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Summary 
 
This deliverable provides a General Framework for the BESTMAP Policy Impact 
Assessment Modelling (BESTMAP-PIAM) toolset. An update of the framework will be 
provided later in the project in Deliverable 2.4. The BESTMAP-PIAM is based on the 
notion of defining (a) a typology of agricultural systems, with one (or more) 
representative case study (CS) in each major system; (b) mapping all individual farms 
within the case study to a Farm System Archetype (FSA) typology; (c) model the 
adoption of agri-environmental schemes (AES) within the spatially-mapped FSA 
population using Agent Based Models (ABM), based on literature and a survey with 
sufficient representative sample in each FSA of each CS, to elucidate the non-
monetary drivers underpinning AES adoption and the relative importance of financial 
and non-financial/social/identity drivers; (d) linking AES adoption to a set of 
biophysical, ecological and socio-economic impact models; (e) upscaling the CS level 
results to EU scale; (f) linking the outputs of these models to indicators developed for 
the post-2020 CAP output, result and impact reports; (g) visualizing outputs and 
providing a dashboard for policy makers to explore a range of policy scenarios, 
focusing on cost-effectiveness of different AES. Each of these steps are detailed in a 
separate section below. 
 
Before detailing each step, we list a number of assumptions made in the development 
of the Conceptual Framework: 
 

● That decision factors are similar for farmers who belong to the same FSA (for 
extended discussion of FSAs in BESTMAP see Deliverable 1.3). Indeed that is 
how we define what an FSA is. 
 

● That the likelihood of adoption of an AES in the CS region, for a specific FSA, 
is the same for all farmers within that FSA in other FADN regions belonging to 
the same strata of agricultural systems (see step A). 
 

● That ecosystem services/public goods and socio-economics impacts, which we 
derive per CS as regression models linking impact to FSA and farm areas with 
and without each modelled AES scheme, can be applied in similar FADN 
regions using the Farm Accountancy Data Network (FADN) microdata record 
in other regions. 

 
 
 
 
 
 
 
 
 
 
 
 

1. Farming System Archetypes 
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To allow linkages between CS and EU level to work, the set of attributes defining FSAs 
within each CS must: 

● Be mappable for each individual farm in all CS based on spatial data from public 
or administration sources. In particular, these include IACS/LPIS data - 
providing for each farmer and year of data the individual fields they managed, 
the crops grown, ecological focus areas (EFA)1, and ongoing AES contracts. 

● Be mappable from FADN microdata, so we can use the FADN data to create 
characteristics of ‘farmer agents’ which individually “decide” if they adopt the 
set of AES, based on the same relationships found in the CS ABM. 

● Be either available in Farm Structure Survey scientific-use files (SUF) (to be 
able to create a weighting for FADN microdata records) or use weighing 
coefficients based on Standard Output (economic size) and Farm 
Specialization (type of farm) which FADN already includes. 

● Be based on attributes that farmers can easily and reliably answer in an online 
survey without the need for intensive search for that information, allowing 
farmers to fill the data and get classified into specific FSAs in consequent 
analyses 

● Correspond to or be proxies of factors affecting farmers’ AES adoption decision. 
There is a wealth of literature on the subject (e.g. Lastra-Bravo SB, Hubbard C, 
Garrod G, Tolon-Becerra A, 2015), as well as BESTMAP interviews where we 
asked >120 farmers in the five CS about those (c.f. Deliverable 3.4).  

● Not exceed a reasonable number of different FSAs, allowing for surveying (step 
C) with reasonable resource requirements. Around 5-6 FSAs would be a limit 
for a survey (considering each FSA should have a sufficient sample of farmers 
surveyed). 

 
After discussing possible attributes given the data in IACS/LPIS and FADN, BESTMAP 
made the decision to keep the FSA classification simple, and follow the FADN 
approach of farm specialization and economic size (see Other Farmer’s Attributes for 
discussion). 
 
(1) Farm specialization - fit to farm practice was highlighted in BESTMAP interviews, 
and we operationalized that using a farm typology. BESTMAP-PIAM will use a 
simplified version of FADN that is defined in Annex IV of EU regulation 2015/220. We 
choose to reduce TF8 to five types - field crops (area-based rule: P1 > 2/3, see 
definition of P1 below), horticulture (P2 > 2/3), permanent crops (P3 > 2/3), grazing 
livestock (P4 > 2/3) and mixed.  
 
To map spatial IACS/LPIS data to these five classes, we will use the area based rules 
defined in EU regulation 2015/220. For completeness, the definitions of P1, P2, P3 
and P4 are given below based on FADN microdata field names. For each CS, we will 
map the crop classification in the IACS/LPIS to these fields (a mapping is provided in 
Step B for BESTMAP CSs): 
 

 
1 Post-Brexit the plan of UK DEFRA is to cancel ‘greening’ payments, hence field level information on 

implementation of EFAs may not be collected. We find that data extremely useful for modelling 
agricultural systems, so would advice policymakers to keep collecting such data even if regulations are 
simplified and monitoring EFA is not mandatory. 
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P1 General cropping = P15 (cereals) + 2.01.02. (dried pulses and protein crops) + 2.01.03. (potatoes) 
+ 2.01.04. (sugar beet) + 2.01.06.01. (tobacco) + 2.01.06.02. (hops) + 2.01.06.03. (cotton) + P16 
(oilseeds) + 2.01.06.09. (flax) + 2.01.06.10. (hemp) + 2.01.06.11. (other fibre crops) + 2.01.06.12. 
(aromatic plants, medicinal and culinary plants) + 2.01.06.99. (other industrial crops not mentioned 
elsewhere) + 2.01.07.01.01. (fresh vegetables, melons, strawberries — outdoor or under low (not 
accessible) protective cover — open field) + C1 2.01.10. (arable land seed and seedlings) + 2.01.11. 
(other arable land crops) + 2.01.12. (fallow land) + FCP1 (forage for sale) 
 
P2 Horticulture = 2.01.07.01.02. (fresh vegetables, melons, strawberries — outdoor or under low (not 
accessible) protective cover — market gardening) + 2.01.07.02. (fresh vegetables, melons, strawberries 
— under glass or other (accessible) protective cover) + 2.01.08.01. (flowers and ornamental plants — 
outdoor or under low (not accessible) protective cover) + 2.01.08.02. (flowers and ornamental plants — 
under glass or other (accessible) protective cover) + 2.06.01. (mushrooms) + 2.04.05. (nurseries) 
 
P3 Permanent crops = 2.04.01. (fruit and berry plantations) + 2.04.02. (citrus plantations) + 2.04.03. 
(olive plantations) + 2.04.04. (vineyards) + 2.04.06. (other permanent crops) + 2.04.07. (permanent 
crops under glass) 
 
P4 Grazing livestock and forage = GL (grazing livestock) + FCP4 (forage for grazing livestock) 

 
The farm specialization in FADN is given by Type of Farming as either 8 classes (TF8) 
or 14 classes (TF14), both are available per farm in the microdata, and used to stratify 
regional standard reports (see below). For BESTMAP-PIAM, we will combine TF 
classes 3 (wine) and 4 (other permanent crops) as a single ‘permanent crop’ type. We 
will also combine class 5 (milk) and class 6 (other grazing livestock) as a single 
‘grazing livestock’ type. We combined class 7 (granivores) and class 8 (mixed) as 
‘other’. In the former case, it is likely possible to separate wine and other permanent 
crops in IACS/LPIS, but we choose to avoid adding another farm type (which has a 
knock-on effect on survey). IACS/LPIS does not have information on livestock density 
of cows vs other livestock, hence separating milk and other livestock is not possible 
with the spatial data we have. 
 
To get the Farm Specialization in a online survey, farmers can easily answer the 
following question -  
Q. roughly what percentage of your farm is: 
_____ % field crops 
_____ % grazing and silage 
_____ % horticulture 
_____ % permanent crops, vineyards, orchards 
_____ % other (incl. granivores) 
 
(2) Economic size - income is a well-known factor affecting decision making. The 
economic size of farms is given as variable SE005 in Standard Result in FADN 
microdata. To define classes of economic size, we adopt a simplified version of FADN 
ES6 (6 classes), which is available in the microdata: 
 
 
FADN ES6 
1 2 000 - < 8 000 EUR 

2 8 000 - < 25 000 EUR 

3 25 000 - < 50 000 EUR 

4 50 000 - < 100 000 EUR 

5 100 000 - < 500 000 EUR 

6 >= 500 000 EUR 
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We decided to classify economic size as small, medium and large. The thresholds for 
these for each farm specialization were determined by analysis of the 2018 ‘farms 
represented’ (SYS02) within YEAR.COUNTRY.SIZ6.TF8.zip standard report, and 
combining ES6 classes for each of the five Farm Specializations (FS) to get as close 
as possible to 33%/33%/33% - 
 
FS   ES6 classes included (% of farms in 2018 FADN for FS) 
field crops  small = 1 (23.6%); medium = 2 (35.6%); large = 3-6 (40.7%) 
horticulture  small = 1-2 (32.9%); medium = 3-4 (35.8%); large = 5-6 (31.4%) 
permanent crops small = 1 (15.3%); medium = 2 (48.2%); large = 3-6 (36.5%) 
grazing livestock small = 1-2 (43.3%); medium = 3-4 (33.8%); large = 5-6 (22.9%) 
other   small = 1 (35.2%); medium = 2 (28.6%); large = 3-6 (36.3%) 
 
Economic size is not directly available from IACS/LPIS, but can be calculate using 
FADN Standard Output coefficients (EUR per hectare for ~90 crop types) available for 
2013 in Eurostat2. The average per crop area can be easily computed by linking the 
pseudonymized LPIS/IACS farm data across years using a method based on 
maximizing intersect-over-union across consecutive years. Step B (below) describes 
this process for the CSs included in BESTMAP. 
 
