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Abstract 

Boxwood blight, caused by the ascomycete fungi Calonectria pseudonaviculata and C. 

henricotiae, is an emerging plant disease of boxwood (Buxus spp.) that has had devastating 

impacts on the health and productivity of boxwood in both the horticultural sector and native 

ecosystems. In this study, we predicted the potential distribution of C. pseudonaviculata at 

regional and global scales and explored how climatic factors shape its known range limits. Our 

workflow combined multiple modeling algorithms to enhance the reliability and robustness of 

predictions. We produced a process-based climatic suitability model in the CLIMEX program 

and combined outputs of six different correlative modeling algorithms to generate an ensemble 

correlative model. All models were fit and validated using an occurrence record dataset (N = 292 

records from 24 countries) comprised of positive detections of C. pseudonaviculata from across 

its entire known invaded range. Evaluations of model performance provided validation of good 

model fit for all models. A consensus map of CLIMEX and ensemble correlative model 

predictions indicated that not-yet-invaded areas in eastern and southern Europe and in the 

southeastern, midwestern, and Pacific coast regions of North America are climatically suitable 

for establishment. Most regions of the world where Buxus and its congeners are native are also at 

risk of establishment, which suggests that C. pseudonaviculata should be able to significantly 

expand its range globally if susceptible hosts exist. Our findings provide the first insight into the 

global invasion threat of boxwood blight, and are valuable to stakeholders who need to know 

where to focus surveillance efforts for early detection and rapid response measures to prevent or 

slow the spread of the disease.
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Introduction 1 

 2 

Invasive plant pathogens are a global threat to the health, productivity, and diversity of plants in 3 

both agricultural and native ecosystems (Fisher et al. 2012, Lovett et al. 2016, Paini et al. 2016, 4 

Thakur et al. 2019). Plant pathogens including viruses, bacteria, oomycetes and fungi have been 5 

dispersing at unprecedented levels owing to increasing global trade and human travel, often 6 

remaining undetected or unidentified until they have spread and created visible impacts on hosts 7 

and recipient ecosystems (Fisher et al. 2012, Ricciardi et al. 2017, Thakur et al. 2019). In forest 8 

ecosystems, anthropogenic introductions of fungal and fungal-like pathogens are the main cause 9 

of emerging infectious diseases in trees, such as the well-known examples of chestnut blight and 10 

Dutch elm disease in North America (Lovett et al. 2016, Thakur et al. 2019). Ascomycete plant 11 

pathogens that can infect multiple host species in cultivated (e.g., parks, gardens, orchards, or 12 

nurseries) and native ecosystems tend to be particularly invasive, and include some of the most 13 

destructive pests of forest trees in countries with high levels of live plant trade (Santini et al. 14 

2013, Lovett et al. 2016, Nahrung and Carnegie 2020).  15 

Boxwood blight, also known as box blight, is an emerging disease of species in the genus 16 

Buxus, many of which are major evergreen shrub crops and iconic landscape plants (Batdorf 17 

2005, Daughtrey 2019, Hong 2019b), as well as a keystone forest species (Kolganikhina 2014, 18 

Matsiakh 2016, Mitchell et al. 2018, Şimşek et al. 2019). This disease is caused by two invasive 19 

ascomycete fungi, Calonectria pseudonaviculata (Cps) (Lombard et al. 2010) and C. henricotiae 20 

(Gehesquière et al. 2016). Both pathogen species can infect and blight boxwood foliage, 21 

resulting in rapid plant death. Calonectria henricotiae is only known to occur in Europe, whereas 22 

Cps has a wider distribution that presently spans 24 countries primarily in Europe, Asia, and 23 

North America (Gehesquière et al. 2016, Daughtrey 2019, Castroagudín et al. 2020a, EPPO 24 

2020). Cps typically disperses long distances through human-mediated transport of diseased 25 

liners (young plants) and nursery stock (Gehesquière 2014, Daughtrey 2019), often going 26 

undetected because plants can be asymptomatic until exposed to weather patterns favoring 27 

infection and subsequent symptom development (Gehesquière et al. 2013, LeBlanc et al. 2018). 28 

After the initial detection of Cps in the United Kingdom in 1994 (Henricot et al. 2000), the 29 

pathogen was reported from New Zealand in 1998 (Crous et al. 2002) and had spread to at least 30 

eight countries in continental Europe by 2013 (Palmer and Shishkoff 2014). Cps was first 31 
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detected in western Asia in 2010, and has since become widespread throughout native Buxus 32 

forests in the Black Sea region of Turkey and the Caucasus (Gorgiladze et al. 2011, Akili et al. 33 

2012, Gasich et al. 2013) up to the Caspian Hyrcanian forests of northern Iran (Mirabolfathy 34 

2013, Rezaee et al. 2013, Khazaeli et al. 2018). Initial reports of Cps in North America in 2011 35 

and 2012 were from the east coast of the United States (Douglas 2012, Ivors et al. 2012) and in 36 

Oregon (Anonymous 2012) and British Columbia (Elmhirst et al. 2013), but the pathogen has 37 

now been documented in at least 30 U.S. states throughout the Southeast, Northeast, Midwest, 38 

and Pacific coast (Castroagudín et al. 2020b, Hall et al. 2021). 39 

Boxwood blight caused by Cps poses a serious threat to the horticultural industry, local 40 

economies, and ecosystem integrity (LeBlanc et al. 2018, Mitchell et al. 2018, Daughtrey 2019). 41 

In the United States, the ornamental horticulture industry has sustained significant financial 42 

losses because boxwood is the number one evergreen shrub sold, with an annual wholesale value 43 

greater than $140 million (USDA National Agricultural Statistics Service 2020). Boxwood blight 44 

increases the cost of producing boxwood because infected plants are unsellable and must be 45 

destroyed, and controlling the disease with chemical treatments is expensive (LaMondia 2015, 46 

Daughtrey 2019, Hall et al. 2021). Total economic losses resulting from boxwood blight in 47 

Connecticut alone amounted to more than $3 million within the first year of detection (LaMondia 48 

2015). Additionally, the disease has caused declines in native Buxus forests in western Asia, 49 

which has reduced habitat for Buxus-associated biodiversity and negatively impacted ecosystem 50 

services (Mirabolfathy et al. 2013, Matsiakh 2016, Lehtijärvi et al. 2017, Mitchell et al. 2018). 51 

The full host range of Cps is unknown; however, none of 11 tested Buxus species were immune 52 

to boxwood blight (Henricot et al. 2008, Shishkoff et al. 2015, LaMondia and Shishkoff 2017), 53 

and certain Buxaceae plants in the genera Sarcococca Lindl. (Henricot et al. 2008, Malapi-Wight 54 

et al. 2016, Ryan et al. 2018) and Pachysandra Michx. (LaMondia et al. 2012, LaMondia and Li 55 

2013, Kong et al. 2017) are also vulnerable to infection. Artificial inoculations demonstrated that 56 

the host range may even include plants in other taxonomic families (Richardson et al. 2020). 57 

These findings suggest that Cps could be a significant threat to at least some of the ca. 100 Buxus 58 

species, which are primarily distributed in tropical and subtropical zones of the world, and 59 

potentially to other Buxaceae and non-Buxaceae species. Despite the rapid and ongoing spread 60 

of Cps, assessments of establishment risk for areas which have not (yet) been invaded are not 61 

well developed. Identifying areas which are conducive for establishment by invasive plant 62 
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pathogens can guide surveillance efforts and increase the likelihood that pathogens are detected 63 

early, which is the most effective and cost-efficient method to avoid the potential ecological, 64 

economic, and societal consequences of their spread (Santini et al. 2013, Lovett et al. 2016, 65 

Hong 2019a).  66 

In this study, we used multiple climatic suitability modeling approaches to predict the 67 

potential distribution of Cps at regional and global scales and explore how climatic factors shape 68 

its known range limits. Climatic suitability models, also known as ecological niche models, 69 

habitat suitability models, bioclimatic envelope models, or climatic envelope models (Elith and 70 

Graham 2009), have become an important tool for assessing establishment risk for invasive plant 71 

fungal pathogens because their growth and survival is closely related to climatic conditions, 72 

particularly temperature and moisture (Magarey et al. 2007, Lantschner et al. 2019). Indeed, the 73 

epidemiology of Cps is strongly influenced by longer periods of high relative air humidity 74 

combined with warm temperatures (Gehesquière 2014, Avenot et al. 2017, LeBlanc et al. 2018). 75 

We used a workflow that combined multiple modeling algorithms to reduce predictive 76 

uncertainty of single-models, which should enhance the reliability and robustness of predictions 77 

and provide independent perspectives into the potential distribution of invasive species (Capinha 78 

and Anastácio 2011, Lantschner et al. 2019). First, we used the CLIMEX program (Sutherst and 79 

Maywald 1985, Kriticos et al. 2016) to develop a climatic suitability model for Cps based on its 80 

predicted response to growth- and survival-limiting temperature and moisture factors. The 81 

CLIMEX approach is considered process-based because models are typically parameterized 82 

using a combination of eco-physiological data (e.g., temperature thresholds for development and 83 

survival) and point observations of occupancy or abundance from the species’ known 84 

geographical distribution (Sutherst and Maywald 1985, Kriticos et al. 2016). CLIMEX is one of 85 

the most frequently used climatic suitability modeling tools for invasive pest species, including 86 

for plant fungal pathogens (Ireland and Kriticos 2019, Lantschner et al. 2019). 87 

Next, we developed climatic suitability models for Cps using multiple correlative 88 

modeling algorithms and combined their predictions into an ensemble model to potentially 89 

increase predictive performance (Marmion et al. 2009, Shabani et al. 2016, Hao et al. 2020). 90 

Correlative climatic suitability models (hereafter correlative models) involve statistically linking 91 

spatial climatic data to species location records to estimate the probability of other locations 92 

being part of the species distribution (Elith and Graham 2009, Dormann et al. 2012). Correlative 93 
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models are thought to be less reliable in predicting a species’ potential distribution in novel 94 

climates than process-based models, but their advantages include their lower input data needs 95 

and generally lower number of parameters (Kearney and Porter 2009, Dormann et al. 2012, 96 

