstrap support values for ML, MP and Bayesian greater than 75%, 75% and 0.95 were given near nodes respectively. The tree was rooted with *Campylocarpon fasciculare* and *Campylocarpon pseudofasciculare*. The new isolate was marked in red.

Table 1. Primers pairs used in this study.						
Locus	Primers References					
LSU	LROR	Rehner and Samuels 1994				
	LR5	Vilgalys and Hester 1990				
CMDA	CAL-228F	Carbone and Kohn 1999				
	CAL2Rd	Groenewald et al. 2013				
HIS3	CYLH3F, CYLH3R	Crous et al. 2004				
ITS	ITS5, ITS4	White et al. 1990				
TEF1	EF1-728F	Carbone and Kohn 1999				
	EF2	O'Donnell et al. 1998				
TUB2	T1	O'Donnell and Cigelnik 1997				
	CYLTUB1R	Crous et al. 2004				

Table 2.

Isolated taxa used in this study and their GenBank accession numbers. The type species are superscripted T and the newly generated sequences are indicated in red.

Таха	lsolate numbers	GenBank Accession numbers						
		LSU	CMDA	HIS3	ITS	TEF1	TUB2	
Penicillifer penicilliferi	CBS 423.88T	KM231607	KM231269	KM231453	KM231739	KM231859	KM231995	
Penicillifer bipapillatus	CBS 420.88T	KM231608	KM231270	KM231454	KM231740	KM231860	KM231996	
Penicillifer diparietisporus	CBS 376.59T	KM231609	KM231271	KM231455	KM231741	KM231861	KM231997	
Penicillifer pulcher	CBS 560.67T	KM231610	KM231272	KM231456	KM231742	KM231862	KM231998	
Corallonectria jatrophae	CBS 913.96T	KM231611	KM231273	KM231457	KC479758	KM231863	KC479787	
Dematiocladium celtidis	CBS 115994T	AY793438	KM231274	-	AY793430	KM231864	_	
Aquanectria submersa	CBS 394.62T	KM231612	-	KM231458	HQ897796	-	KM231999	
Aquanectria penicillioides	CBS 257.54	KM231613	KM231275	-	KM231743	KM231865	KM232000	
Gliocladiopsis sagariensis	CBS 199.55T	JQ666078	KM231276	JQ666031	JQ666063	JQ666106	JQ666141	
Gliocladiopsis pseudotenuis	CBS 116074T	JQ666080	KM231277	JQ666030	AF220981	JQ666099	JQ666140	
Gliocladiopsis irregularis	CBS 755.97T	JQ666082	KM231278	JQ666023	AF220977	KF513449	JQ666133	
Cylindrocladiella Iageniformis	CBS 340.92T	JN099165	KM231279	AY793520	AF220959	JN099003	AY793481	
Cylindrocladiella camelliae	CPC 234T	JN099249	KM231280	AY793509	AF220952	JN099087	AY793471	
Cylindrocladiella parva	CBS 114524T	JN099171	KM231281	AY793526	AF220964	JN099009	AY793486	
Gliocephalotrichum Iongibrachium	CBS 126571T	KM231686	KM231282	KF513367	DQ278422	KF513435	DQ377835	

- ARPHA Preprints Author-formatted, not peer-reviewed document posted on 08/11/2021. DOI: https://doi.org/10.3897/arphapreprints.e77780

Gliocephalotrichum bulbilium	CBS 242.62T	AY489732	KM231283	KF513326	-	KM231892	DQ377831
Gliocephalotrichum cylindrosporum	CBS 902.70T	JQ666077	KM231284	KF513353	DQ366705	KF513408	DQ377841
Calonectria ilicicola	CBS 190.50T	GQ280727	AY725764	AY725676	GQ280605	AY725726	AY725631
Calonectria brassicae	CBS 111869	GQ280698	GQ267382	DQ190720	GQ280576	FJ918567	AF232857
Calonectria naviculata	CBS 101121T	GQ280722	GQ267399	GQ267252	GQ280600	GQ267317	GQ267211
Curvicladiella cignea	CBS 101411	JQ666075	KM231285	KM231459	KM231744	KM231866	KM232001
Curvicladiella cignea	CBS 109168	JQ666074	KM231286	KM231460	KM231745	KM231868	KM232003
Curvicladiella cignea	CBS 109167T	AY793431	KM231287	KM231461	AF220973	KM231867	KM232002
Curvicladiella paphiopedili	MFLUCC 20-0110 ^T	MT279199	MT294104	MT294105	MT279198	MT294103	MT294102
Xenocylindrocladium subverticillatum	CBS 113660T	KM231687	KM231288	KM231462	AF317347	KM231893	AF320196
Xenocylindrocladium guianense	CBS 112179T	JQ666073	KM231289	KM231463	AF317348	KM231895	AF320197
Xenocylindrocladium serpens	CBS 128439T	KM231688	KM231290	KM231464	AF220982	KM231894	AF320196
Thelonectria olida	CBS 215.67T	HM364317	KM231325	KM231487	AY677293	HM364345	KM232024
Thelonectria trachosa	CBS 112467T	HM364312	KM231326	KM231488	AY677297	KM231896	AY677258
Thelonectria discophora	CBS 125153	HM364307	KM231327	KM231489	HM364294	KM231897	HM352860
Cylindrocarpostylus gregarius	CBS 101074	KM231614	KM231291	-	KM231746	KM231869	KM232004
Cylindrocarpostylus gregarius	CBS 101072T	JQ666084	KM231292	-	KM231747	KM231870	KM232005
Cylindrocarpostylus gregarius	CBS 101073	JQ666083	KM231293	KM231465	KM231748	KM231871	KM232006

Rugonectria rugulosa	CBS 129158	JF832761	KM231295	KM231467	JF832661	KM231872	JF832911
Rugonectria rugulosa	CBS 126565	KM231615	KM231296	KM231468	KM231749	KM231873	KM232007
Rugonectria neobalansae	CBS 125120	HM364322	KM231294	KM231466	KM231750	KM231874	HM352869
Campylocarpon fasciculare	CBS 112613T	HM364313	KM231297	JF735502	AY677301	JF735691	AY677221
Campylocarpon pseudofasciculare	CBS 112679T	HM364314	KM231298	JF735503	AY677306	JF735692	AY677214

^T Ex-type and ex-epitype cultures.1 CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: P.W. Crous collection.2 LSU: 28S large subunit; cmdA: calmodulin; his3: histone H3; ITS: the internal transcribed spacer region and intervening 5.8S nrRNA; tef1: translation elongation factor 1-alpha; tub2;β-tubulin.