We can ask farmers how much is their total income, but this seemed to be too sensitive 
and many farmers may prefer not to answer (or not submit the whole survey). To 
overcome this, we propose to build on the strong correlation between Economic Size 
and UAA for each Farm Specialization. Farmers are likely to be much more in ease 
reporting what is their total UAA. To convert those, we compare FADN UAA available 
as SE025 standard result3 and Economic Size (SE005). Using the same 
YEAR.COUNTRY.SIZ6.TF8.zip standard report the Pearson correlation between UAA 
(SE025, in hectare) and economic size (SE005, in units of 1000 euro) for all farms is 
0.55, but that correlation is much higher when considering individual Farm 
Specializations4. We calculate the coefficient converting SE025 (UAA) = alpha * 
SE005 (economic size) for each: 
 
   Pearson correlation  alpha* 

 
2 Standard output coefficients are the average monetary value of the agricultural output at farm-gate 

price, in euro per hectare or per head of livestock. For 2013 SO coefficients per regions calculated using 
the average of 2011-2015 prices in 2016 Farm structure survey data see  
https://ec.europa.eu/eurostat/web/agriculture/so-coefficients  
 
3 RI/CC 1750 defines SE025 as Total utilised agricultural area of holding. Does not include areas used 

for mushrooms, land rented for less than one year on an occasional basis, woodland and other farm 
areas (roads, ponds, non-farmed areas, etc.). It consists of land in owner occupation, rented land, land 
in share-cropping (remuneration linked to output from land made available). It includes agricultural land 
temporarily not under cultivation for agricultural reasons or being withdrawn from production as part of 
agricultural policy measures. It is expressed in hectares (10 000 m2). As from 2014, it includes kitchen 
gardens. 
 
4 This correlation is not too surprising, given economic size is calculated based on multiplying different 

areas by crop-specific (but also region-specific) coefficients. Hence, farms of similar farm type have 
similar crops and compositions thus the correlation arises. ‘Other’ farms are much more heterogeneous 
in composition, thus having lower correlation. 
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   between UAA and  
   economic size 
Crop fields   0.856171042   0.876 
Horticulture  0.742337305   0.024 
Permanent crops 0.743932219   0.130 
Grazing livestock 0.754230673   0.420 
Other   0.524681123   0.234 
 
* smaller alpha means higher economic value per hectare. Fresh vegetables make the largest value 
(and also profit and gross margin) but are limited to small area of highly productive land 

 
With these we can define the UAA thresholds for the three economic sizes we defined 
(per FS): 
 
   UAA threshold [hectare] 
   small farms  medium large 
Crop fields  < 7   < 22  > 22 
Horticulture  < 0.6   < 2.4  > 2.4 
Permanent crops < 1   < 3.2  > 3.2 
Grazing livestock < 10.5   < 42  > 42 
Other   < 1.8   < 5.9  > 5.9 
 
Last, farmers may know better their total farm size (including non farmed area, wooded 
land etc.). The relationships between different variables is given in the diagram below: 
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For some of the CSs, we can make a relationship between UAA and Total Farm Area 
as the IACS/LPIS provide complete coverage. This will be explored and revised in the 
next update of the Conceptual Framework. 
 

1.1 Reducing number of FSAs 
 
The previous section describes a top-down approach for FSAs that end up with at 
most 15 FSAs - 5 Farm Specializations  X  3 Economic Sizes. Getting a representative 
sample of farmers to survey per FSA in each CS would still be very difficult with 15 
FSAs - both achieving representativeness and resource requirements would make this 
hard. BESTMAP-PIAM approach, therefore, relies on reduction by merging of those 
15 FSAs based on the agricultural system (step A) - see in relevant section below for 
further details. 
 
 
 
 

1.2 Other Farmer’s Attributes 
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There are a number of other attributes we considered for FSA. None of these met all 
objectives (i.e. mappable from spatial data for all farms, mappable to FADN microdata, 
available in FSS SUF to derive weights, easy for farmers to answer). We describe 
some of these attributes below, as they may be used in some steps e.g. as attributes 
assigned to each farm from spatial data that are used in ABM. Note that if used (and 
important) in CSs ABMs or biophysical models, one should find a FADN region/NUTS2 
scale source for the same data, to be used for typology of agricultural systems. 
Alternatively, we can use spatial data to find the distribution of parameters for an FSA 
and perhaps correlations to attributes common between spatial data and FADN 
microdata (for proportional allocation micro-simulation) and use a stochastic approach 
to set those attributes to the FADN microdata in the upscaling step. 
 
Past participation in AES - this is also a known factor differentiating farmers. We do 
not have data to suggest successful/positive participation vs. negative experience. 
From IACS/LPIS data, we know which farmer had at least one field under AES contract 
within a period of several years (limited by the years provided by administrations). This 
is a binary variable - yes (had >1 field under AES contract between e.g. 2014-2018) / 
no (had no fields with AES contract in that time period). From FADN, we can check if 
SE621 ‘Environmental subsidies’5 is larger than zero or not. However, we can’t know 
in FADN anything except for the year of the data, as farm returns are not all the same 
year to year. FADN does have some farms repeat across multiple years, but it is not 
designed as a longitudinal study. Of course, asking the farmers is rather simple for this 
attribute. More importantly, the FSS SUF exclude all subsidy data, in particular 
environmental subsidies - hence we can’t make a weight for FADN microdata with this 
as a strata. 
 
Average size of fields may be a proxy of level of mechanization / intensification. This 
is easy to derive from spatial data (again,using a method like IoU to link the same farm 
across data years), and likely okay for farmers to answer. However, this attribute 
cannot be deduced from any data in FADN. There are some maps of field size across 
Europe (e.g. Kuemmerle T, Hostert P, St-Louis V, Radeloff VC.) or GeoWiki 
campaigns (Van der Zanden, Emma H., et al.) - these can be used in defining 
agricultural systems (in Step A) if needed, or approximating field size for FADN regions 
we do not have IACS/LPIS for (in upscaling part). 
 
Farming intensity which can be defined as in Eurostat as inputs expenditure per 
hectare, a value that can be extracted from FADN. Note some projects like 
SEAMLESS used total output per hectare as an intensity measure. As IACS/LPIS 
provide no data on inputs, we cannot adopt the Eurostat metric. As for output per 
hectare, this is nearly identical to Standard Output coefficients we are taking as given 
from Eurostat to calculate Economic Size, hence are not useful as an additional 
dimension. 

 
5 SE621 is defined as subsidies on environment (caution to avoid double-counting of DP under Art 69 

of 1782/2003) + Subsidies on environmental restrictions. It is calculated (from FADN 2015 onwards) as 
the sum of agri-environment-climate and animal welfare payments + organic farming + Natura 2000 
and Water Framework Directive payments (excluding forestry) 
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Average distance between groups of fields managed by the same famer as a proxy of 
mechanisation and family vs. corporate farming. This is not available in FADN data, 
and hard for farmers to answer in an online survey. 
 
Average period of crop rotation as indicator of pro-environmental attitudes, for 
example, is again unavailable in FADN data. Also, our IACS/LPIS data is currently 
only for 4 years in several CSs which is too short to identify rotations. 
 
Soil quality/agricultural productivity per field is an important factor affecting farmers' 
adoption of AES on particular fields and not others.  We only have farm level yields in 
FADN, not per field yield but this is difficult to get as spatial data. It is also not clear if 
FSS SUF includes only area or also yields of crops. 
 
Percent of UAA land under short lease / "field swapping" (Pflugtausch/ Flächentausch 
in German) may hinder farmers from adopting AES as they have little ‘ownership’ over 
the land. We can compare farms across years in IACS/LPIS and compare the area of 
‘core’ fields (which they report on year-after-year) and fields reported only in some 
years. FADN include SE030 ‘Rented UAA’ which can be useful, albeit some farms rent 
their land for a very long time (especially in Eastern Europe) and therefore these may 
not compare well - in CZ over of land 70% is rented but IACS/LPIS shows nearly no 
change in managed area per farm over ~5 year period of data. There is no other FADN 
data that can help as a proxy for this.  
 
Percent of Farm Area as landscape features which is an impact indicator post-2020, 
possibly can be assessed from the Small Woody Elements in High Resolution Layers 
of Copernicus and/or IACS/LPIS data for buffer strips, hedgerows etc. (if around arable 
land). FADN, however, does not include such information. 
 

2. Step A – Defining representativeness of case studies 
 

The initial set of 5 CSs used in BESTMAP were chosen for geographic spread, as well 
as organizational and institutional match to partners and previous connections (which 
are key for proper engagement with farmers). However, the Conceptual Framework 
and WP5 of BESTMAP will be upscaling those CSs to wider FADN regions across the 
EU. Generalization and transferability of findings from CSs is limited by their specific 
geographical context and characteristics unique to each study region. Upscaling of 
policy effects to EU level may be biased if based on selection of CS information that 
is not representative for a larger European region. Therefore, BESTMAP CSs will be 
evaluated for their representativeness within their countries and across the EU. This 
will allow identifying the locations and the number of extra CSs where further regional 
analyses might be needed to represent the EU as a whole. 
 
BESTMAP-PIAM assumes the farmers’ behavioural AES adoption characteristics and 
biophysical/socio-economic ‘bundles’ are transferable between regions within the 
same strata of agricultural systems. Several different typologies of agricultural systems 
have been proposed in the past, such as Agricultural landscapes (van der Zanden et 
al. 2016), Environmental stratification of Europe (Metzger et al. 2005), Rural typology 
for strategic European policies (van Eupen et al. 2012) or the Regional typology of 
farming systems contexts developed by the SEAMLESS project (Andersen et al. 
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2010). These typologies capture different aspects of agricultural landscapes, but they 
typically include climate, biophysical, socioeconomic and agricultural characteristics 
of farmlands. BESTMAP will assess the correspondence between the categorical 
maps of typologies by quantifying their spatial concordance. However, as these 
typologies were typically developed by expert-based or data-driven clustering of 
different agricultural systems variables, they do not necessarily account for the key 
dimensions of farming systems in the CSs.  
 