Peterson et al. 2015). For example, correlative models only require known distribution data as an 97 

input whereas CLIMEX models requires a more extensive baseline knowledge of the species. By 98 

joining process-based and correlative approaches in a combined workflow, we strived to 99 

incorporate advantages of each approach (Lantschner et al. 2019). Our specific objectives were 100 

to identify range-limiting climatic factors for Cps using each modeling approach, and to compare 101 

the models’ predictions of climatic suitability and the overall potential distribution of the 102 

pathogen at both regional and global scales. The models developed for this study may help with 103 

identifying locations for surveillance to detect Cps before it establishes, and they may provide 104 

insight into its potential native range, which is hypothesized to be in a host center of diversity for 105 

Buxus in East Asia, the Caribbean, or Madagascar (LeBlanc et al. 2018, Daughtrey 2019). 106 

 107 

Methods 108 

 109 

Boxwood blight occurrence records 110 

To fit and validate CLIMEX and correlative models, we compiled 292 occurrence records for 111 

Cps from 24 countries, which spans the entire known distribution of the pathogen (Europe, Asia, 112 

New Zealand, and North America; Appendix 1, Supporting information). Occurrence records 113 

were derived from peer-reviewed literature, theses, reports, media sources (e.g., online news 114 

articles), the Global Biodiversity Information Facility (2nd April 2021; GBIF Occurrence 115 

Download https://doi.org/10.15468/dl.44z8yr), CERIS Pest Tracker 116 

(https://pest.ceris.purdue.edu/), the Agricultural Research Service Fungal Database 117 

(https://nt.ars-grin.gov/fungaldatabases/), and personal communications. We excluded any record 118 

collected from garden centers and/or newly established plantings with boxwood plant stocks 119 

originating from another state. Ideally, positive confirmations of Cps should be based on both 120 

morphological and laboratory-collected data (e.g., genetic and physiological characterization) 121 

because some symptoms of boxwood blight overlap somewhat with those of other boxwood 122 

diseases (Daughtrey 2019). For several Cps records, confirmations were based only on 123 

morphological data, or the source did not provide any information on the confirmation process. 124 
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However, these records were within or close to areas where Cps is known to occur, which 125 

suggests the species was correctly identified. Most records for the United States (101/156 = 126 

65%) were spatially resolved only to the county level due to confidentiality concerns, whereas all 127 

other records were resolved to at least the city level. 128 

 129 

CLIMEX model 130 

The CLIMEX model for Cps was generated using CLIMEX version 4.0 (Kriticos et al. 2016). 131 

CLIMEX uses a re-formatted version of the CliMond dataset (Kriticos et al. 2012), which is 132 

comprised of 35 Bioclim variables for the 1961‒1990 time period (https://www.climond.org/). 133 

CLIMEX data have a 10′ resolution (ca. 55 km2 at the equator) spatial resolution, which is 134 

appropriate given that most records from the United States were spatially resolved only to county 135 

level. Eco-physiological information for parameterizing a CLIMEX model for Cps was derived 136 

from published studies on the impacts of temperature and moisture on the development and 137 

survival of the vegetative growing stage as well as the more stress-tolerant microsclerotia stage, 138 

which can remain dormant on soil surfaces for months or even years (Henricot et al. 2008, Dart 139 

et al. 2015). We fine-tuned CLIMEX parameters by fitting the model to occurrence records from 140 

Europe and western Asia (N = 125), where the species may have had more time to fill its 141 

climatic niche compared to more recently invaded regions. Only one parameter was adjusted at a 142 

time during this process. We then validated the CLIMEX model by verifying that records from 143 

North America (N = 159) and New Zealand (N = 8) fell within climatically suitable areas as 144 

defined by the ecoclimatic index, which ranges from 0 to 100 and describes the overall suitability 145 

of a location for long-term persistence by a species (Sutherst 2014, Kriticos et al. 2016). The 146 

ecoclimatic index integrates the annual growth index, which describes the potential for 147 

population growth (also ranging from 0 to 100), with annual stresses that limit survival during 148 

unfavorable intervals (cold, heat, dry, and wet stress) and potentially other limiting factors such 149 

as diapause. A species is considered to be excluded from locations which have an ecoclimatic 150 

index of zero, whereas increasing ecoclimatic index values signify higher potential for growth 151 

and survival (Kriticos et al. 2016). We report CLIMEX model parameters for Cps in Table 1 and 152 

describe how we derived each parameter value in the next two subsections. 153 

 154 

Temperature and moisture index parameters 155 
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Four temperature index parameters in CLIMEX describe the ability for temperature-driven 156 

population growth: DV0 (limiting low temperature), DV1 (lower optimal temperature), DV2 157 

(upper optimal temperature), and DV3 (limiting high temperature). Cps may develop at 158 

temperatures as low as 5 ºC (Henricot and Culham 2002, Gehesquière 2014, Gehesquière et al. 159 

2016), but we set DV0 to 9 ºC to avoid potential biases resulting from canopy temperatures being 160 

lower than estimates from weather stations, which can produce errors in plant disease models 161 

(Pfender et al. 2012). We set DV1 and DV2 to 21 and 25 ºC, respectively, because this 162 

temperature range is associated with optimal growing conditions in both field and laboratory 163 

settings (Henricot and Culham 2002, Gehesquière 2014, Gehesquière et al. 2016, Avenot et al. 164 

2017, Lehtijärvi et al. 2017). We used an upper threshold of 29 ºC because Cps colonies exhibit a 165 

low growth rate and have irregular and sclerotized morphologies at temperatures ≥ 28 ºC 166 

(Gehesquière 2014, Gehesquière et al. 2016, Avenot et al. 2017). Our unpublished re-analysis of 167 

Gehesquiere (2014) data indicated that 500 degree-hours during continuous leaf wetness would 168 

cause between ca. 10-50% infection for B. sempervirens and B. s. var ‘Suffruticosa’, which is 169 

equivalent to 20 degree-days. However, CLIMEX has no way to integrate moisture with degree-170 

day calculations, so we used a 10× higher value of 200 as a rough stand-in for the degree-days 171 

per generation parameter (PDD). The PDD value therefore has no true meaning with regard to 172 

actual infection conditions because it accounts only for favorable temperatures. 173 

CLIMEX describes the overall moisture characteristic of a location using estimates of 174 

soil moisture, which combine the interactions of temperature, rainfall and evapotranspiration. 175 

While precipitation and dew point are the primary moisture drivers of Cps growth (Shishkoff and 176 

Camp 2016, Avenot et al. 2017, LeBlanc et al. 2018), the use of soil moisture in CLIMEX 177 

should capture the species’ response to its moisture environment in a broad sense. Four soil 178 

moisture (SM) index parameters describe the influence of moisture on population growth: SM0 179 

(limiting low moisture), SM1 (lower optimal moisture), SM2 (upper optimal moisture), and SM3 180 

(limiting high moisture). For each SM parameter, a value of 0 indicates no soil moisture, a value 181 

of 0.5 indicates soil moisture content is 50% of capacity, a value of 1 indicates that soil moisture 182 

content is 100% of capacity, and a value > 1 indicates a water content greater than the soil 183 

holding capacity (Kriticos et al. 2016). We set SM0 to 0.2, which is higher than the permanent 184 

wilting point of plants in CLIMEX (SM0 = 0.1), because pathogens including Cps require free 185 

water for parts of their lifecycles. We set SM1 to 0.7 because using higher values resulted in 186 
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certain occurrence records from more inland areas of the Black Sea and Caspian Sea regions 187 

being excluded (i.e., ecoclimatic index = 0). The upper optimal value (SM2) was set to 1.7 to 188 

ensure that wet conditions were suitable, and the upper threshold (SM3) was set to 3 to remove 189 

any constraints on growth related to very high rainfall. 190 

 191 

Temperature and moisture stress parameters 192 

The cold and heat stress thresholds (TTCS and TTHS, respectively) in CLIMEX define the 193 

temperature below (TTCS) or above (TTHS) which stress begins to accumulate according to a 194 

weekly rate (Kriticos et al. 2016). For example, if the average weekly maximum temperature 195 

(Tmax) exceeds TTHS, then heat stress = (Tmax – TTHS) × THHS, where THHS is described by 196 

the slope of the relationship between weekly heat stress and average weekly Tmax. The threshold 197 

temperature function in CLIMEX has a multiplicative factor (referred to as “week number”) that 198 

causes stress to accumulate exponentially during consecutive weeks. To help identify appropriate 199 

TTCS and THHS values, we extracted minimum temperature of the coldest week data (bio6) and 200 

maximum temperature of the warmest week (bio6) data from the CliMond dataset for Cps 201 

occurrence records from Europe and western Asia. According to this analysis, all localities in the 202 

coldest parts of Cps’s distribution, which occur in northern Europe and high-elevation parts of 203 

Georgia, were in areas where weekly minimum temperatures were ≥ ‒8 ºC. This finding is 204 

consistent with temperature limits of the most cold tolerant boxwood varieties, which are almost 205 

impossible to grow in areas where temperatures drop below ‒10 ºC (United States Department of 206 

Agriculture 1976), and with laboratory studies of Cps microsclerotia survival (Shishkoff and 207 

Camp 2016, Yang and Hong 2018). We set TTCS to ‒10 ºC and adjusted the cold stress rate 208 

(THCS) to ensure that the coldest localities for Cps in Europe and western Asia fell within areas 209 

where the ecoclimatic index exceeded zero. Additionally, we considered maps of the northern 210 

range limit for European boxwood B. sempervirens (Pojark.) in Norway, which is largely 211 

confined to districts south of 62º N (Salvesen and Kanz 2009). 212 

We set TTHS to 32 ºC and adjusted the heat stress accumulation rate (HDS) so that 213 

records from the hottest part of Cps’s distribution, which occur in northern Iran along the 214 

Caspian Sea (Mirabolfathy 2013, Khazaeli et al. 2015), had ecoclimatic index values exceeding 215 

zero. Microsclerotia have been shown to survive at 40° C for at least 24 hours (Yang and Hong 216 

2018); however, other data sources suggest that heat stress accumulates at lower temperatures. 217 
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An upper lethal temperatures of 33 °C has been suggested by Henricot and Culham (2002) based 218 

on a laboratory study of conidial growth (Henricot and Culham 2002), and by Hagan and Conner 219 

based on field reports. Additionally, microsclerotia died after two to five months at 30 ºC under 220 

laboratory conditions (Shishkoff and Camp 2016), which, if translated to field conditions, would 221 

be slightly cooler in the soil under a canopy than in weather shelters. All but a single locality 222 

record for Cps in Europe and western Asia occurred in areas where weekly maximum 223 

temperatures fell below 32 ºC, which provides further evidence that this temperature is an 224 

appropriate heat stress threshold.  225 

Whereas extremely low soil moisture reduces survival of Cps (Shishkoff and Camp 2016, 226 

Avenot et al. 2017), excessive moisture is not known to be detrimental to survival of the 227 

pathogen. We set the dry stress threshold (SMDS) to 0.2 and weekly dry stress rate (HDS) to 228 

‒0.001 because this contributed to the exclusion of the species (ecoclimatic index = 0) from 229 

relatively arid areas beyond the Black Sea and Caspian Sea regions, where boxwood does not 230 

occur (Hūšang 1989, Lehtijärvi et al. 2017). Conversely, we used a relatively high wet stress 231 

threshold (SMWS) of 3.0 and set the rate of wet stress accumulation (HWS) to 0.005. We did not 232 

apply the hot-dry (interaction) stress parameter in CLIMEX because preliminary analyses 233 

indicated that it did not assist in modeling the potential distribution. 234 

 235 

Irrigation 236 

To explore how supplemental irrigation may influence climatic suitability and the potential 237 

distribution of Cps, we ran the CLIMEX model both with and without an option to apply ‘top-238 

up’ amounts irrigation (rainfall) of 2.5 mm day-1 during the summer (Kriticos et al. 2016). 239 

Summer irrigation is regularly used in horticultural settings where boxwood is grown (United 240 

States Department of Agriculture 1976), and it can play a key role in Cps growth and survival by 241 

increasing the humidity to levels conducive for sporulation and infection (Gehesquière 2014, 242 

Bartíková et al. 2020b). Henceforth the model which did not include irrigation is simply referred 243 

to as the “CLIMEX model.”  244 

 245 

Correlative models 246 

We generated correlative models for Cps in the ENMTML R package v. 1.0.0 (de Andrade et al. 247 

2020) in R version 4.0.5 (R Development Core Team 2021). ENMTML provides a suite of 248 
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functions to preprocess locality and environmental input data, fit models using a variety of 249 

algorithms, evaluate model performance for each algorithm, and combine model outputs to 250 

produce an ensemble model (de Andrade et al. 2020). We fit models using occurrence records 251 

from Europe, western Asia, and North America because prediction accuracy of correlative 252 

models is often higher when a larger proportion of the realized climatic niche is sampled 253 

(Beaumont et al. 2009, Taylor and Kumar 2012, Pili et al. 2020).  254 

Two filtering steps were taken on records to reduce biased geographic sampling, which 255 

can strongly affect the predictive performance of correlative climatic suitability models that use 256 

presence-only data (Veloz 2009, Kramer-Schadt et al. 2013). First, we reduced the effects of 257 

clustered sampling by implementing the “pp.subsample” function in the spatialEco R package v. 258 

1.3.7 (Evans 2021), which created a subsample of 80% of Cps records for both regions based on 259 

the expected spatial intensity function of the observed data. Second, we thinned records within 260 

ENMTML using the “CELLSIZE” method of the “thin_occ” function in the spThin R package v. 261 

0.2.0 (Aiello-Lammens et al. 2015), which removes records that occur within a distance of two 262 

cells. This process resulted in 67 records for Europe and western Asia (67/163 = 41%), and 96 263 

records for North America (96/163 = 59%). Maps presenting the full and subsampled occurrence 264 

records for both regions are presented in Fig. S1 (Supporting information). 265 

Twenty-seven bioclimatic variables from the CliMond dataset were used to generate 266 

correlative SDMs (Kriticos et al. 2012). The first 19 bioclimatic variables (bio1-bio19) are 267 

derived from the WorldClim data set and represent annual, weekly (interpolated from monthly), 268 

and seasonal trends and extremes in temperature and precipitation (Hijmans et al. 2005). Eight 269 

bioclimatic variables that describe weekly, quarterly and annual indices of soil moisture (bio28-270 

bio35) were also included because considering soil moisture should increase comparability of 271 

model predictions between CLIMEX and correlative models. We cropped bioclimatic layers to 272 

areas where Cps could reasonably disperse to because restricting the theoretically accessible area 273 

used for model fitting can significantly improve model performance (Cooper and Soberón 2018). 274 

This included areas between 25.5 ºN and 25.5 ºS in both regions, between 170 ºW and 51 ºW in 275 

North America (conterminous United States and southern Canada), and between 12 ºW and 61.9 276 

ºE in Eurasia (western Europe to the eastern border of Iran).  277 

A principal component analysis (PCA) was conducted based on the correlation matrix of 278 

the 27 cropped climate variables to reduce variable collinearity, which can reduce uncertainty of 279 
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correlative models and increase performance of models projections into new regions (Veloz 280 

2009, Dormann et al. 2013, Petitpierre et al. 2017, De Marco and Nóbrega 2018). We produced a 281 

dataset comprised of six principal components (PCs) that explained at least 95% of the total 282 

variance (De Marco and Nóbrega 2018) using the “rasterPCA” function in the RSToolbox R 283 

package v. 0.2.6 (Leutner and Horning 2017). The first and second PC axes explained the highest 284 

proportion of the total variance (52.2% + 27.3% = 79.5%) and had strongest contributions from 285 

moisture and temperature variables, respectively (Table 2). The first PC axis (PC1) had a strong 286 

positive loading for soil moisture seasonality (bio31) and strong negative loadings for 287 

precipitation and soil moisture during warm seasons (bio18 and bio34, respectively), reflecting 288 

lower warm season moisture and higher moisture seasonality at positive PC1 scores (Table 2 and 289 

Fig. S2, Supporting information). The second PC axis (PC2) had strong positive loadings for 290 

temperatures during cold seasons (bio6 and bio11) and strong negative loadings for temperature 291 

seasonality and annual range (bio4 and bio7, respectively), reflecting lower winter temperatures 292 

and higher temperature seasonality at positive PC2 scores. PC axes 3 through 6 explained the 293 

remaining 16.3% of total variance and were primarily related to temperatures during warm and 294 

wet seasons (PC3), wet season precipitation (PC4), diurnal cold and wet season temperature 295 

range and soil moisture (PC5), and dry season precipitation and precipitation seasonality (PC6).  296 

Six different algorithms were used to fit correlative models in ENMTML and assess 297 

variable importance. These included: boosted regression tree (Elith et al. 2008), generalized 298 

additive models (Guisan et al. 2002), Gaussian process usage (Golding and Purse 2016), Maxent 299 

with applied linear and quadratic features (“Maxent simple”) (Phillips et al. 2006, 2017), random 300 

forests (Prasad et al. 2006), and support vector machine (Guo et al. 2005). ENMTML sources 301 

modeling algorithm functions from multiple different R packages and uses default settings 302 

(Table S1, Supporting information) unless the user manually edits the program. We applied 303 

default settings for all algorithms except for Maxent, in which we increased the regularization 304 

multiplier parameter from one (default) to four to avoid model overfitting (Phillips et al. 2006). 305 

We used the three-step pseudo-absence selection method of Senay et al. (2013) to allocate 306 

pseudo-absences, wherein a sample of environmentally dissimilar locations within a 400 km 307 

buffer around occurrence records were identified and then sampled using k-means clustering. 308 

Information on the individual R package repositories and settings used for each modeling 309 

algorithm is presented in Table S1, Supporting information.  310 
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In the post-processing stage of ENMTML, we evaluated model performance for each 311 

algorithm and produced an ensemble model from single-model outputs. Model performance was 312 

assessed using 50 bootstrapped replicates for each algorithm, with a random 70% subset of 313 

records used to train the model and 30% reserved for validation. Model replicates were then 314 

projected at a global scale using the same climatic PC predictors. We evaluated SDMs using the 315 

area under the receiving operating characteristic curve (AUC), true skill statistics (TSS), Kappa, 316 

Jaccard, Sørensen, Boyce, and F-measure on presence-background data (Fpb) metrics (Boyce et 317 

al. 2002, Allouche et al. 2006, Li and Guo 2013, Leroy et al. 2018). Similarity indices from 318 

community ecology (Jaccard, Sørensen and Fpb) may provide better estimations of model 319 

discrimination capacity than metrics which depend on prevalence (the proportion of sites where 320 

the species is present) including AUC and Kappa (Allouche et al. 2006, Li and Guo 2013, Leroy 321 

et al. 2018).  322 

An ensemble model was produced by calculating a weighted mean of suitability 323 

predictions (probability of occurrence) of the best models across all algorithms, defined as those 324 

which had an Fpb metric exceeding the average for all models (Thuiller 2004). Additionally, we 325 

overlaid predictions of presence-absence produced by the six algorithms to compare 326 

delimitations of the potential distribution. The maximum TSS threshold, which maximizes the 327 

sum of sensitivity (proportion of correctly predicted observations of species presence) and 328 

specificity (proportion of correctly predicted observations of species absence), was used to 329 

produce presence-absence predictions because it may have higher accuracy than other threshold 330 

methods (Liu et al. 2005, França and Cabral 2019). We tested the climatic similarity between the 331 

model calibration and global projection areas using a mobility-oriented parity (MOP) analysis 332 

(Owens et al. 2013) to identify potential regions where strict extrapolation occurred, wherein 333 

climatic conditions are outside of the range of conditions in the calibration area. Model 334 

extrapolation into new regions or climate change scenarios may change the correlation structure 335 

between parameters and thus lead to unreliable predictions when projected outside the 336 

environmental space (Dormann et al. 2013, Owens et al. 2013, Petitpierre et al. 2017). The MOP 337 

analysis sampled 10% of reference points from the environmental space of the calibration area 338 

and was conducted within ENMTML using the “MOP” function in kuenm R package v. 1.1.7 339 

(Cobos et al. 2019). Finally, we produced consensus maps depicting areas of overlap in the 340 

potential distribution as estimated by presence-absence predictions of the ensemble correlative 341 
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model and the CLIMEX model. In theory, an ecoclimatic index which exceeds 0 indicates a 342 

potential for establishment (Kriticos et al. 2016); however, we defined the potential distribution 343 

in CLIMEX as areas which had an ecoclimatic index of at least 10 because most occurrence 344 

records (286/292 = 98%) met this criterion. 345 

 346 

Results 347 

 348 

Model evaluation and variable importance in correlative models 349 

Validation analyses indicated very good performance of the CLIMEX model and correlative 350 

models. Of the 124 occurrence records from Europe and western Asia used for fine-tuning 351 