Therefore, we apply the transferability analysis developed by Vaclavik et al. (2016), 
that centers clusters of agricultural systems around the CS and calculates the 
statistical distance between the centroid (average) of each CS study area with a 
selected list of European-level variables. The similarity of a region within Europe (e.g. 
FADN or NUTS2 region) with the CS study area is represented by absolute distance 
(D): 
 

 
 
with x being the normalized (between 0 and 1) value of each variable i, e being the 
number of regions (e.g. FADN regions or NUTS2 region) within Europe, c being the 
number of regions within the CS and v being the number of considered variables. 
 
As our upscaling strategy relies on FADN, the ‘regions’ we will consider hereafter are 
FADN regions. In a large portion of the EU, FADN regions are equivalent to NUTS2 
but in places where they are too large, we will use NUTS2 or potentially even NUTS3 
regions, using FADN microdata when accessible.  
 
We will select a list of variables that represent important region attributes we argue 
control either adoption or impact of AES. Two groups of variables will be considered, 
representing either farm system (e.g. economic size, farm specialization, area of 
arable land, field size) or biophysical characteristics (climate, topography, soils). 
These data are collected from either FADN Standard Reports (already online in FADN 
regions), the temporal trend in some FADN indicators in the last years, European 
Social Survey/World Values Survey (coarsed to FADN region via weighted 
averaging)/Hofstede Culture Compass/Eurostat/FAOStat/Eurobarometers, and a 
number of gridded biophysical/climate/pedological6 sources7 (averaged over FADN 
polygons). However, different subsets of variables will be used to assess the upscaling 
potential for the BESTMAP biophysical models of ecosystem services and the ABMs 
of farmers’ adoption of AES. 
 
The inverse distance will be taken as a ‘transferability potential’, and will be mapped 
spatially across the FADN/NUTS regions of the EU as a gradient of similarity. A spatial 
overlay of the areas with the highest transferability potential (e.g. a distance smaller 

 
6 See e.g. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-
reports/soil-related-indicators-support-agro-environmental-policies  
7 Some consideration for gridded inputs relates to layers or auxiliary inputs used in biophysical models. 

For example, baseline N application rate is an input to nutrient delivery model. 
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than 0.25) will indicate the other regions for which the results of BESTMAP models 
developed for a particular CS are most representative. At the same time, this analysis 
will allow identifying the regions that are under-represented by the CSs of BESTMAP, 
and (in the future) prioritize new CSs. 
 

3. Step B - mapping from spatial datasets to FSAs 
 

The mapping of individual farms data provided by IACS/LPIS to FSAs follows the 

procedure detailed above to calculate Farm Specialization based on a rule-based 

procedure by crop area (e.g. P1 > ⅔ ➡crop field) and weighing each farm field by 

Standard Output region/crop coefficients from Eurostat, followed by thresholding to 

small/medium/large. The final step uses the per agricultural system mapping (Step A) 

to reduce to a minimal set of FSAs, which is key to allow sufficient sampling of farmers 

in survey and building regressions from biophysical/socio-economic models.  
 
Full details on the construction of FSAs from IACS/LPIS data will be provided in a 
future Deliverable 3.5. The table below show an example for Humber CS of linking the 
spatial data source, FADN classification and Eurostat: 
 
Table 1: The ten most predominant crop types within the Humber region for 2019. Data source: UK 
Rural Payments Agency 
 

Code Original name Is 

P1/P2

/P3 

/P4 ? 

Mapped SO coefficient 

name 

2013 SO 

coefficient 

value (EUR/ha]  

AC66 Wheat (winter)-type 

arable crop 

P1 Common wheat and spelt 1,618.67 

PG01 Permanent grassland P4 Permanent grassland and 

meadow - pasture and 

meadow 

237.28 

AC67 Oilseed (winter)-type 

arable crop 

P1 Other oil seed crops 755.24 

AC63 Barley (winter)-type 

arable crop 

P1 Barley 1,270.85 

AC01 Barley (spring)-type 

arable crop 

P1 Barley 1,270.85 

TG01 Temporary grassland P4 Forage plants - temporary 

grass 

254.48 

LG03 Field beans (spring)-

type leguminous and 

nitrogen fixing crop 

P1 Pulses - total 1,149.96 
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AC03 Beet-type arable crop P1 Sugar beet 2,668.01 

AC44 Potato-type arable 

crop 

P1 Potatoes 5,987.86 

AC17 Maize-type arable crop P1 Grain maize 1,522.13 

 
In mapping between LPIS/FADN/Eurost we identified a number of challenges and 
made several decisions: 

1. vegetables are not specified to be ‘garden market’ or not, which makes them 
difficult to classify as P1 or P2. We decided in most CSs to assign them to P1, 
which meant very few farms were horticulture specialists.  

2. forage for sale (P1 in FADN) vs forage for grazing (P4 in FADN) cannot be 
distinguished from LPIS data. For the ES we got a farm-level field weather the 
farm holds livestock. In that case, we assigned all grasslands (temporary and 
permanent) to grazing, otherwise to sale. In the UK we attempted to use the 
presence of ‘livestock shelters’ but we found this data to be missing on many 
livestock farms. Hence for the CSs other than ES, we assigned permanent 
grassland for grazing (P4) and temporary grassland for forage for sale (P1). 

3. SO coefficient is used based on the NUTS region. For example, the DE case 
study spans 3 NUTS units hence the range of values in the last column of the 
DE data above. For each farm, we used the SO coefficients in the NUTS unit 
where the farm centroid is. 

 

4. Step C – model AES adoption using Agent-Based Modelling 

To identify what determines the spatial allocation of AES adoption, BESTMAP-PIAM 

uses an agent-based modelling (ABM) approach.  

ABMs are process-based simulations that allow to represent decisions of individual 

farmers and their interactions with others as well as the environment. In BESTMAP, 

the ABM will be used to model land-use patterns that arise from the adoption of five 

selected agri-environmental schemes (cover crops, maintaining grasslands, field 

margins, conversion to woodland/wetland, conversion to organic farming). In 

combination with the biophysical models, this allows to study the social-ecological 

consequences of agricultural policies at different spatial and temporal scales and to 

test the implications of different designs of the EU’s Common Agricultural Policy. 

ABMs provide the opportunity to include farmer decision-making explicitly and 

consider influence factors that go beyond purely economic considerations 

(Groeneveld et al., 2017; Huber et al., 2018). 

The conceptual framework for the ABM includes the specification of spatial and 

temporal scales, the description of incorporated farm and farmer characteristics, 

relevant AES properties and the structure of the decision process of the farmers. It is 

planned to develop first a stylized ABM, which in a later step will be specified for the 

five case studies.  
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4.1 Entities, state variables and scales 

The temporal scale is assumed to be characterised by an annual resolution and a time 

span of 20 years, starting 2020. To allow for a systematic analysis of spatial influence 

factors, in a first approach, we create a virtual landscape based on a regular grid. In a 

second step, we will consider the case study regions explicitly and assume a spatial 

resolution at field level. The output of the ABM will be the yearly land use pattern 

related to the actual implementation of the five AES on a field level.  

We will incorporate two types of agents: individual farmers and fields, with each farmer 

managing a fixed set of fields (data on parcels managed per farm included in the Case 

Study Base Layer, see Deliverable D3.1). All farmer agents belong to a FSA based on 

their Economic Size and Farm Specialization (as described in section 1). We assume 

that farmers do not switch between FSAs which also implies that they do not change 

the size of their farms and their specialization. Additionally, farmers are described by 

state variables which are related to their individual identity (e.g. pro-environmental 

value and the weighting of the different influence factors), external conditions (e.g. the 

availability of consultancy) or to specific AES (e.g. willingness to change and years of 

prior adoption). An overview of the included state variables and sources that we plan 

to use for their parameterization are given in Table 2. 

Table 2: Overview of farmer characteristics included in the model and sources for 

parameterization 

 Parameter Source/Remarks 

Farmer specific Farm economic size FSA classification (cf. Step B) 

Farm specialization FSA classification (cf. Step B) 

Set of fields LPIS/IACS 

Availability of consultancy Switched on or off to test 
influence, if switched on 
available to all farmers or a 
selected proportion (e.g. based 
on farm size with large farms 
having more resources to pay 
advisors) 

Pro-environmental value  
(high/low) 

Existing reviews on AES 
adoption, e.g. Lastra-Bravo et 
al., 2015; Dessart et al., 2019; 
Brown et al., 2020 
 
Existing discrete choice 
experiments for different 
influence factors such as 
availability of consultancy 
(Hasler et al., 2019; Espinosa 

AES specific** 
 

Willingness to change 
(high/low) 

Specific years of adoption of 
AES* 

Weighting factors Susceptibility to  
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previous experience (w1), 
social influence (w2), 
consultancy (w3) 

et al., 2010), bureaucracy 
(Ruto & Garrod, 2009), change 
to established farm practices 
(Christensen et al., 2011; 
Latacz-Lohmann & Breustedt, 
2019) 
 
Potentially own discrete choice 
experiment/survey on CS level 
(see below) 

Importance of  
economic factors (F), 
environment (E),  
knowledge (K),  
bureaucracy (B), 
change to established farm 
practice (P)  
for AES decision:  

𝛽
𝑖
 with 𝑖 = 𝐹, 𝐸, 𝐾, 𝐵, 𝑃 

*Specific years of adoption of AES is an emerging property of the system and not parameterized through discrete 

choice experiments. The initial state in the first simulation step will be derived from LPIS. 

**In BESTMAP that would be five values per farmer for each of the five AES we model, i.e. 5 values for 

willingness to change, 5 values for years of adoption of each specific AES 

Fields are characterised by state variables which may be changing (soil conditions) or 

constant (size and topography) (see Table 3 ). Furthermore, we include the spatial 

distribution of the fields, i.e. their location. In a first approach, we allocate fields to 

farmers based on spatial proximity (potentially including some randomness to account 

for more distant fields) and randomly assign field characteristics to individual grid cells. 

In a second step, the ABM will have a realistic spatial representation (at farm with field 

levels) derived from IACS/LPIS data. For each field, land use (i.e. arable crops, 

permanent grassland etc.) and intensity (organic, conventional) will be assigned. 

Depending on the availability of geospatial data, soil and terrain characteristics will be 

incorporated in the model to determine expected yields (cf. step 3 of decision-making 

framework). For a later model revision, we might also include a tighter coupling to 

biophysical models and include for each annual time step the actual conditions of 

biophysical state variables such as yield, water quantity and quality, sediment loss, 

soil carbon or biodiversity stemming from the biophysical models and weather 

conditions (e.g. using a random generator based on climate projections). These state 

variables are needed if they influence farmers’ choice of AES such as economic 

aspects (yield, biocontrol) or farmers’ perception of the environmental state of the farm 

(e.g. biodiversity, water quality, at least for certain types of farmers with high 

environmental awareness). For BESTMAP, we decided not to include climate change 

of the simulated time span of 20 years as our empirical observations during farmers 

interviews (see Deliverable 3.4) did not reveal that this is a main driving factor for 

farmer behavior. 

Table 3: Overview of field characteristics included in the model and sources for 

parameterization (see Deliverable D3.1 for more information on data availability in the CSs). 

 Parameter Source/Remarks 

Field specific Size LPIS/IACS 
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Topography LPIS/IACS 

Location LPIS/IACS 

Land use LPIS/IACS 

Intensity (organic/conventional) LPIS/IACS 

Soil conditions LPIS/IACS (in later model 
versions potentially changing 
over time depending on AES 
adoption) 

 

The five selected AES differ in several attributes which will in combination with the 

farmer characteristics determine farmers’ decision on adopting a specific AES or not 

(Table 4). These characteristics include spatial properties, i.e. the minimal field size 

required to implement a specific AES. Furthermore, they specify temporal properties 

which determine the duration of an AES contract and reflect whether a scheme 

involves a more fundamental change and hence has a multi-year perspective. 

Additional characteristics involve the level of change of management needed 

compared to the current farm practice and the level of bureaucracy that is required to 

apply for, implement and monitor the scheme. Change to farm practices and level of 

bureaucracy are discretized in three classes (low/medium/high) and are framed in a 

way that “low” is positive, i.e. favors the adoption, and “high” is negative and restricts 

the adoption. In contrast to the identity driven farmer characteristic “willingness to 

change”, the AES characteristic “change to farm practices” is focusing more on the 

economic aspects that an AES adoption bears.  

Table 4: Overview of AES properties and sources for parameterization. Parameter values are 

different for different AES. 

 Parameter Source/Remarks 

AES properties Minimal field size AES regulations (CS level) 

Duration AES regulations (CS level)  

Change to farm practices 
(low/medium/high) 

Depending on specific AES, 
specialization and production 
on individual fields (three 
dimensional look-up table). 
Classification to be determined 
in exchange with 
farmers/consultancy 
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Level of bureaucracy 
(low/medium/high)* 

To be determined in exchange 
with farmers/consultancy 

* For ‘Large’ farms (based on Economic Size), we assume Level of bureaucracy to be one lower than other size 
classes. For AES rated with low level of bureaucracy, the rating remains low in that case. 

 

4.2 Elucidate influence factors for farmer decision-making 

To elucidate important influence factors for the decision on adopting AES, an interview 

campaign with farmers was conducted within BESTMAP in all five case studies to 

identify potential key factors for farmers’ decision-making on agri-environmental 

schemes. In brief, data was obtained via semi-structured face-to-face interviews that 

consisted of two parts: 1) a qualitative interview based on an interview protocol 

covering open questions on the farmer’s background, attitudes towards farming, 

reflection on ecological aspects and especially the motivation to apply, or not apply, 

for AES and 2) a questionnaire focusing on background information on the farm, 

information on environmentally sustainable practices, concrete experiences with two 

selected AES most common in the respective CS, motivation to apply for AES and 

opinions on the EU’s Common Agricultural Policy in general. Across all case studies, 

124 interviews were conducted in the period January – May 2020. Sample sizes vary 

from 14 (DE) to 47 (ES) interviews. Due to national restrictions as reaction to the 

COVID-19 pandemic, the interview process had to be changed in all CS. A more 

detailed description of the design, execution, reaction to limitations that arise due to 

COVID-19 and an in-depth analysis and description of the results is provided in 

Deliverable 3.4. Here, we only provide a summary of the most important factors that 

were found to influence farmer decision-making and that were considered to be 

included in the decision-making process of the ABM. Overall, the survey revealed that 

decision-making factors relevant in all case studies include (a) economic benefit from 

AES, (b) fit with established farm practices, (c) soil quality and (d) inflexibility of AES. 

In some case studies, a lack of knowledge about AES, past experience with AES, the 

tenant-owner relationship, external influence on AES outcome, automatization of AES 

placement on land, duration of AES / duration of lease contracts and corruption play 

a role.  

In addition, we take important behavioral characteristics/elements mentioned in 

reviews on farmers’ adoption in different case studies in Europe into consideration 

(e.g. Lastra-Bravo et al., 2015; Dessart et al., 2019; Brown et al., 2020). Besides 

economic factors, these reviews reveal influence of socio-demographic factors such 

as education or age of the farmer, farm structural properties such as farm size, tenure 

or consistency with farm activities, farmer beliefs and values including motivation 

behind farming, the design of the policies, i.e. the complexity of implementing, the 

flexibility or the coherence with other policies, various influence sources such as 

consultancy, farming organisations, governments or social networks and general 

attitudes towards AES framed e.g. by previous experience. 
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Based on these two main sources, we compiled possible influence factors to decide 

which aspects to include in the ABM (see Table 5). Some factors that were not 

mentioned as being important in our interviews are considered influential in the 

reviews. On the other hand, to allow for a reasonable analysis of the ABM, we decided 

to include only a limited number of aspects. Therefore, we had to omit some factors 

that were mentioned in the interviews. This explains the slight derivation between the 

interview results and the resulting decision on factors to include in the ABM. Factors 

for which the weighting differs between our interviews and what is summarized from 

existing literature are marked and explained separately. This selection builds the basis 

for the underlying conceptual framework of the ABM which will be identical for all case 

studies. Depending on data availability and the importance of specific influence factors 

in certain case studies, some aspects might, however, be less important in some of 

the case studies. The conceptual ABM framework will therefore be adapted to case 

study specific conditions. 

Table 5: Factors influencing farmer decision-making as denoted in the interviews and their 

consideration in the ABM 

Factors Importance in interviews Included in ABM 

Economic benefit from AES high included 

Fit with established farm 

practices 

high included 

Farm size high included 

Soil quality / productivity high included 

Past experience with AES high included 

Farmer-landlord relationship medium excluded* 

(Potential) External influence 

on AES outcome 

medium excluded* 

Inflexibility of AES medium excluded** 

Automatization / digitalization  

of AES placement on land 

medium potentially in later model 
versions***  

Duration of AES 
medium potentially in later model 

versions*** 

Duration of lease contracts 
medium potentially in later model 

versions***  

Influence of other farmers low included# 

Lack of knowledge about AES low included## 

Authorities or subsidy system 

perceived as corrupt 

low excluded 

Author-formatted document posted on 25/02/2022. DOI:  https://doi.org/10.3897/arphapreprints.e82404



D2.2 Conceptual Framework 21 | Page 
__________________________________________________________________________________ 
 

 
 

*excluded due to missing data availability 

**excluded in the sense of the interview analysis (“a decision to adopt AES is perceived as a decision to give up 

independent decision-making”, c.f. D3.4), however included as part of fit with established farm practices 

***to be included in later model versions depending on data availability 
#Farmers might not report social influence as much as it actually affects their behavior as the literature shows that 

considerable influence is exerted by the social network (Brown et al., 2020). Currently we considered social 

influence through information of farmers about AES, potentially it will also be included with respect to diffusion of 

knowledge, societal reputation or as social capital with influence on pro-environmental value. 
##Due to the diverting importance in the interviews (ranging from hardly important to very important), we decided 

to include this factor and test its implications. 

4.3 Decision-making framework 

With respect to the specific conceptualisation of the model, we were inspired by 

different behavioural concepts and theories such as expected utility theory, theory of 

planned behaviour or prospect theory (see examples for applications of these theories 

in the context of farmer decision-making in Despotović et al. 2019, Coelho et al. 2012). 

However, we decided not to follow one specific theory because none of the theories 

includes all factors that were considered as being important for the decision on AES 

adoption in our interviews or the literature. Therefore, we decided to rather choose 

components relevant for our context regarding the adoption of the five AES, such as 

the behavioral characteristic of loss aversion from prospect theory or the concept of 

opportunity costs from expected utility theory. In addition we were influenced by the 

CONSUMAT approach (developed by Jager 2000; Janssen and Jager 2001; Jager 

and Janssen 2012) which was developed with the aim to formalise human behavior 

for ABMs. It is based on different psychological theories and incorporates components 

such as uncertainty, satisfaction behavior, habits and influence of others. However, 

we felt that for our context, some aspects of the CONSUMAT approach such as social 

influence and uncertainty are given too high weight which does not match to the 

insights on farmers’ behavior related to AES adoption that we obtained from the 

interview campaign. Therefore, we decided to derive our own formalization which can 

be adapted to peculiarities in the different case studies, e.g. by allowing to switch on 

or off some components that are more or less important in some case studies.  

Our decision-making framework is structured as a three step procedure where choices 

are made at different spatial levels. We propose this hierarchical decision-making in 

the context of AES because our own interview campaign and other empirical studies 

(e.g. Lienhoop and Brouwer, 2015) have shown that some farmers are not at all open 

to consider a specific AES and therefore do not enter into in-depth deliberations 

(Figure 1). The different processes to be run in one time step include:  

1. Openness to specific AES: Decision-making at farm level on whether at all 

the farmer is open to consider adoption of a specific AES  

2. Subset suitable fields: Selection at field level which locations are available for 

AES adoption 

3. Deliberation: Deliberation on which AES to adopt on which field based on 

economic utility and transaction costs 
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Figure 1: Schematic representation of the three steps of the decision-making process: (1) 

openness to specific AES, (2) subsetting suitable fields and (3) deliberation. 