CLIMEX parameters, only one fell within an unsuitable location (i.e., ecoclimatic index = 0). All 352 

occurrence records from North America and New Zealand were in areas that CLIMEX predicted 353 

to be climatically suitable (average ecoclimatic index = 24, range = 10 to 60), which provided 354 

validation of good model fit. Evaluation metrics for the final ensemble correlative model were 355 

very high (Table 3): the AUC, TSS, Kappa, Jaccard, Sørensen, and Boyce metrics exceeded 0.99 356 

(values > 0.90 are considered excellent performance) and Fpb was 1.99 (Fpb = 2 × Jaccard). 357 

Metric values for single models across 50 repetitions were also high, with an average of 0.998 358 

for AUC (range = 0.996‒1), 0.981 for Kappa (range = 0.974‒0.992), 0.981 for TSS (range = 359 

0.975‒0.992), 0.981 for Jaccard (range = 0.975‒0.992), 0.991 for Sørensen (range = 360 

0.987‒0.996), and 1.96 for Fpb (range = 1.95‒1.98). The PC2 variable contributed most strongly 361 

(average = 47%) to correlative models (Table 4), indicating an important role for cold 362 

temperatures and temperature seasonality in shaping the distribution of Cps. The PC1 variable 363 

provided the next highest contribution to correlative models (average = 24.3%), indicating that 364 

warm season moisture and moisture seasonality (PC1) are also important range-limiting factors. 365 

On average, the remaining PC variables had relatively low contributions (PC3 = 8.5%, PC4 = 366 

4.8%, PC5 = 9.8%, PC6 = 5.6%).  367 

 368 

Climatic suitability for and potential distribution of Cps in Europe and western Asia 369 

CLIMEX and the ensemble correlative model predictions of climatic suitability and the potential 370 

distribution for Cps in Europe and western Asia were mostly concordant (Fig. 1). CLIMEX 371 

predicted the highest ecoclimatic and population growth index values in the Atlantic region of 372 
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western Europe, coastal areas of southern Europe, and the Black and Caspian Sea regions of 373 

western Asia (Figs 1A and 2A, respectively), which is consistent with the ensemble correlative 374 

model’s predictions of high climatic suitability for these areas (Fig. 1C). Consequently, these 375 

regions were included in the potential distribution according to both models (Fig. 1D). In 376 

general, the models predicted lower climatic suitability throughout most of central and eastern 377 

Europe, but these areas were nonetheless included in the potential distribution. CLIMEX’s 378 

estimate of the potential distribution extended farther east than that of the ensemble correlative 379 

model to include all of the Baltic states and Belarus, a greater area of Ukraine, and the border 380 

region of Russia. However, predictions of suitability and the potential distribution in these 381 

regions varied among the six correlative modeling algorithms, which indicates model uncertainty 382 

(Figs S3 and S4, Supporting information). For example, the Gaussian process and support vector 383 

machine algorithms predicted a larger extent of climatically suitable area in eastern Europe than 384 

other algorithms.  385 

Temperature and aridity were both important range-limiting factors for Cps in Europe 386 

and western Asia. According to CLIMEX, cold stress is predicted to constrain Cps to latitudes 387 

below ca. 60° N in Europe, and it would exclude the species from western Russia except for the 388 

southernmost regions (Fig. 2B). Conversely, a combination of heat and dry stress in Iran and 389 

countries on the eastern edge of the Caspian Sea (e.g., Turkmenistan, Kazakhstan) is predicted to 390 

limit the species to predominantly southwestern areas of the Caspian Sea region (Figs 2C, D). 391 

Heat and dry stress are also predicted to exclude Cps from most of southern Spain and 392 

surrounding non-coastal areas of northwestern Africa. Employing the irrigation option in 393 

CLIMEX resulted in increases in climatic suitability along the species’ predicted range 394 

throughout Europe and western Asia (Fig. 1B), which subsequently resulted in an expansion in 395 

the potential distribution in northern Europe (Sweden and Finland), southern Europe (e.g., 396 

Greece), eastern Europe (Ukraine), western Russia, Turkey, and the Caucasus (e.g., Armenia and 397 

Azerbaijan). 398 

 399 

Climatic suitability for and potential distribution of Cps in North America 400 

Overall, predictions of climatic suitability and the potential distribution estimated by CLIMEX 401 

and the ensemble correlative model were concordant for North America (Fig. 3). Both models 402 

predicted climatically suitable conditions throughout most of eastern United States, whereas 403 
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suitable conditions in the western United States were almost entirely limited to the Pacific coast 404 

region (Fig. 3A–C). CLIMEX predicted the highest ecoclimatic and population growth index 405 

values in the eastern United States particularly in states along the east coast and Gulf coast (Figs 406 

3A, 4A). Several southeastern and midwestern states where Cps is not known to be established 407 

were predicted to be climatically suitable for this pathogen. These include Arkansas, Missouri, 408 

Illinois, and Indiana. In the western United States and southern British Columbia, the potential 409 

distribution included western Oregon and Washington, coastal areas of California and southern 410 

British Columbia, the Sierra Nevada Mountain range (California), and a small area of the 411 

northern Rocky Mountains in Idaho and British Columbia. Major portions of the Great Plains, 412 

Intermountain West and Southwest were excluded from the potential distribution even in the 413 

CLIMEX model that included summer irrigation (Fig. 3B, D). The northernmost parts of the 414 

potential distribution were limited to coastal areas of the Pacific (British Columbia) and Atlantic 415 

(Quebec, Novia Scotia, and New Brunswick).  416 

The ensemble correlative model predicted a somewhat larger potential distribution for 417 

Cps in eastern North America than the CLIMEX model. Specifically, it included more inland 418 

parts of the Southeast and higher latitude parts of the Northeast and southern Canada (Fig. 3D). 419 

For example, the potential distribution extended farther west in the southeastern United States 420 

and included eastern Texas and Oklahoma, and it extended farther north in eastern North 421 

America and included all northeastern states and southern Quebec and Ontario. Predictions of 422 

climatic suitability and presence for these areas were mostly consistent across individual 423 

correlative modeling algorithms (Figs S4 and S5, Supporting information).  424 

According to CLIMEX, cold stress was the primary range-limiting factor for Cps in 425 

North America (Fig. 4B), although arid conditions in the Intermountain West and hot 426 

temperatures in the South limited the pathogen’s distribution in those areas (Figs 4C, D). Cold 427 

stress excluded the species from high-elevation areas in the Intermountain West (most of the 428 

Rocky Mountains), from northern parts of the Northeast (northern New York and most of 429 

Vermont, New Hampshire, and Maine) and the Midwest (most of Wisconsin and all of North 430 

Dakota, South Dakota, and Minnesota), and from Canada and Alaska except for some coastal 431 

areas of the Pacific. Estimates of population growth for North America (Fig. 4A) indicate that 432 

Cps populations could grow in several areas which were excluded by cold stress, a finding which 433 

suggests that populations could at least temporarily establish during favorable seasons. For 434 
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example, population growth was high in Wisconsin, New England, and southern parts of Ontario 435 

and Quebec; however, cold stress is predicted to prevent overwintering survival throughout most 436 

of these areas. Similarly, heat stress contributed to the exclusion of Cps in eastern Texas despite 437 

high population growth rates. Population growth and survival were both low across the 438 

Intermountain West primarily due to insufficient moisture, and heat stress and dry stress 439 

contributed to exclusion of the pathogen from much of the Southwest including western Texas. 440 

Employing the irrigation option in CLIMEX resulted in increases in climatic suitability 441 

throughout much of the western United States (Fig. 3B); however, increases were insufficient for 442 

the inclusion of the Intermountain West and Southwest in the potential distribution. 443 

 444 

Global climatic suitability for and potential distribution of Cps 445 

Ensemble correlative model projections at a global scale were only partially consistent with the 446 

CLIMEX model (Figs 5 and 6). Both modeling approaches predicted highly suitable conditions 447 

in New Zealand, where Cps has been reported on both the North and South Island (Appendix 1, 448 

Supporting information), and throughout southeastern China, Japan, southern Australia, South 449 

Africa (coastal areas), Uruguay, and parts of Brazil, Argentina, Paraguay, and southern Chile 450 

(Fig. 5). Additionally, the ensemble correlative model predicted unsuitable conditions in most of 451 

the same areas where CLIMEX predicted unsuitability due to high levels of cold stress (e.g., in 452 

northern Asia; Fig. S6, Supporting information). While concordant predictions of climatic 453 

suitability for these regions translated to broad overlap in estimates of the potential distribution 454 

(Fig. 6), CLIMEX predicted higher climatic suitability and a larger potential distribution in other 455 

regions of the world. Model predictions were particularly discordant in equatorial (tropical) 456 

regions of South Asia, Africa, and South and Central America. For example, most high elevation 457 

areas of Africa and South Asia that were included the potential distribution according to 458 

CLIMEX had low or zero climatic suitability in the ensemble correlative model, whereas lower 459 

elevation regions that were included in the potential distribution by the ensemble model such as 460 

in India and the Indochina peninsula were unsuitable in the CLIMEX model (Fig. 5) due to heat 461 

stress (Fig. S6, Supporting information). The MOP analysis of climatic PC predictors used for 462 

the ensemble correlative model revealed high levels of similarity in climate between the 463 

calibration and projection area in temperate regions of the world (MOP index ≥ 0.9), but 464 

dissimilarity was higher in equatorial regions, particularly in parts of Southeast Asia and South 465 
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America (Fig. 7). This finding indicates that portions of environmental space in equatorial 466 

regions may be within the range of individual variables but they represent new combinations of 467 

predictors, which suggests that predictions there may be unreliable (Zurell et al. 2012, Owens et 468 

al. 2013). Employing the irrigation option in CLIMEX resulted in only marginal increases in the 469 

global potential distribution, mostly in coastal areas of arid parts of South America (e.g., Chile 470 

and Peru), Africa (e.g., Morocco and Namibia), and southern Australia. 471 

 472 

Discussion 473 

 474 

This study used both process-based CLIMEX and correlative models to assess the risk for Cps, a 475 

highly invasive plant pathogen, to establish at local, regional and global scales. This assessment 476 

can help guide the development of local and regional phytosanitary protocols for preventing 477 

further spread of the pathogen, prioritizing global surveillance efforts for more effective early 478 

detection, and planning for eradication, containment and management where accidental 479 

introductions do occur. These three steps are critical to preventing accidental introductions of 480 

Cps to and becoming established in predicted high risk areas where it is not yet present 481 