When the ABM is more closely linked to the biophysical models, previous to these 

steps, yield and other field characteristics would be updated. The specific assumptions 

and calculations for the different decision-making steps are the following:  

Step 1: In the first step, farmers individually decide whether they are at all open to 

think about applying specific AES. This is a rather identity driven consideration, in 

contrast to the actual AES decision which is designed to be strongly based on 

economic profit. We decided to include this separate decision step as it was observed 

that some farmers have general aversions against some AES and never consider to 

apply for those. This includes, for example, when farmers see themselves as farmers 

and not as foresters and therefore are not willing to convert their arable land to 

woodland (Lienhoop and Brouwer, 2015). Furthermore, as it was stated in the 

interviews, some farmers are reluctant because of their own negative experience or 

rumours about AES, e.g. including sanctions due to actions that were not the farmers’ 

faults. Additionally, for some farmers their reluctance might simply be based on 

missing knowledge about specific AES, the long time frame that some AES impose 

and that might not be in accordance with the business plans of the farm or because 

they do not see the environmental benefits. Therefore, the first decision-making step 

will depend on the following three variables: Willingness to change, prior knowledge 

on AES, pro-environmental value. 

For all of the three farmer-specific variables we assume a division in two distinct 

categories (high/low). Whereas pro-environmental value is constant and willingness 

to change is constant for every AES, prior knowledge is variable and depends on 

different influence factors. This could, for example, result in prior knowledge as being 

composed of (1) own prior experience, (2) prior experience of other farmers and (3) 

influence from consultancy on specific AES. Different implementations including 

influence from other sources are however also conceivable. The three suggested 

factors can be additively combined and weighted with weighting factors 𝑤1 + 𝑤2 +

𝑤3 = 1that denote the susceptibility of a farmer to the respective influence factors and 

are given as farmer-specific characteristics. “Own experience” is in a first model 

version equal to one if the farmer has participated in the specific AES before 
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(considering the whole time span of the simulation) and zero otherwise. In later model 

refinements, we envision an evaluation of applied AES which would allow us to weight 

farmers’ own experience based on the rate of success of previous participation. As we 

do not have the respective data available, this could be based on a probabilistic 

assumption on how successful an AES application was with lower probabilities for AES 

that are highly dependent on external influences over which the farmer has no control. 

Unsuccessful AES could, for example, implicitly include that farmers had to pay back 

money because others have unintentionally interfered with AES implementation such 

as dog walkers using buffer corridors as footpaths. The experience of others is based 

on similar assumptions. Here, the rate of participation of a subset of farmers is 

calculated. This subset can, for example, consist of other farmers in the CS area that 

are in the same FSA, i.e. farmers with similar farm sizes and specializations, and/or 

farmers that are in spatial proximity e.g resembling belonging to a village where 

farmers regularly meet during social activities. This could be implemented, for 

example, by following the idea of social circles (Hamill and Gilbert, 2009). For influence 

via consultancy we assume that if consultancy is present (a property assigned to 

individual farmers, see table x1), this value is one and zero otherwise. In total, the 

calculation of prior knowledge sums up to a value between zero and one and can be 

transferred to low/high categories by assuming a threshold at 0.5.  

Based on these three dimensions, we derive simple probabilistic relationships that 

denote the probability for taking specific AES into account. By using a probabilistic 

approach, we try to reflect that the complex decision-making already in the first step 

whether or not to be open for an AES at all cannot be mapped to strict yes/no decisions 

based on only three influence factors. This leaves room for rather unexpected or 

uncommon behavior that might arise from other influence factors not explicitly included 

in the three factors, i.e. a farmer with “low” rating in all categories may still with a low 

probability consider adopting AES. In a later model version and with more empirical 

knowledge from the existing literature and, if needed, a follow-up online survey in our 

CS (see below), we might be able to replace this simplistic approach by more precise 

functional relationships, e.g. using regression models on empirical data. To derive the 

decision tables, we calculate all eight possible combinations of the three variables 

(Table 6). In a first approach, we assume that the willingness to change has the highest 

importance for farmers to decide whether to adopt followed by prior knowledge and 

pro-environmental value as this resembles our observations from the interviews. The 

relevance of the influence factors can for a later model version also be derived from 

further empirical studies (see below). Each farmer is open to consider a specific AES, 

i.e. proceed to step 2 and 3 of the decision model for that AES, with the probability 

that emerges from this table. For a first approach, specific values for the range of 

probabilities can be derived from reviews on farmer decision making that rate the 

importance of different influences, e.g. Lastra-Bravo et al., 2015 or Brown et al. 2020, 

or from discrete choice experiments, e.g. Hasler et al. 2019 or Ruto & Garrod, 2009. 

For more details on specific values of the probabilities see paragraph on 
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parameterization below. 

Table 6: Probability table to derive chance that a farmer considers taking specific AES into 

account based on willingness to change, prior knowledge and pro-environmental value.  

Willingness to 
change 

Prior knowledge Pro-environmental 
value 

Probability of 
considering AES 
application 

high high high High* 

↓ 
Low* 

high high low 

high low high 

high low low 

low high high 

low high low 

low low high 

low low low 

* There will always be some probability a farmer is not open to accept an AES, and a possibility he is open to it. 

For example, the range can be from 0.9 (for High) to 0.1 (for Low)  

Step 2: The second step is supposed to operate at field level and determines the fields 

that are in general available for specific AES applications. Therefore, farmers first 

exclude fields that still have ongoing AES contracts as those are not eligible for new 

schemes. Additionally, farmers decide on which fields they apply mandatory 

Ecological Focus Areas (EFAs) and exclude those as well. Here, the selection of the 

fields will be based on results from regression models parameterized from available 

CS data (on EFA declarations) but due to the mandatory nature of the EFAs, explicit 

decision-making (as for AES adoption) is not included. To comply with the rules for the 

minimum field size needed for application of specific AES, farmers furthermore 

exclude fields that are too small. Farm level schemes such as organic farming are only 

applied on the whole farm and therefore decisions are taken at farm level (see below).  

Based on data availability in the CS, we might additionally also consider the duration 

of lease contracts (to compare with duration of AES) and specific administrative 

restrictions that inhibit the application of certain AES on some fields (e.g. DIANAweb 

in DE) in the selection of suitable fields in later model versions. After this step, farmers 

have for each AES a set of fields in their selection list, on which it can potentially be 

applied. Further restrictions on the available farm land for AES are not considered in 
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this version. 

Step 3: In the third step, farmers consider whether it is profitable for them to adopt 

AES. This calculation is done separately for every suitable field and AES. Below, we 

describe how this affects farm-level schemes such as organic farming. In their 

decision-making, farmers include different elements:  

● Financial gains from AES: Subsidies that farmers receive for AES application.  

● Financial costs of implementation: Costs that occur in addition to existing 

farm practices, e.g. when farmers are required to learn new skills or buy new 

technology to implement AES. 

● Opportunity costs: Forgone income that farmers could have achieved by 

following their regular cropping strategy without considering AES.  

● Environmental gains from AES: Environmental benefit of AES comprise both 

private and public benefits, e.g. increase in soil quality due to cover crops or 

perceived contribution to biodiversity through flower strips, respectively. 

● Transaction costs: For transaction costs, farmers consider two different 

aspects, namely (1) available knowledge and (2) bureaucracy required to apply 

for, fulfill and monitor the AES. 

● Fitness with established farm practices: Farmers compare their regular 

farming activities with what is required to implement the AES. 

The general assumption is that farmers consider a scheme for adoption for which 

holds: 

𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑔𝑎𝑖𝑛𝑠 𝑓𝑟𝑜𝑚 𝐴𝐸𝑆 −  𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 −

𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠  

+ 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑔𝑎𝑖𝑛𝑠 𝑓𝑟𝑜𝑚 𝐴𝐸𝑆 −  𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠  

−𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑤𝑖𝑡ℎ 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑓𝑎𝑟𝑚 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠 > 0 

Farmers calculate for each field whether the adoption of AES is profitable and include 

AES that fulfill the general assumption of positive overall gain (see above) in a list of 

options. We assume that farmers decide to adopt that scheme on their list with the 

largest overall gain. In a first approach, we consider farm-level AES such as organic 

farming to be taken into account when they fulfill the condition on a majority of the 

fields. Later this might be revised to take into account the specific requirements of 

such far-reaching changes to established farm practices. 

Here, we present a first approach on how to formalize the different influence factors 

and combine them to calculate the overall gains or losses of AES application at field 

level. For the moment, we do not present concrete ways of implementation but rather 

highlight the functional relationships for the main effects that determine the decision-

making and their dependence with farmer, field and AES characteristics. More precise 

Author-formatted document posted on 25/02/2022. DOI:  https://doi.org/10.3897/arphapreprints.e82404



26 | Page D2.2: Conceptual Framework 
__________________________________________________________________________________ 

 

relations might be derived from further empirical studies (see below) or through an 

exchange with agro-economists. 

● AES remuneration is designed in a way that on average, farmers are subsidized 

for incurring costs and forgone income, i.e. the overall financial profit F of AES 

application is zero for a farm with average soil quality, topography and size and 

conventional farming: Expectation[F] = Ex[financial gains from AES - financial 

costs of implementation - opportunity costs] = 0. Note that this generally holds 

at national scale, and not necessarily true within the CS scale. As the soil quality 

and topography differs between individual fields or farms, and farm size and 

farming intensity also affects net profit (economy of scale), F depends on the 

deviation of these factors from the average in the respective region, i.e. F = 

f(soil quality - Ex[soil quality], topography - Ex[topography], farm size - Ex[farm 

size], intensity - Ex[intensity]).  

● Environmental gains E depend on the specific AES but also on the pro-

environmental value of a farmer, i.e. E = f(pro-environmental value, AES). We 

assume that farmers with a high pro-environmental value assign a higher 

environmental gain to AES in general which implicitly implies that they also 

weigh public benefits such as improved biodiversity higher. Furthermore, we 

assume that some AES are more beneficial for the environment (e.g. organic 

farming) than others (e.g. cover crops) and therefore more interesting to 

farmers with high pro-environmental value. 

● Available knowledge K is part of the transaction costs and comprises costs for 

getting information It is AES-specific and might be changed by e.g. consultancy 

i.e. K = f(AES, consultancy). It can be calculated similarly to ’prior knowledge’ 

as in decision step 1 or include further sources of influence, e.g. via the media. 

● Bureaucracy B is the second part of transaction costs. It is AES-specific (see 

Table 4) and depends on the farm size, B = f(AES, farm size). As a first 

approach, we assume that for each AES bureaucracy is assigned to one of 

three classes (low, medium, high). We assume that larger farms have more 

capacities to deal with bureaucratic issues. For simplicity, we therefore lower 

the ranking of the administrative burden of an AES for large farms by one 

category, e.g. the high effort for applying organic farming is only medium for 

large farms (for classification of farm size in small, medium, large see above). 

AES that are rated with “low” bureaucracy would remain “low” for large farms . 

● Fitness with established farm practices P is based on the farm specialization 

and the land use on the field, meaning for example whether a field can be used 

as grassland or for crop cultivation, and is AES specific, i.e. P = f(AES, 

specialization, land use). As a first approach, we plan to create a three-

dimensional look-up table from which the respective classification can be 

derived (cf. Table 4).  

In the decision-making process, each of these elements is combined and weighted 

with a factor 𝛽𝑖 with 𝑖 = 𝐹, 𝐸, 𝐾, 𝐵, 𝑃reflecting the importance of the different aspects 
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that are considered and additionally converting all functional relations to unitless 

numbers. We assume that the weighting differs between FSAs. Here, we however 

have not yet a specific functional relationship in mind but rely on further insights from 

empirical data (see parameterization). 

4.4 Implementation 

BESTMAP will build the ABMs based on an open-source modelling platform. As the 

InVEST modelling toolbox that is employed in BESTMAP to model the provision of ES 

(see section 4.3) is implemented in Python, our first choice is to use an existing open-

source Python-based ABM environment. This would allow easy scripting and 

interchange of data between the two platforms. Our current implementation plan builds 

on Mesa (https://mesa.readthedocs.io/en/master/index.html), a modular framework for 

building, analysing and visualizing agent-based models. There is also an extension to 

Mesa which allows to incorporate GIS data into models called mesa-geo 

(https://github.com/Corvince/mesa-geo) that will be used in the project. BESTMAP will 

explore existing open-source Python libraries to perform calibration/validation and 

sensitivity analysis - for example using SALib (https://github.com/SALib/SALib) 

package. High Performance Cluster resources to perform the analyses are available 

in several consortium organizations. If, during the implementation phase, we 

encounter insurmountable challenges with Mesa, BESTMAP will adopt the more 

commonly used NetLogo ABM environment (which most ABM modellers, including our 

own, have experience with). The tight integration with python-based biophysical 

models can, in that case, be achieved by using the pyNetLogo package 

(https://pynetlogo.readthedocs.io/en/latest/), a library that allows to access and run 

NetLogo from Python (Jaxa-Rozen and Kwakkel, 2018). As with Mesa, this 

environment supports the use of python packages to sample and analyze a suitable 

experimental design for sensitivity analysis and to parallelize the simulations. 

Additionally, a NetLogo extension is available that provides the ability to load GIS data 

in NetLogo models  

(https://ccl.northwestern.edu/netlogo/docs/gis.html). 

4.5 Parameterization 

The model rules are built upon several sources of input, including (1) the available 

literature on AES adoption, comprising several studies from CS across the EU, 

reviews summarizing these studies and reports or additional surveys in our CS; (2) the 

quantitative and qualitative results from first our interview campaign and (3) 

assessment of BESTMAP CS experts and farmer experts that validate our model 

assumptions. Next to the model rules, the model, however, includes several variables 

for farmer and field characteristics as well as AES classification that need to be 

parameterized.  
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Field characteristics can be derived from spatial datasets on the CS level (Table 3). 

This includes soil quality, field size, topography, spatial distribution, land use and 

intensity as well as ownership (included as the farmer characteristic ‘set of fields’) 

which leads to information about the set of fields a farmer manages. Furthermore, 

information on land use and land cover can be used to derive the crop type and 

intensity that is applied on each field. This information can then be incorporated into 

the calculation of yield that is needed to derive the opportunity costs of AES 

application.  

The properties of the selected AES are listed in Table 4. Minimal field size and duration 

can be derived from the design of the AES policies in the different CS. In a first model 

version, ‘change to established farm practices’ and ‘level of bureaucracy’ are based 

on the assessment of the BESTMAP CS experts. For later model versions, we plan to 

check this classification with farmer experts or farmer consultants to make sure that 

our rating captures farmers’ assessment of the important influence factors. 

The parameters that describe the farmer agents (Table 2) can be divided into three 

different types: spatial variables, identity-based properties and AES-specific 

characteristics. Spatial variables include the variables related to the FSA classification 

(farm size and specialization) and information about managed fields (which are 

described by further spatial variables on the field level, see above). These variables 

can be derived from spatial datasets at CS level. For identity-based properties such 

as pro-environmental value and willingness to change CS-wide dataset do not exist. 

Similarly, farmers’ susceptibility to different influences (wi) in the first step of the 

decision-making and their weighting of the importance of factors (𝛽𝑖) in the last step to 

decide on AES adoption are not captured by available datasets. Here, we have to rely 

on empirical data. Existing discrete choice experiments that derive the importance of 

various factors such as the availability of consultancy (Hasler et al., 2019; Espinosa et 

al., 2010), bureaucracy (Ruto & Garrod, 2009) or changes to established farm 

practices (Christensen et al., 2011; Latacz-Lohmann & Breustedt, 2019) on the 

decision for specific AES can be used as a first source to gain more insights into these 

variables.  

In addition to the parameters that are included in the model, we assume functional 

relationships between the farmer, field and AES characteristics and farmers’ decision-

making. First, we use a probability that farmers consider application of specific AES 

based on their willingness to change, prior knowledge and their pro-environmental 

value (step 1 of the decision-making framework) and second, we calculate the 

functional relationships between these characteristics to calculate financial profit, 

environmental gains, transaction costs and fit to farm practices of specific AES (step 

3 of the decision-making framework). 

To derive these relationships and the respective weighting factors, we envision to 

conduct a second online survey campaign which might be either framed as a 

questionnaire or a discrete choice experiment. A questionnaire would allow to expand 
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the quantitative part of the first interview campaign on reasons for AES adoption and 

could be used to derive relationships between farmer characteristics, a broad range 

of influence factors and their decision-making, e.g. by using regression analysis. With 

discrete choice experiments the range of factors that could be tested would be limited, 

for the selected aspects, however, stronger results than from a normal questionnaire 

could be obtained. The experiments could be framed in a way that for each AES, 

farmers chose the option they prefer based on a given set of options with different 

influence factors. These options would reflect different levels of attributes of the 

scheme (see decision step 3) and would therefore allow to reveal and measure trade-

off between the different choices and the ranking of importance. An additional 

questionnaire following the discrete choice experiment would provide basic 

information on farmers’ characteristics. This information could be used to derive the 

distribution of certain farmer characteristics (such as pro-environmental value) across 

a CS which can be used as a basis for the parameterization of the farmers. Difficulties 

with regard to the discrete choice experiment could be that we would need to find and 

incentivize a sufficient number of farmers to obtain reliable results. However, 

BESTMAP CS experts are confident that by distributing the requests via farmer 

associations and as the experiment will be conducted online and will not take much 

time, we would be able to reach enough participants. To provide additional incentives, 

we are furthermore considering a lottery where farmers can participate after 

completing the online survey.  

4.6 Validation 

The BESTMAP ABM aims at developing a model that helps with understanding the 

policy-farmers-environment system rather than a model that allows predictions (Grimm 

et al., 2020). Validation is fundamentally important for an ABM.  According to Sargent 

(Sargent 2017), the model validity concerns conceptual model validity, data validity 

and model operational validity. We will carry out validation work through all stages of 

the ABM development.  

As discussed above, our conceptual model of farmers’ decision making process is 

developed based on well-established decision-making theories, together with insights 

obtained from the qualitative analysis of our case studies across Europe. In the ABM 

development phase, we will take advantage of the datasets, e.g. survey data, FADN, 

GIS data, that are discussed in the previous chapters, statistical and machine learning 

methods to inform agent design and parameters. Furthermore, parameter sensitivity 

analysis will be carried out to test the model’s robustness. 

For the operational validity, we will apply a pattern-oriented modelling (POM) 

approach, which is a method to design, test and validate complex computational 

models (Grimm et al. 2005). POM can be used to reduce uncertainties in model 

parameters by matching model results against multiple observed patterns, and rule 

out those model specifications that do not match the multiple observed patterns in the 
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data. BESTMAP will define the patterns the ABM results will be matched against, 

which could be important observations, measures or statistics in data, such as land 

use changes and the adoption of AES. A set of scenarios will be designed to test the 

model operationality against the patterns. 

 

 

5. Step D - model ecosystem services/public goods and socio-
economic impacts at case study level 

 

The framework proposed for BESTMAP-PIAM uses calibrated and validated  

biophysical models to estimate impacts of AES adoption. The biophysical models 

developed at the CS level have therefore the specific goals of identifying trade-offs 

and synergies between biodiversity and ecosystem services in and across the five 

CSs, and to detect the effects of AES implementation on biodiversity and the selected 

ecosystem services. Building on such a basis, the models will also reflect and 

demonstrate differences in biodiversity and ecosystem services between the FSAs. 

The model outputs will be used to derive useful policy indicators at the CS level, which 

latter be upscaled to the European level, and incorporated and visualized into an 

interactive dashboard where different policy scenarios and their effects will be 

explored. 