(Daughtrey 2019, Hong 2019b). They are also crucial to preventing boxwood blight from 482 

becoming rampant in areas where this invasive pathogen is at its early stages of establishment 483 

(Henricot 2006). Cps has spread rapidly, as evidenced by its invasion of 24 countries across three 484 

distant regions (Europe and western Asia, New Zealand, and North America) in less than 30 485 

years (Palmer and Shishkoff 2014, LeBlanc et al. 2018, Daughtrey 2019). Preventing its 486 

accidental introduction to and establishment in new areas and mitigating its local spread are both 487 

pivotal to safeguarding global boxwood crops, plantings, and forests (Daughtrey 2019, Hong 488 

2019b). 489 

All models performed very well and were mostly consistent in their predictions for the 490 

calibration area (i.e., Europe, western Asia, and North America). The process-based CLIMEX 491 

model correctly predicted climatically suitable conditions at validation localities for Cps in North 492 

America and New Zealand, and the six individual correlative models and ensemble model had 493 

very high evaluation metrics for the calibration area. Cold temperatures were a major range-494 

limitation at higher latitudes and elevations, as evidenced by the absence of the species from 495 

northern areas which have high levels of cold stress in the CLIMEX model, and by the strong 496 
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contribution of the cold-temperature related PC predictor (PC2) to correlative models. Moisture 497 

during warm seasons was also a major range limiting factor, as demonstrated by increases in 498 

climatic suitability and the potential distribution which occurred when implementing the summer 499 

irrigation option in CLIMEX, and by the strong contribution of the PC predictor (PC1) related to 500 

warm season moisture and moisture seasonality to correlative models. Hot temperatures, often in 501 

combination with arid conditions, play a range-limiting role for Cps predominantly in the 502 

southern regions of western Asia (e.g., northern Iran) and in the United States particularly in the 503 

Southwest.  504 

 505 

Climatic suitability for and potential distribution of Cps in Europe, western Asia, and North 506 

America 507 

Some of the highest levels of climatic suitability according to the CLIMEX and ensemble 508 

correlative model occurred in western Europe, western Asia (Black and Caspian Sea regions), 509 

and the east coast of the United States, a finding which is consistent with the widespread 510 

presence of Cps in these regions. Oceanic climates in these areas has probably facilitated the 511 

pathogen’s invasion because few gaps in precipitation and high humidity over the year combined 512 

with warm-to-hot summer temperatures creates conducive conditions for infections (Fig. 8) 513 

(Gehesquière 2014, Daughtrey 2019). In the eastern United States, Cps is particularly prevalent 514 

in the Mid-Atlantic and northern parts of the Southeast; however, there are relatively few reports 515 

of the pathogen from Florida and the Deep South (southernmost states in the Southeast), despite 516 

the inclusion of most of these regions in the potential distribution. For example, boxwood blight 517 

has not been reported beyond two locations in the Tallahassee area of northern Florida in 2016 518 

where contaminated stock plants were received and then eradicated in 2016 (Iriarte et al. 2016), 519 

and to date there have been no positive reports for Texas, Louisiana, and Mississippi (Hall 2021). 520 

According to CLIMEX, hot temperatures reduced climatic suitability throughout Florida except 521 

for along coastlines and from the Deep South except for northern parts of some states (e.g., 522 

northern Alabama and Georgia), which may explain the paucity of reports from these areas. 523 

Hagan and Conner (2013) posited that disease development on container or field stock in 524 

Alabama would most likely occur during extended periods of wet weather in mid-fall into mid-525 

spring because temperatures would be more ideal for growth than during the summer. 526 

Additionally, shade can reduce temperatures and create humid conditions that may create more 527 
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favorable conditions for infections in hot environments (Bush et al. 2016, Daughtrey 2019). 528 

Additional data on the pathogen’s ability to survive prolonged heat, particularly in the more heat-529 

resistant microsclerotia form (Shishkoff and Camp 2016, Miller et al. 2018, Yang and Hong 530 

2018), could help resolve whether it may establish in parts of the Deep South which may have 531 

ideal growing conditions during cool seasons. 532 

Many areas with Mediterranean climates including those in southern Europe and the 533 

Pacific coast region of the United States were included in the potential distribution according to 534 

both modeling approaches, but Cps has a limited presence in these regions to date. In southern 535 

Europe, Cps has been reported on B. sempervirens ‘Suffruticosa’ in nurseries or gardens from 536 

only a handful of localities in northwestern Spain (Pintos Varela et al. 2009), southern France 537 

(Saurat et al. 2012), northern Italy (Saracchi et al. 2008), and Croatia (Cech et al. 2010). The 538 

pathogen has seemingly had opportunities to invade southern Europe given its rapid expansion 539 

throughout other parts of the continent beginning in ca. 1994 (LeBlanc et al. 2018, Daughtrey 540 

2019). Host availability is likely not an issue because boxwood is commonly grown in gardens 541 

and landscapes throughout southern Europe, and native populations of B. sempervirens and B. 542 

balearica occur in pockets in northern Africa (Morocco and Algeria), central France, the 543 

southern European peninsulas (Iberian, Italian and Balkan), certain Mediterranean Islands, and 544 

Turkey (Di Domenico et al. 2012, Caudullo et al. 2017). In the western United States, Cps has 545 

been documented only in a handful of locations in western Oregon and the San Francisco Bay 546 

area despite having a potential distribution which encompasses Mediterranean climates 547 

throughout the region, including the entire California coast, parts of the Sierra Nevada Mountain 548 

range, and areas west of the Cascade Mountains in Oregon and Washington. Long warm-to-hot 549 

dry summers and cool wet winters which characterize Mediterranean climates may hinder long-550 

term establishment of Cps because optimal conditions for growth that transpire during warm and 551 

wet weather occur too infrequently (Fig. 8). Applying the summer irrigation option in the 552 

CLIMEX model resulted in an increase in suitability throughout southern Europe and areas with 553 

Mediterranean climates in the western United States, a finding which is consistent with 554 

observations that outbreaks in Oregon and California are often associated with summer irrigation 555 

(J. Weiland, pers. comm.) or unusually wet spring and summers (Blomquist et al. 2018). Thus, 556 

regions with Mediterranean climate will likely be at higher risk of establishment if boxwood is 557 

irrigated during periods of optimal temperatures for Cps development, or during relatively wet 558 
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years. Overhead irrigation in particular facilitates boxwood blight outbreaks because it creates 559 

higher relative humidity and exposes leaf surfaces to longer periods of wetness (Gehesquière 560 

2014, Bartíková et al. 2020b, 2020a). 561 

Climatic suitability tended to be lower in regions with humid continental climates 562 

compared to those with oceanic climates, despite the inclusion of many of these areas in the 563 

potential distribution. In humid continental parts of Europe, which includes most of eastern 564 

Europe and parts of Ukraine and Russia, optimal conditions for infections (warm and wet 565 

weather) may occur too infrequently owing to long, cold winters and warm-to-hot, dry summers. 566 

The only reports of the pathogen from these regions have come from nurseries and gardens in the 567 

Czech Republic (Safránková et al. 2012, Bartíková et al. 2020a) and a single nursery in western 568 

Ukraine (Matsiakh 2016). The common element of diseased boxwood in gardens in the Czech 569 

Republic was the use of irrigation systems or partial-shade conditions, which created higher 570 

humidity and exposed leaves longer periods of wetness (Bartíková et al. 2020a). Implementing 571 

the summer irrigation option in CLIMEX increased suitability throughout central and eastern 572 

Europe and resulted in an expansion of the potential distribution in western Russia, Ukraine, 573 

Turkey and the Caucasus, which provides additional evidence that irrigation will likely increase 574 

the risk of establishment of Cps in these regions.  575 

As with Europe, climatic suitability tended to be lower in humid continental regions of 576 

North America that were included in the potential distribution; however, cool temperatures rather 577 

than aridity likely explain this finding. According to CLIMEX, cold stress lowered climatic 578 

suitability throughout much of non-coastal New York, New England, and southeastern Canada, 579 

which is consistent with an absence of Cps from these areas and with lower suitability predicted 580 

by the ensemble correlative model. In the midwestern United States, Cps has a limited presence 581 

despite the growing number of reports of the pathogen for this region, including from Missouri 582 

(2014), Kansas (2014), Illinois (2016), Indiana (2018), Arkansas (2019), Michigan (2018), and 583 

Wisconsin (2018). Nevertheless, economic damages to the horticultural industry in the Midwest 584 

could be significant if Cps takes hold because this region is one of the top four regions in inter-585 

regional trade of boxwood (Hall et al. 2021), which supports the need for boxwood producers 586 

and users to be vigilant in watching for infections and quickly eradicating the pathogen when it is 587 

found (Hong 2019a). Our models indicate that cold temperatures will likely prevent 588 

establishment in northern Minnesota, northern Wisconsin, most of Nebraska, North Dakota, and 589 
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South Dakota. Cps was found in North Dakota in 2019 on contaminated stock plants that were 590 

received from Ohio, but it has not been found in landscape settings where it could potentially be 591 

exposed to winter conditions (Charles Elhard, pers. comm.). Future outbreak reports from areas 592 

which are predicted to be too cold for establishment should be followed closely to assess the 593 

ability of Cps to overwinter. For example, soil or snow cover may offer protection to 594 

overwintering microsclerotia that may allow the pathogen to survive in areas which are predicted 595 

to be unsuitable by our models.  596 

Areas of Europe, western Asia, and North America which have arid or semi-arid climates 597 

had some of the lowest levels of climatic suitability, and will therefore be at relatively low risk of 598 

establishment at least in the absence of supplemental moisture. Range expansion of Cps in 599 

northern Europe and Russia will likely be prevented by cold temperatures; however, aridity often 600 

combined with hot temperatures may play a large role in limiting the pathogen’s expansion at its 601 

eastern range edge (Caspian Sea region) and southern range edge (Spain, Turkey and the Caspian 602 

Sea region). In North America, cold temperatures were predicted to exclude Cps from most of 603 

western Canada and the Rocky Mountains region; however, aridity in the Intermountain West 604 

and Southwest played the most significant role in restricting the pathogen’s potential distribution 605 

in the western United States. Implementing the irrigation option in CLIMEX did not appreciably 606 

increase climatic suitability in the Intermountain West or Southwest, which suggests that 607 

infections there may only be possible in highly irrigated settings, and potentially in shaded areas 608 

during the hot season. With the exception of New Mexico, states in these regions have low 609 

rankings for production and total sales of boxwood (Hall et al. 2021), which could further limit 610 

the chance for Cps to establish there. 611 

 612 

Global climatic suitability for and potential distribution of Cps 613 

Maps of climatic suitability and the potential distribution for Cps indicate that most 614 

regions of the world where Buxus and its congeners (Didymeles, Haptanthus, Pachysandra, 615 