The input data of the biophysical models at case study level consist of geospatial data 

compiled in the Case Study Base Layer and described in the Deliverable 3.1, as well 

as non-spatial data (e.g. soil carbon content in each land cover/land use type) needed 

for model parameterization and validation. Since the data compiled in the European 

Base Layer (see Deliverable 3.2) is significantly different in terms of spatial resolution 

and continuity than the Case Study Base Layer (Deliverable 3.1), the development of 

biodiversity, ES and socio-economic models at the European scale will consist of a 

separate modelling task (see Step E below) rather than an upscaling of the models 

developed at the CS level.  

Model selection is based on previously selected AES according to the relative 

importance in terms of spatial coverage of AES across CSs as well as the findings of 

the interviews conducted with the farmers. Data availability varies across the CSs, and 

affects model selection at the CS level, e.g. when lack of data prevents model 

development in one/several CS. One of the challenges in the modelling task is in fact 

the compilation and harmonisation of input data across CS, and ensuring 

comparability of model outputs given the heterogeneity of input data from different 

sources and countries (e.g. structural differences in the IACS/LPIS data across 

countries; but see Deliverable 1.3  for the adopted guidelines and protocols 

harmonizing activities across CSs). Moreover, all input data including geospatial 

information about AES participation are pooled for multiple years (typically 4-5); and 
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information about the physical environment, such as climate and terrain geodata, 

comes from multi-year averages which do not necessarily meet the exact timeframe 

for which the IACS/LPIS data have been retrieved. Harmonisation obstacles arise also 

from inherent differences in the AES in different countries. To overcome this, selected 

AES are grouped into higher-level measures with similar management purpose (e.g. 

maintaining low-intensity grassland, land-use conversion, etc.), but such categories 

are broad and may need to be further differentiated (e.g. land-use conversion 

measures include conversion from arable land to grassland as well as afforestation of 

previously open land). Finally, certain EFA schemes (e.g. cover crops, field borders, 

buffer strips) are very similar in management and purpose to some of the selected 

AES, and should therefore be included as input data in the biophysical models. This 

will require an additional step in the modelling framework, as the effects of AES and 

EFA in the model outputs will need to be disentangled. The simultaneous inclusion of 

AES and EFA in the models will otherwise entail increased effort and complexity of the 

Agent Based Models. 

BESTMAP aims to model socio-economic impacts of adoption of the five AES, 

particularly on issues such as farm labour. The conceptualization of these models is 

still ongoing, but they would likely be regression based models using FADN microdata. 

As BESTMAP is yet to get FADN data, we postpone further elaboration on those 

models to the update of this Deliverable. 

 

6. Step E - upscaling to a model operating on FADN regions  
 

The transferability of BESTMAP models will be assessed by mapping the similarity of 

FADN regions across the EU to the study regions of BESTMAP CSs, using the 

approach described in Step A. Mapping the gradient of transferability for each of the 

CS will allow highlighting the regions for which the models from individual CS are most 

relevant. However, two aspects are crucial to define what constitutes an acceptable 

degree of transferability potential. First, a different set of EU-wide FADN region-scale 

variables needs to be defined for the transferability of (a) biophysical models of 

ecosystem services and of (b) the ABMs of farmers’ adoption of AES. Second, a 

specific threshold for the transferability gradient needs to be selected to divide the 

potential into an acceptable and unacceptable level of transferability. Previous 

approaches used either equal intervals or a certain percentage of distance values (e.g. 

top 25% of the gradient) to select such a threshold. Here, we will compare the EU-

wide variables with CS-specific data and validate the biophysical and ABM models in 

order to find the most appropriate threshold of transferability. Such analysis will 

subsequently serve as a basis for the actual upscaling of CS level results. The end 

result will be a model operating on a subset of FADN regions across Europe, where 

we consider at least one of BESTMAP case study models to be adequate for 

transferring ABM and impact models. 
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There are a few approaches that could be used when upscaling from the CSs to the 

EU region. Three options relate to deriving either model parameters (for an ecosystem 

service (ES) model such as InVEST) or model results from spatial analysis of the CS 

land covers and archetype maps. These options are titled Parameter Averaging (PA), 

Results Averaging (RA), and Results Metamodeling (RM) respectively. As this part of 

the work is only starting, the Conceptual Framework here proposes all options - we 

expect to be able to select the best approach in the update Deliverable 2.4 of this 

framework. 

 

In brief, PA involves tailoring land cover model input parameters to archetype 

parameters prior to running an ecosystem service (ES) model. The tailored 

parameters would be based on weightings derived from the land covers each 

archetype (what BESTMAP will be using as the base map layers (herein known as 

FSAs)) overlays in space. Alternatively, RA involves ES models to be run using the 

original land cover maps and original parameters tables, with the results giving a value 

to each FSA delineated in space. RM is similar to RA, but instead of assigning a value 

to each FSA, we build a regression (meta-model) for each FSA based on the results 

maps and variables at the farm-level. 

 

Parameter Averaging (PA)  

For an ES model like InVEST, parameter tables are required to link each land type of 

a map with a set of unique properties (biophysical parameters). Thus, there is a 

requirement that each land cover has one row in the appropriate input table. Due to 

specificity of each FSA, appropriate parameter values may be extremely difficult to 

find or obtain via a literature review. PA can address this issue by deriving the 

necessary parameters from the underlying land covers (which are much easier to find 

parameter values for). The methodology of PA would require the original land cover 

map to be delineated by each spatially-aligned FSA. The land cover area that the 

specific FSA covers would then be analysed in terms of its composition. For example, 

if FSA1 covered 5 pixels of LC1 (which had a parameter value of 1) and 15 pixels of 

LC2 (which had a value of 10), the final weighted parameter value would be 7.75 

because: 

 

WM(p) = ∑𝑛
𝑖 = 1 (𝑥𝑖 ∗  𝑤𝑖)/  ∑𝑛

𝑖 = 1 (𝑤𝑖)  

 

where WM(p) is the weighted mean of a parameter, x is the value of the land cover 

pixel, and w is the weight (number of pixels). Then a final value for all the parameters 

based on the weighted value of each of the land cover parameters can be obtained. 

 

Once the values for all the parameters for the specific models have been obtained, ES 

models can be run at the EU-scale with the tailored parameters. 

 

Results Averaging (RA) 
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The RA approach differs from PA in that averaging comes subsequent to the ES 

modelling of the land cover map (as opposed to the FSA map) in a certain case study 

region. The basis of this RA approach requires ES models to be run with the original 

case study land cover layer. Once those models have been run, the output will be 

overlaid with the FSA map. All the pixels (i.e. the total area) of the archetype of interest 

will then be delineated and a mean of the underlying values will be obtained. This way 

each archetype is composed of various land covers. Resulting, each archetype would 

have an average value of the ES services, creating an ES profile. 

 

The basic methodology for RA would involve modelling ESs using the land cover maps 

and their associated parameters and then defining ES values of FSAs by spatially-

aligning and delinetating the ES results by each FSA. The summed values in the 

delineated ES result layer would then be calculated and divided by the number of 

pixels to get a mean per pixel ES value for a single FSA. This would make calculation 

of ES at lower resolutions or larger extents (i.e. those outside the case studies) easy 

to calculate as each FSA would be assigned an ES value based on the RA results.  

 

Results Meta-modelling (RM) 

The RM extends the RA approach, replacing the single mean value assigned to the 

archetype by a regression model parameterized by (a) the overlaid ES model outputs 

masked by specific FSA map; (b) set of farm level parameters (which we expect to 

have available from FADN microdata); (c) other spatial gridded data e.g. precipitation. 

For each FSA, we will create a regression model, and those will be used later replacing 

GIS layers with FADN individual farm records data. 

 

RM vs. RA vs PA 

Each of the methods described above have benefits and disadvantages. The 

advantages of PA are that it would allow for (possibly) more spatially-explicit 

modelling, thereby highlighting regional differences better. The disadvantages of PA 

are that it would require a new model to be run for each scenario, which is both time-

consuming and requires much more computational effort.  

 

The main benefit of RA is that, when modelling a different scenario, only simple 

calculations are required - i.e. no extra models have to be run. Also, RA uses the 

results from the case study FSAs and thus may be more representative due to their 

incorporation. The disadvantage of the RA approach is that, in the current method, 

incorporation of more spatially-explicit results (e.g. those with extreme topographies) 

will not be as well represented; however, with post-processing this should be able to 

be corrected to some degree. 

 

The advantage of RM is that it can, if the regressions explain more of variance than a 

constant value (which is RA) produce better results which also capture environmental 

and farm-level controls. A priori, we don’t know which farm-level variables would be 
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significant in such a regression, which is a risk. Furthermore, if we use environmental 

gridded data (which are often also in the ES model, so it is very likely they will be 

picked up in e.g. backward stepwise regression, we will face a challenge as FADN 

data is only provided at NUTS3 level. We will likely need to average (“degrade”) 

gridded data to NUTS3 level before trying to generate the regressions. MIND STEP, 

a sister project to BESTMAP with Thunen and JRC as partners, is working on R 

package to analyze FADN micro-data, and a streamlined method to probabilistically 

assign FADN microdata to 1x1km grid cells (HSU units) see e.g.  

https://susfans.eu/system/files/public_files/Publications/Reports/SUSFANS-

Deliverable-D4.6-UBO.pdf . Depending on their progress, BESTMAP may take 

advantage of those two developments by MIND STEP. 

 

Next steps: deciding which method to use 

The decision about which method will be used could be assessed using a decision 

matrix, with each requirement or criterion given a different level of priority/ influence in 

the decision-making process (Table 1). It is important to note that the decision of which 

method to use could be different for the different ecosystem services modelled.  

 

The requirements with the highest priorities (i.e. those labelled 1) would focus on 

whether trials of the method had proved sensitive to changes in AES, which is the aim 

of BESTMAP to test and therefore essential, and also whether correlations to any 

accessible validation data resulted in high scores (e.g. ≥0.9). These two factors are 

essential when deciding on the most appropriate method, and therefore any method 

could be invalidated if it did not meet these criteria. 

 

The second level priorities are that there is low uncertainty of the results of the models, 

how representative the rest of the EU is compared to the case study regions, and 

whether the method is achievable using computational power and time available. 

Uncertainty is a fundamental characteristic of modelling, being caused by things such 

as incomplete data, model limitations, and lack of knowledge and/or incorporation of 

associated or underlying processes. One way that could be used to assess the 

uncertainty of results is through sensitivity testing of results over a range of scales, 

e.g. varying pixel size, or altering certain model parameters. This will allow the 

methods used to be tested in terms of robustness. The uncertainty of each model run 

will be made explicit regardless of where it is considered in the decision matrix priority.  

 

Representative the rest of the EU is compared to the case study regions may be 

important for some methods more than others. In the PA vs RA situation, RA would 

possibly perform better if there was a high level of representativeness between CSs 

and the EU at large. This is because the values used for RA would incorporate values 
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from all the CSs, and therefore would require a high representativeness to be able to 

model ecosystem services at the larger extent to an accurate degree. 

 

The considerations of computational and time resources are important as without 

these the method may not be possible; however, it would not be the main factor in 

deciding, hence why it has the lowest priority level in the decision-making process. 

 

Table 7: Decision matrix for deciding which method will be used for different ecosystem 

services  

Requirements and criteria Priority 

(1 = highest) 

Sensitive to AES changes 1 

High correlation with validation data (if available) 1 

Low uncertainty 2 

Representativeness of case studies to rest of EU 2 

Achievable using computational power and time 

available 

2 

Lowest time cost 3 

Lowest computational cost 3 

 

6.1 ABM Upscaling 

ABM upscaling is aimed to develop an approach that allows our ABM to be applied in 
other regions of EU members of states. 

We will first demonstrate the operationality of our ABM by developing a valid model 
that produces meaningful results for the five different case study areas across Europe 
(Step C). In this stage, a methodology of setting up and calibrating the model will be 
developed for using the model in other EU regions, where required data is available 
or can be derived from other datasets.  

In the ABM upscaling stage, we aim to apply the decision-making ABM to another EU  
region. The major challenge for the upscaling is model validation due to lack of data. 
As it is discussed in Step C, the ABM parameterisation will use different data sources. 
Although existing in each Member State, LPIS/IACS data is not harmonized to the 
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same schema/data structure, so using it for each EU region would require attention 
when applying to different EU regions. It is also very difficult and time consuming to 
get access to IACS/LPIS because of confidentiality requirements of each responsible 
organization within the Member States. Instead, BESTMAP-PIAM builds on using 
FADN microdata - which is still not trivial to get, but there exists a process to request 
FADN data, it is harmonized and available for all EU regions and across multiple years. 
However, some information available in IACS/LPIS at field and farm level is not 
available in FADN records. 

To overcome this data challenge, we propose a hybrid modelling approach which 
integrates statistical modelling into ABM. Existing research suggests using Markov 
Chain Monte Carlo (MCMC) methods for parameter optimization in ABMs (Kattwinkel 
& Reichert 2016, Hooten et al. 2020). MCMC is a family of algorithms used for random 
sampling from high-dimensional probability distributions. Another approach is to 
perform model uncertainty analysis using statistical emulators (Bijak et al. 2013, 
Klabunde & Willekens 2016 and Papadelis & Flamos 2018). We will need further 
investigation to decide the approach once the ABM development for case studies is 
completed. We will use distributions estimated in the CS level, from IACS/LPIS, and 
use one of those approaches to incorporate those missing data into the FADN regions 
level ABM analyses (with error propagation). 

In the upscaling stage, we will also carry out a thorough literature review of the farmers’ 
decision-making research on AES and categorize the existing research data and 
findings based on region/country. These data can be used  for the ABM tuning when 
implementing a scenario of an EU region that is out of BESTMAP case study regions. 
For example, Pavis et al. reported their case studies of AES participation in 
Netherlands, Denmark, Austria, Italy and Greece (Pavlis et al. 2016). Lastra-Bravo et 
al. (Lastra-Bravo, X. B.2015) reviewed ten research studies of farmers’ participation in 
AES in different EU countries. 
 

7. Step F - linking outputs to indicators 
 

New post-2020 CAP policy already presents its list of associated indicators to allow 

the Commission to assess and monitor the achievements of specific objectives of the 

policy. A new Performance Monitoring and Evaluation Framework (PMEF) is designed 

which includes the use of a set of common indicators: Context indicators (remain 

pertinent), Result indicators (annual performance), Output indicators (annual 

performance) and Impact indicators (multi-annual performance). Therefore, each CAP 

strategic plan presented by each State member of the EC should refer to some 

interventions linked to specific objectives  that should be assessable through the 

indicators defined by the EC, for instance, Farmland Bird Index as an indicator of 

Contribution to the protection of biodiversity, enhance ecosystem services and 

preserve habitats and landscapes. All the indicators are listed in the Annex I of 

COM(2018) 392 final 

(https://ec.europa.eu/commission/sites/beta-political/files/budget-may2018-cap-strategic-

plans-annex_en.pdf ).  
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The EC will provide specific fiches for each indicator in which the definition, the type 

of intervention associated, the methodology and the units of measurement and other 

comments will be included. A draft example of such fiches can be consulted in 

https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupMeetin

gDoc&docid=43860.  

 

In the context of BESTMAP, indicators relevant for the model outputs have been 

identified with the aim to identify possible derived impacts on ecosystem services 

when a selected agri environmental scheme is present or absent. As explained above, 

different types of models will be used, Agent based models (ABM) or biophysical 

models. The firsts would produce mainly output indicators while the seconds would 

produce mainly impact indicators. Table 8 presents a selection of indicators linked to 

the biophysical modelling that would assess some ecosystem services (ES).  

 

Table 8: Impact indicators linked to the biophysical modelling of BESTMAP 

Ecosystem services Linked impact indicator 

Water quantity I.17 Reducing pressure on water resource: 
Water Exploitation Index Plus (WEI+) 

Water quality I.15 Improving water quality: Gross nutrient 
balance on agricultural land 

Carbon sequestration I.11 Enhancing carbon sequestration: 
Increase the soil organic carbon 

Biodiversity / habitats I.18 Increasing farmland bird populations: 
Farmland Bird Index 
 
I.19 Enhanced biodiversity protection: 
Percentage of species and habitats of 
Community interest related to agriculture 
with stable or increasing trends 

.  

On the other hand additional interesting metrics provided by the EU Sustainable 

Development Goals or the Water Framework Directive are also available. Indeed, the 

EU SDG indicators set is aligned with the UN list of global indicators but also relevant 

for the EU, given that UN SDG indicators are selected for a global level reporting and 

not always relevant for the EU. Indicators of SGD 2 (Zero hunger) and SDG 15 (Life 

on land) are the most relevant for the objectives of BESTMAP modeling.  
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Intercomparison between CAP post-2020 indicators and EU SDG has been made in 

order to identify the common indicators and therefore the most relevant ones: 

 

CAP post 2020 indicator EU SDG indicator 

R17. Afforested land: Area supported for afforestation and 
creation of woodland, including agroforestry 
 
R.25 Supporting sustainable forest management: Share of 
forest land under management commitments to support 
forest protection and management.   
 
R.26 Protecting forest ecosystems: Share of forest land 
under management commitments for supporting landscape, 
biodiversity and ecosystem services  

15_10 Share of forested 
area 

R.28 Supporting Natura 2000: Area in Natura 2000 sites 
under commitments for protection, maintenance and 
restoration  

15_20 Surface of 
terrestrial sites designated 
under NATURA 2000 

I.13 Reducing soil erosion: Percentage of land in moderate 15_50 Estimated soil 
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and severe soil erosion on agricultural land erosion by water   
 

I.18 Increasing farmland bird populations: Farmland Bird 
Index 

15_60 Common bird index 

1.16 Reducing nutrient leakage: Nitrate in groundwater - 
Percentage of ground water stations with N concentration 
over 50 mg/l as per the Nitrate directive 

06_40 Nitrate in 
groundwater 

I.27 Sustainable use of pesticides: Reduce risks and impacts 
of pesticides 
 
R.37 Sustainable pesticide use: Share of agricultural land 
concerned by supported specific actions which lead to a 
sustainable use of pesticides in order to reduce risks and 
impacts of pesticides 

NEW Harmonised risk 
indicator for pesticides 
(HRI1)   

 

 

8. Step G - provide a dashboard to visualize and allow policy-

makers to explore scenarios 
 

Given the complexity of PIAMs, BESTMAP will offer an interactive dashboard where 

end-users such as stakeholders, scientists or regular citizens, will be able to run (or 

use pre-computed outputs), analyse and report the results of models that simulate 

future scenarios. This decision-support tool will allow easy interaction and comparison 

of policy alternatives by visualizing geospatial distributions of the positive and negative 

impacts on each case study. 

 

 
Figure 2. Mock-up of BESTMAP dashboard. 
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The dashboard will be co-designed with stakeholders and project members to 

ensure its usefulness through the organization of at least one virtual / face-to-face 

meeting among these actors.  

 

At technical level, the dashboard will be a configurable system designed to allow 

simple replacement of content as soon as the project is generating new models or pre-

computed results. The visualization will include maps to easily identify spatial 

distributions of impacts, graphs or tabular data. It will allow on-the-fly computation of 

several statistics, it will show data quality indicators (e.g uncertainty) and will be 

provided with user-friendly controls that will allow the selection of different scenarios 

(e.g. sliders).  

 

The data architecture that includes the project dashboard is composed of 4 

components (Figure 2). First, the GeoNetwork provides a Metadata Catalogue and 

also stores the data. Models run in a Virtual environment using GeoNetwork data as 

inputs and its output results are data sources for the GeoServer (WMS / WFS). All 

possible scenarios are precomputed as possible results. Complex indicators are also 

precomputed and stored in the GeoNetwork. GeoServer provides responses to the 

dashboard queries that are presented to the users as graphical or numerical values. 

Simple indicators such as statistical overalls are computed directly on the dashboard.  
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Figure 3. Data architecture including dashboard. 

 

The dashboard will evolve with new functionalities to meet new requirements that 

could eventually appear during the project life.  
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