Sarcococca, and Styloceras) are native are at risk of establishment. Most of the Buxaceae species 616 

are tropical or subtropical, with native ranges that include western and southern Europe, 617 

southwest, southern and eastern Asia, Africa, Madagascar, northernmost South America, Central 618 

America, Mexico and the Caribbean (Köhler and Brückner 1989, Balthazar et al. 2000, Köhler 619 

2014). The CLIMEX and ensemble correlative models included much of eastern Asia and the 620 
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Himalayas in the potential distribution, which are home to ca. 40 species of Buxus (Köhler and 621 

Brückner 1989), four species of Pachysandra, and 11 species of Sarcococca (Balthazar et al. 622 

2000). According to CLIMEX, the potential distribution in the Neotropics included the Andes 623 

region, where all five species of Styloceras Kunth ex A. Juss. are endemic (Balthazar et al. 624 

2000), and it overlapped with at least some of the ca. 50 species of Buxus native to Central 625 

America and the Caribbean, such as in Mexico, Guatemala, Cuba, Hispaniola, and Puerto Rico 626 

(Köhler and Brückner 1989, Gutiérrez 2014, Köhler 2014). For Africa, both modeling 627 

approaches included a narrow band of the South African coast which has endemic Buxus (Friss 628 

1989) in the potential distribution, and CLIMEX included additional areas where Buxus species 629 

occur including in Madagascar (nine species) (Schatz and Lowry 2002) and in western and 630 

eastern Africa (e.g., in Ethiopia, Kenya, Tanzania, and Angola)(Friss 1989). An overall lack of 631 

comprehensive and current maps that depict the ranges of Buxaceae species hinders making 632 

detailed assessments into the extent of overlap with the potential distribution of Cps. 633 

Nonetheless, our broad-scale assessment indicates the potential for the pathogen to expand its 634 

range globally.  635 

Preventing the establishment of Cps in regions with native boxwood is important because 636 

the pathogen can clearly cause ecological damage to affected ecosystems. Studies of Cps in 637 

native stands of B. sempervirens subsp. colchica in Georgia and B. sempervirens subsp. hyrcana 638 

in the Caspian Hyrcanian forests of northern Iran revealed rapid and intensive defoliation of 639 

boxwood plants of different ages, with complete defoliation occurring in up to 90% of some 640 

populations in just one year after positive detection of boxwood blight (Mirabolfathy 2013, 641 

Matsiakh 2016). Infected plants are also vulnerable to attacks by secondary opportunistic 642 

pathogens that can lead to eventual death (Matsiakh 2016). A literature survey showed that a loss 643 

of native boxwood in Europe and the Caucasus could lead to reductions in soil stability and 644 

subsequent declines in water quality and flood protection, and to declines in Buxus-associated 645 

biodiversity including at least 63 potentially obligate species of lichens, fungi, chromista and 646 

invertebrates (Mitchell et al. 2018). Currently there is no effective control for boxwood blight in 647 

forests because removing infected plants or applying fungicides across large areas is infeasible 648 

(Matsiakh 2016, Patarkalashvili 2017). Early detection of Cps will therefore be the most 649 

economical and effective method to prevent additional invasions in areas with susceptible native 650 

species. 651 
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The invasion of Cps could be particularly devastating to species which are vulnerable 652 

both in terms of their conservation status and their susceptibility to infection. Many Buxus 653 

species are already threatened or endangered because of small and isolated distributions resulting 654 

from natural causes such as island endemism and post-glacial climate change (Di Domenico et 655 

al. 2012, Gutiérrez 2014), anthropogenic disturbances such as deforestation and over-harvesting 656 

of wood (Mitchell et al. 2018), and invasions of non-native pests such as the box tree moth 657 

Cydalima perspectalis (Walker, 1859) in Europe and western Asia (Matsiakh 2016, 658 

Patarkalashvili 2017, Matsiakh et al. 2018, Panahi et al. 2021). For example, most of the Buxus 659 

species native to tropical America are endemic to single islands in the Caribbean (Köhler and 660 

Brückner 1989), 37 of which occur in Cuba alone (Gutiérrez 2014, Köhler 2014). None of the 661 

Buxaceae species tested to date are completely immune to boxwood blight infections, although 662 

severity of disease varies widely across Buxus species and cultivars (Henricot et al. 2008, 663 

Shishkoff et al. 2015, LaMondia and Shishkoff 2017), and it appears to be low in pachysandra 664 

(Pachysandra) and sweet box species (Sarcococca) species (Ryan et al. 2018, Kong and Hong 665 

2019). Susceptible species which have at least partially overlapping native ranges with the 666 

potential distribution of Cps include B. sempervirens and subspecies (southern Europe and the 667 

Black and Caspian Sea regions), B. balearica (Mediterranean basin), B. bodinieri (China), B. 668 

glomerata (Cuba and Hispaniola), B. harlandii (China to Vietnam), B. macowanii (South 669 

Africa), B. riparia (Japan), B. wallichiana (Himalayas from east Afghanistan to Nepal), at least 670 

three Pachysandra species including the endangered P. procumbens (eastern United States), and 671 

several Sarcococca species (East Asia). More studies on the susceptibility of Buxaceae species to 672 

infection are needed to better assess the risk of the pathogen establishing and causing ecological 673 

harm.  674 

Our global climatic suitability models for Cps provide some of the first insights into the 675 

potential geographic origin of the pathogen, which is still unknown (Castroagudín et al. 2020a, 676 

LeBlanc et al. 2021). The CLIMEX and ensemble correlative model both included a large part of 677 

southeastern China and Japan in the potential distribution, a finding which supports the 678 

hypothesis that the pathogen may have arrived to Europe on boxwood plants from East Asia 679 

(Daughtrey 2019). A possible origin of Cps from China is consistent with reports that most non-680 

European imports of Buxus species to Europe come from this country (EPPO 2012), and with a 681 

leading hypothesis for the likely origin of invasive box tree moth in Europe (Van der Straten and 682 
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Muus 2010, CABI 2021). Nonetheless, we cannot rule out the possibility that Cps is native to 683 

another host center of diversity for Buxus or other Buxaceae species such as in the Caribbean or 684 

Madagascar (Castroagudín et al. 2020a), particularly given that at least one of the modeling 685 

approaches included parts of these regions in the potential distribution. 686 

 687 

Model uncertainty 688 

Discordance between CLIMEX and ensemble correlative model predictions for Cps in 689 

Europe, western Asia, and North America primarily occurred at the predicted range edges. The 690 

potential distribution according to the ensemble correlative model extended somewhat farther 691 

north in Europe and the eastern United States, and farther east in the southeastern United States. 692 

Conversely, the potential distribution according to CLIMEX extended slightly farther east in 693 

Europe and included the border region of Russia. However, ensemble correlative model 694 

predictions for areas of discordance with CLIMEX should be interpreted with caution because 695 

predictions also varied among the six different correlative models, which indicates uncertainty 696 

both across and within modeling approaches (i.e. process-based vs. correlative models and 697 

correlative vs. correlative models). These findings are consistent with studies showing that model 698 

type is a primary source of uncertainty when predicting species distributions, and that uncertainty 699 

is often greater at range margins compared with range cores (Marmion et al. 2009, Capinha and 700 

Anastácio 2011, Vale et al. 2014, Watling et al. 2015, Shabani et al. 2016). 701 

Global projections of the ensemble correlative model were particularly discordant with 702 

the CLIMEX model for equatorial regions. We focused more on interpreting CLIMEX model 703 

predictions for equatorial regions because the MOP analysis indicated that dissimilarity in 704 

climate for the calibration and projection area was highest for equatorial areas, which suggests 705 

that predictions there may be unreliable (Zurell et al. 2012, Owens et al. 2013, Higgins et al. 706 

2020). Process-based models such as CLIMEX are thought to be more reliable in predicting a 707 

species’ potential distribution in novel climates than correlative models because they rely on 708 

proximate constraints limiting distributions, rather than on model extrapolations (Kearney and 709 

Porter 2009, Evans et al. 2016, Higgins et al. 2020). For example, most equatorial areas that were 710 

included in the potential distribution by the ensemble correlative model were predicted to be 711 

excluded by heat stress in the CLIMEX model, including those in central Africa, India, and 712 

mainland Southeast Asia (Indochina and Malay peninsulas). Heat stress is measured using 713 
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thresholds and rates that were calibrated using ecophysiological information and records for the 714 

pathogen in the hottest parts of its known distribution, and its predicted role in shaping the 715 

potential distribution of Cps seems realistic given present-day knowledge of the species. As the 716 

occurrence record dataset for model fitting influences projections into new areas, future work 717 

should investigate whether Cps has persisted at localities used to fit correlative models for this 718 

study (Appendix S1, Supporting information), particularly in newly invaded areas such as those 719 

in the southern, midwestern, and Pacific coast region of North America. Records from newly 720 

invaded areas could potentially represent short-term establishments, such as during a year(s) with 721 

favorable weather, and may therefore be excluded from future presence-only correlative 722 

modeling analyses. 723 

Future climate-based risk mapping studies for Cps which use more recent climate data 724 

and potentially incorporate inter-annual variability into models may provide more robust 725 

estimates of present-day risk. Our models used historical 30-year climate normals for 1961 to 726 

1990 because the current version of CLIMEX has no native ability to import and process other 727 

forms of gridded data, such as climate normals for a more recent time frame (e.g., 1991–2021). 728 

Additionally, CliMond data for more recent time frames have not been developed to our 729 

knowledge, which hinders making a comparison of correlative models based on the same set of 730 

climate predictors for different time frames. Global temperatures and precipitation patterns have 731 

significantly changed even over the past 30 years (USGCRP 2018, IPCC 2021), which suggests 732 

that climatic suitability models for Cps could misrepresent establishment risk in areas where 733 

climates have become more (or less) favorable for the pathogen’s growth and survival. For 734 

example, higher minimum winter temperatures or decreased frequency or intensity of extreme 735 

cold resulting from climate change may increase rates of overwintering survival for invasive 736 

microbial pathogens (Dukes et al. 2009, Thakur et al. 2019), which raises the possibility that 737 

establishment risk at the northernmost range edges of Cps may be higher than our models 738 

predict. Additionally, increasing humidity, precipitation, and rising temperatures in certain 739 

regions such as the midwestern United States (USGCRP 2018, IPCC 2021) could increase risk of 740 

establishment, whereas aridification in regions such as southern Europe, western and central 741 

Asia, and western North America (IPCC 2021) may reduce risk. Climate suitability models 742 

which account for inter-annual variations may increase the accuracy of predictions for Cps under 743 

climate change because biologically relevant climatic variation that can arise from events such as 744 
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droughts or heat waves may be obscured in aggregated climate datasets such as 30-year climate 745 

normals (Gardner et al. 2021).  746 

 747 

Conclusions 748 

In developing species distribution models for Cps and evaluating the role of climatic 749 

factors in shaping its known range limits, we have provided some of the first insights into the 750 

potential invasive distribution and geographic origin of the most widespread and damaging 751 

pathogens of boxwood. Understanding where the pathogen could establish is particularly 752 

important in light of evidence for intercontinental dispersal and multiple introductions of Cps in 753 

the United States, which suggests that introductions of the pathogen are common and will likely 754 

continue to occur (Castroagudín et al. 2020a, LeBlanc et al. 2021). The CLIMEX and ensemble 755 

correlative model are consistent in predicting the potential for further spread in Europe (southern 756 

and eastern Europe), and in North America (southern, midwestern, and Pacific coast region). 757 

While our models can assist with identifying areas to watch for Cps both regionally and globally, 758 

an assessment of local climates for a target area may provide greater insight into the likelihood of 759 

the establishment. For example, the pathogen’s limited presence in areas of the potential 760 

distribution in Europe and North America which have Mediterranean and humid continental 761 

climates may suggest that regions of the global potential distribution with similar climates are at 762 

lower risk of establishment. Locations which are climatically marginal for Cps, but which have 763 

extensive boxwood plantings, may be best able to exclude or eradicate boxwood blight outbreaks 764 

by implementing best practices such as using less dense plantings, limiting shade cover, and 765 

exclusively make use of underground irrigation (Bush et al. 2016, Dart et al. 2016, Daughtrey 766 

2019). Additionally, the avoidance of highly susceptible cultivars including Buxus sempervirens 767 

‘Suffruticosa’ and Buxus sempervirens (Shishkoff et al. 2015; LaMondia and Shishkoff 2017; 768 

LeBlanc et al. 2018; Kramer et al. 2020) may help reduce the risk of establishment. Surveillance 769 

of Cps in regions of the world that fall within the potential distribution of the pathogen and have 770 

native Buxaceae species will be key for early detection and rapid responses measures. 771 

Future modeling work that uses current climate data to evaluate risk of establishment 772 

may provide better insights into potential range limits for Cps, such as in high-elevation or high-773 

latitude areas where the pathogen may now be capable of survival due to warming temperatures 774 

in recent decades. The CLIMEX model developed for this study could be modified to predict the 775 
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potential distribution of C. henricotiae, a closely related but genetically distinct species that also 776 

causes boxwood blight (Gehesquière et al. 2016, LeBlanc et al. 2021). To date C. henricotiae has 777 

only been found in five countries in Europe, but further range expansion of this pathogen is 778 

expected and would likely influence boxwood blight epidemiology in the landscape because its 779 

thermotolerance is greater than Cps (Miller et al. 2018, LeBlanc et al. 2021). 780 
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Tables and Figures 1253 

 1254 

Table 1. CLIMEX parameter values for Calonectria pseudonaviculata. 1255 

 1256 

Table 2. Summary of the principal component analysis of 27 bioclimatic variables used for 1257 

correlative models. Principal component (PC) axes were selected until the cumulative 1258 

explanation proportion reached 95% or more of the total variation of the original matrix. 1259 

Loadings of PCs for each variable are presented, as well as PC's eigenvalues, the proportion of 1260 

explained variance of each PC, and accumulated proportion of explained variance. The largest 1261 

loadings (positive or negative) for each component (>0.30) are indicated with bold font. 1262 

 1263 

Table 3. Mean values of evaluation statistics for individual correlative models and the ensemble 1264 

model. 1265 

 1266 

Table 4. The percent contribution of each principal component (PC) variable to correlative 1267 

models produced by six algorithms. The climatic relevance of each variable [based on which 1268 

bioclimatic variables had the largest loadings (positive or negative, Table 2)] and the average and 1269 

range of contributions across all algorithms is indicated. 1270 

 1271 

Figure 1. Maps of climatic suitability and potential distribution for Calonectria 1272 

pseudonaviculata in Europe and western Asia. Climatic suitability is estimated as the ecoclimatic 1273 

index in the CLIMEX model A with and B without irrigation, and as C the probability of 1274 

occurrence in the ensemble correlative model. Areas of overlap in the potential distribution 1275 

(purple shading) according to both CLIMEX models (ecoclimatic index = 10‒100) and the 1276 

ensemble correlative model (presence predictions) are shown in comparison to areas that were 1277 

included in the potential distribution by only one model [red shading = CLIMEX model (no 1278 

irrigation); orange shading = CLIMEX model (including irrigation); blue shading = ensemble 1279 

correlative model]. Black circles represent the approximate locations of occurrence records. 1280 

 1281 

Figure 2. Population growth and climate stress accumulation for Calonectria pseudonaviculata 1282 

in Europe and western Asia. Population growth in CLIMEX is measured as the A annual growth 1283 
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index (annual growth index, range = 0‒100). Climate stress indices (range = 0‒999) include B 1284 

cold stress, C heat stress, and D dry stress. Results are for the CLIMEX model which did not 1285 

include irrigation. 1286 

 1287 

Figure 3. Maps of climatic suitability and the potential distribution for Calonectria 1288 

pseudonaviculata in North America. Climatic suitability is estimated as the ecoclimatic index in 1289 

the CLIMEX model A with and B without irrigation, and as C the probability of occurrence in 1290 

the ensemble correlative model. Areas of overlap in the potential distribution (purple shading) 1291 

according to both CLIMEX models (ecoclimatic index = 10‒100) and the ensemble correlative 1292 

model (presence predictions) are shown in comparison to areas that were included in the 1293 

potential distribution by only one model [red shading = CLIMEX model (no irrigation); orange 1294 

shading = CLIMEX model (including irrigation); blue shading = ensemble correlative model]. 1295 

Black circles represent the approximate locations of occurrence records. 1296 

 1297 

Figure 4. Population growth and climate stress accumulation for Calonectria pseudonaviculata 1298 

in North America. Population growth in CLIMEX is measured as the A annual growth index 1299 

(annual growth index, range = 0‒100). Climate stress indices (range = 0‒999) include B cold 1300 

stress, C heat stress, and D dry stress. 1301 

 1302 

Figure 5. Climatic suitability for Calonectria pseudonaviculata globally. Climatic suitability is 1303 

estimated as A the ecoclimatic index in the CLIMEX model (includes irrigation), and as B the 1304 

probability of occurrence in the ensemble correlative model. Areas where the ecoclimatic index 1305 

is zero and the probability of occurrence is less than 0.1 are shown in gray. 1306 

 1307 

Figure 6. Map of the global potential distribution for Calonectria pseudonaviculata. Areas of 1308 

overlap in the potential distribution (purple shading) according to both CLIMEX models 1309 

(ecoclimatic index = 10‒100) and the ensemble correlative model (presence predictions) are 1310 

shown in comparison to areas that were included in the potential distribution by only one model 1311 

(red shading = CLIMEX model; orange shading = CLIMEX model that included irrigation; blue 1312 

shading = ensemble correlative model).  1313 

 1314 
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Figure 7. Mobility-oriented parity (MOP) assessment outputs for projections of the ensemble 1315 

correlative model for Calonectria pseudonaviculata. Areas with MOP metric values close to 1 1316 

have highly comparable climatic conditions to the those in the model calibration area. Areas with 1317 

values approaching 0 indicate higher extrapolation because one or more climatic variables have 1318 

values outside the range of variable(s) in the calibration area. 1319 

 1320 

Figure 8. Climate comparisons for sites which are expected to differ in favorability for boxwood 1321 

blight infections. Line plots depict monthly temperature (solid lines) and precipitation (dashed 1322 

lines) across eight sites in Europe (orange lines) and the United States (blue lines). Sites with a 1323 

Mediterranean climate (e.g., Cannes, France; Naples, Italy; Seattle, Washington; and Portland, 1324 

Oregon) are less conducive for infections than sites which have higher humidity, few gaps in 1325 

precipitation, and ideal temperatures for growth throughout the year, such as those in 1326 

temperate/coastal climates in western Europe (e.g., Brussels, Belgium and Bordeaux, France) 1327 

and warm and humid climates in the mid-Atlantic and southeastern regions of the United States 1328 

(e.g., Virginia Beach, Virginia and Atlanta, Georgia). Data source: 1981-2010 climate normals, 1329 

World Meteorological Organization (https://climatedata-catalogue.wmo.int; accessed 24 Sep 1330 

2021). 1331 

1332 
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Table 1. CLIMEX parameter values for Calonectria pseudonaviculata. 1333 

 1334 

Parameter Description Value 

Parameter 

  SM0 Limiting low moisture  0.2 

SM1 Lower optimal moisture 0.7 

SM2 Upper optimal moisture 1.7 

SM3 Limiting high moisture 3.0 

Temperature 

  DV0 Limiting low temperature (°C) 8 

DV1 Lower optimal temperature (°C) 21 

DV2 Upper optimal temperature (°C) 25 

DV3 Limiting high temperature (°C) 29 

Cold stress 

  TTCS Cold stress temperature threshold (°C) ‒10 

TCCS Cold stress temperature rate (week‒1) ‒0.005 

Heat stress 

  TTHS Heat stress temperature threshold (°C) 32 

THHS Heat stress temperature rate (week‒1) 0.01 

Dry stress 

  SMDS Dry stress threshold 0.2 

HDS Dry stress rate (week‒1) ‒0.001 

Wet stress 

  SMWS Wet stress threshold 3.0 

HWS Wet stress rate (week‒1) 0.005 
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Table 2. Summary of the principal component analysis of 27 bioclimatic variables used for 1335 

correlative models. Principal component (PC) axes were selected until the cumulative 1336 

explanation proportion reached 95% or more of the total variation of the original matrix. 1337 

Loadings of PCs for each variable are presented, as well as PC's eigenvalues, the proportion of 1338 

explained variance of each PC, and accumulated proportion of explained variance. The largest 1339 

loadings (positive or negative) for each component (>0.30) are indicated with bold font. 1340 

 1341 

Variables and proportion of variance PC1 PC2 PC3 PC4 PC5 PC6 

Variable       

 Annual mean temperature (bio1) 0.033 0.212 0.298 –0.001 –0.001 –0.014 

Mean diurnal temperature range (bio2) 0.083 –0.164 0.261 –0.226 –0.369 –0.199 

Isothermality (bio3) 0.012 0.235 0.082 –0.192 –0.271 –0.066 

Temperature seasonality (bio4) 0.06 –0.484 0.06 0.006 0.039 0.023 

Max temperature of warmest week (bio5) 0.12 –0.013 0.404 –0.023 –0.023 –0.068 

Min temperature of coldest week (bio6) 0.023 0.365 0.151 0.027 0.035 –0.003 

Temperature annual range (bio7) 0.095 –0.562 0.208 –0.065 –0.077 –0.069 

Mean temperature of wettest quarter (bio8) –0.317 –0.024 0.566 0.07 0.118 0.361 

Mean temperature of driest quarter (bio9) 0.204 0.246 0.098 –0.029 –0.04 –0.184 

Mean temperature of warmest quarter (bio10) 0.082 0.051 0.4 0.006 0.019 –0.017 

Mean temperature of coldest quarter (bio11) 0.013 0.321 0.187 –0.004 –0.019 –0.017 

Annual precipitation (bio12) –0.075 –0.002 0.019 –0.3 0.054 –0.179 

Precipitation of wettest week (bio13) –0.059 –0.027 0.016 –0.484 0.073 0.066 

Precipitation of driest week (bio14) –0.142 0.034 –0.009 –0.054 –0.041 –0.415 

Precipitation seasonality (bio15) 0.001 0.095 –0.169 –0.389 –0.258 0.574 

Precipitation of wettest quarter (bio16) –0.056 –0.025 0.012 –0.464 0.077 0.035 

Precipitation of driest quarter (bio17) –0.132 0.028 0.003 –0.075 –0.028 –0.405 

Precipitation of warmest quarter (bio18) –0.386 –0.054 0.141 –0.157 –0.004 –0.01 

Precipitation of coldest quarter (bio19) 0.174 0.033 –0.08 –0.373 0.091 –0.216 

Annual mean moisture index (bio28) –0.138 0.012 –0.011 –0.041 0.27 –0.041 

Highest weekly moisture index (bio29) 0.032 –0.005 0.007 –0.112 0.427 0.041 

Lowest weekly moisture index (bio30) –0.317 0.032 –0.075 0.001 0.036 –0.082 

Moisture index seasonality (bio31) 0.497 0.052 0.013 –0.101 0.195 0.09 

Mean moisture index of wettest quarter (bio32) 0.026 –0.005 0.008 –0.093 0.426 0.024 

Mean moisture index of driest quarter (bio33) –0.31 0.03 –0.061 –0.004 0.055 –0.08 

Mean moisture index of warmest quarter (bio34) –0.345 0.036 –0.093 –0.054 0.02 0.003 

Mean moisture index of coldest quarter (bio35) 0.051 –0.003 0.072 –0.036 0.44 –0.077 

       

Proportion of variance       

Proportion explained by each PC (%) 52.2 27.3 6.4 4.1 3.2 2.6 

Accumulated proportion explained by the PCs (%) 52.2 79.5 85.9 90 93.2 95.8 
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Table 3. Mean values of evaluation statistics for individual correlative models and the ensemble model. 1342 

 1343 

Algorithm AUC Kappa TSS Jaccard Sørensen Fpb 

Boosted regression tree 0.998 0.974 0.974 0.975 0.987 1.949 

Generalized additive models 0.996 0.986 0.986 0.986 0.993 1.972 

Bayesian Gaussian process 0.999 0.982 0.982 0.982 0.991 1.965 

Maxent 0.998 0.974 0.974 0.975 0.987 1.949 

Random forests 0.998 0.978 0.978 0.978 0.989 1.956 

Support vector machine 1 0.992 0.992 0.992 0.996 1.984 

Ensemble 1 0.996 0.996 0.996 0.998 1.992 

 1344 

AUC, Area Under the ROC Curve; TSS, True Skill Statistics; Fpb, F-measure on presence-background 1345 

1346 
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Table 4. The percent contribution of each principal component (PC) variable to correlative models produced by six algorithms. The 1347 

climatic relevance of each variable [based on which bioclimatic variables had the largest loadings (positive or negative, Table 2)] and 1348 

the average and range of contributions across all algorithms is indicated. 1349 

 1350 

Variable Climatic relevance BRT GAM GAU MXS RDF SVM Average (%)  

PC1 Warm season precipitation and soil moisture, soil moisture 

seasonality 

29.4 23.9 21.4 22.7 26.9 21.4 24.3 (21.4–29.4) 

PC2 Cold season temperatures, temperature seasonality 60 23.9 47.3 45.2 61.6 44.2 47 (23.9–61.6) 

PC3 Warm and wet season temperatures 0.3 22.2 9.2 8.9 1.1 9.4 8.5 (0.3–22.2) 

PC4 Wet season precipitation 0.7 10 5.3 6.3 0.2 6.4 4.8 (0.2–10) 

PC5 Diurnal temperature range, wet and cold season soil moisture 9.3 10 9 9.5 10 10.9  9.8 (9–10.9) 

PC6 Dry season precipitation, precipitation seasonality 0.4 10 7.8 7.4 0.3 7.7 5.6 (0.3–10) 

 1351 

BRT, boosted regression tree; GAM, generalized additive models; GAU, Gaussian process; MXS, Maxent “simple”; RDF, random 1352 

forests; SVM, support vector machine. 1353 
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Figure 1. Maps of climatic suitability and potential distribution for Calonectria 1354 

pseudonaviculata in Europe and western Asia. Climatic suitability is estimated as the ecoclimatic 1355 

index in the CLIMEX model A with and B without irrigation, and as C the probability of 1356 

occurrence in the ensemble correlative model. Areas of overlap in the potential distribution 1357 

(purple shading) according to both CLIMEX models (ecoclimatic index = 10‒100) and the 1358 

ensemble correlative model (presence predictions) are shown in comparison to areas that were 1359 

included in the potential distribution by only one model [red shading = CLIMEX model (no 1360 

irrigation); orange shading = CLIMEX model (including irrigation); blue shading = ensemble 1361 

correlative model]. Black circles represent the approximate locations of occurrence records. 1362 

 1363 

 1364 

1365 
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Figure 2. Population growth and climate stress accumulation for Calonectria pseudonaviculata 1366 

in Europe and western Asia. Population growth in CLIMEX is measured as the A annual growth 1367 

index (annual growth index, range = 0‒100). Climate stress indices (range = 0‒999) include B 1368 

cold stress, C heat stress, and D dry stress. Results are for the CLIMEX model which did not 1369 

include irrigation. 1370 

 1371 

 1372 

1373 
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Figure 3. Maps of climatic suitability and the potential distribution for Calonectria 1374 

pseudonaviculata in North America. Climatic suitability is estimated as the ecoclimatic index in 1375 

the CLIMEX model A with and B without irrigation, and as C the probability of occurrence in 1376 

the ensemble correlative model. Areas of overlap in the potential distribution (purple shading) 1377 

according to both CLIMEX models (ecoclimatic index = 10‒100) and the ensemble correlative 1378 

model (presence predictions) are shown in comparison to areas that were included in the 1379 

potential distribution by only one model [red shading = CLIMEX model (no irrigation); orange 1380 

shading = CLIMEX model (including irrigation); blue shading = ensemble correlative model]. 1381 

Black circles represent the approximate locations of occurrence records. 1382 

 1383 
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Figure 4. Population growth and climate stress accumulation for Calonectria pseudonaviculata 1386 

in North America. Population growth in CLIMEX is measured as the A annual growth index 1387 

(annual growth index, range = 0‒100). Climate stress indices (range = 0‒999) include B cold 1388 

stress, C heat stress, and D dry stress. 1389 

 1390 

 1391 
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Figure 5. Climatic suitability for Calonectria pseudonaviculata globally. Climatic suitability is 1393 

estimated as A the ecoclimatic index in the CLIMEX model (includes irrigation), and as B the 1394 

probability of occurrence in the ensemble correlative model. Areas where the ecoclimatic index 1395 

is zero and the probability of occurrence is less than 0.1 are shown in gray. 1396 

 1397 

 1398 
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Figure 6. Map of the global potential distribution for Calonectria pseudonaviculata. Areas of overlap in the potential distribution 1399 

(purple shading) according to both CLIMEX models (ecoclimatic index = 10‒100) and the ensemble correlative model (presence 1400 

predictions) are shown in comparison to areas that were included in the potential distribution by only one model (red shading = 1401 

CLIMEX model; orange shading = CLIMEX model that included irrigation; blue shading = ensemble correlative model).  1402 

 1403 

1404 
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Figure 7. Mobility-oriented parity (MOP) assessment outputs for projections of the ensemble correlative model for Calonectria 1405 

pseudonaviculata. Areas with MOP metric values close to 1 have highly comparable climatic conditions to the those in the model 1406 

calibration area. Areas with values approaching 0 indicate higher extrapolation because one or more climatic variables have values 1407 

outside the range of variable(s) in the calibration area. 1408 

 1409 
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Figure 8. Climate comparisons for sites which are expected to differ in favorability for boxwood 1411 

blight infections. Line plots depict monthly temperature (solid lines) and precipitation (dashed 1412 

lines) across eight sites in Europe (orange lines) and the United States (blue lines). Sites with a 1413 

Mediterranean climate (e.g., Cannes, France; Naples, Italy; Seattle, Washington; and Portland, 1414 

Oregon) are less conducive for infections than sites which have higher humidity, few gaps in 1415 

precipitation, and ideal temperatures for growth throughout the year, such as those in 1416 

temperate/coastal climates in western Europe (e.g., Brussels, Belgium and Bordeaux, France) 1417 

and warm and humid climates in the mid-Atlantic and southeastern regions of the United States 1418 

(e.g., Virginia Beach, Virginia and Atlanta, Georgia). Data source: 1981-2010 climate normals, 1419 

World Meteorological Organization (https://climatedata-catalogue.wmo.int; accessed 24 Sep 1420 

2021). 1421 

 1422 
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