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Abstract

Photosynthetic  apparatus analysis provides information about the physiological  state of

plants. Changes analyzed by the pulsed chlorophyll-fluorometer allow determining plant

cells' metabolites' modifications even at inconsequential cellular damage. It was assessed

the possible impact of various salinity levels: 0.584, 1.461, 2.922, and 5.844 PSU (Practical

Salinity Unit) on the fluorescent characteristics of the pigment complexes of photosynthetic

apparatus on the alien invasive waterweed species (Elodea canadensis (Michx., 1803)) of

the  most  serious  concern  in  Europe.  The  information  about  aquatic  macrophyte

photosynthetic  systems:  PSI  and  PSII  was  obtained.  The  results  indicate  that  a  high

salinity  level:  2.922 and 5.844 PSU,  after  a  prolonged time of  impact,  seriously  affect

photosynthetic apparatus inhibition. The decrease in ∆F /F ΄ values at 2.922 and 5.844

PSU indicates deterioration in macrophytes'  physiological  state in general.  In the post-

stress period, photosynthesis intensified. The interesting feature was noted, that a small

water salinity level (0.584) stimulates the chlorophyll  formation and increases the F F

index.The research revealed the dependence of photosynthesis processes in plants on

salinity  levels.  A  rapid  increase  in  the  sensitivity  of  the  PS  II  system  of  submerged

macrophytes to high salinity was detected, which probably is related to the inhibition of

protein  synthesis.  This  data  provides  information  for  the  further  bio-diagnostics  of  the

plant's  overall  condition  and  prediction  of  the  exposure  degree  and  the  possibility  of

developing forecasts of growth and invasive plant distribution.
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Introduction

After analyzing the latest data from the various international studies, it can be concluded

that  E.  canadensis (  Michx.,  1803 )  has  been established in  more  than 26 European

countries,  while  its  congeners  the  non-native  E.  nuttallii (Planch.)  H.  St.  John  and  E.

callitrichoides (Rich.)  Casp.  are  very  rare  or  absent  in  most  of  Europe.  Due  to  their

morphological similarities, similar habitat preferences, and weedy growth, Elodea sp. are

often misidentified, particularly in the early invasion phases (Lambdon et al. 2008 Nichols

and Shaw 1986).

The  effects  of  dissolved  sodium chloride  stress  on  freshwater  plants  have  been  little

studied up to now, although it is expected to present different levels of salt sensitivity or salt

resistance betting on the plant  species.  It  is  noted that  one of  the generally  accepted

indicators for the practical study of the overall condition of terrestrial and aquatic plants is

the assessment of changes in the primary processes of photosynthesis and the formation

of photosynthetic pigments in response to environmental factors (Grinberga and Priede

2010).  This  indicator's  general  value  for  the  plant's  overall  state  analysis  is  the  high

sensitivity to processes in the photosynthetic apparatus under the earliest stages' adverse

factors . 

Salt-sensitive plants have reduced survival,  growth, and development when exposed to

even low to moderate salinities. In contrast, salt-tolerant species can grow and reproduce

even  at  oceanic  salinities.  High  concentrations  of  salt  impose  both  osmotic  and  ionic

stresses on the plants, leading to several morphological and physiological changes, such

as interruption of  pigment synthesis and overall  decreasing of  photosynthetic activities.

However,  different  species  of  plants  inherently  possess  various  measures  and  other

capacities to cope with exposure to high salinity, and salt stress responses and tolerance

vary between species (Jampeetong and Brix 2009, Misra et al. 1998).

 The F /F  parameter that indicates Maximum Quantum Efficiency (MQE) is the most used

chlorophyll fluorescence measuring parameter. F /F  - while it does not directly correlate

with  carbon assimilation,  it  is  a  very  sensitive stress detector,  and it  allows compared

samples in the dark-adapted state. This protocol for measuring the MQE of PSII in plants

has withstood time and was developed by (Butler  and Kitajima 1975).  Disturbances in

photosynthesis's  primary  functions  are  directly  reflected  in  chlorophyll  fluorescence

changes and appear long before the plant's physiological state's visible deterioration. It

was  also  noticed  that  the  measurement  of  chlorophyll  fluorescence  is  the  fastest,

informative, and convenient in comparison with other experimental methods that also apply

for  the  ecological  monitoring  of  plants  (Jiang  et  al.  2018,  Murata  et  al.  1966).  The

photosynthesis process is susceptible to high salinity levels, which affects many aspects of

this process. The electron transfer along the photosynthetic electron transport chain (ETC)

suggests the sequential participation of two photosystems: PSII and PSI, but the carriers

reduced in PSII serve as electron donors for PSI. The activity of photosynthetic systems

contemporaneously  affects  the  redox  state  of  plants  another  photosystem.  This
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relationship between PSII and PSI manifested in the fluorescence of chlorophyll, the level

of which depends on the redox state of the quinone acceptor (QA). The photoreaction of

PSII restores QA, increasing the level of fluorescence, and the activity of PSI leads to the

oxidation of QA and a decrease in fluorescence (Herlory et al. 2007, Falkowski et al. 1986, 

Trissl et al. 1993).

Induction changes include primary nitrogen reduction and subsequent reduction due to

electrons' appearance in PSII and resulting in changes of the acceptor part of PSI during

the photo-activation of ferredoxin-NADP reductase (PNR) (Chekalyuk and Hafez 2008, 

Brack  and  Frank  1998, Heidbuchel  et  al.  2019,  Jassby  and  Platt  1976).  An  essential

advantage of fluorescence methods is their speed and high sensitivity, making it possible

to quickly diagnose in situ the state of aquatic macrophytes cells under the influence of

different adverse factors directly in their environment, non-destructive, and in real-time.

Thus, our study aimed to investigate the effect of different salt concentrations (close to sea

ones) on the invasive aquatic plant. This paper presents data about the salinity impact on

E.  canadensis leaves  and  obtains  insights  about  photosynthetic  activity  changes  for

understanding  the  possible  effect  on  the  invasive  freshwater  plant  after  salinity  level

increases and subsequent saline water intrusion into the freshwaters. 

Material and methods

Study site and Sampling 

The experiment's plant:  Canadian waterweed or pondweed Elodea canadensis (Michx.,

1803),  has  transferred  from the  natural  environment  (Lielais  Stropu  Lake:  Daugavpils,

Latvia) to a laboratory aquarium for further experiment.

Cultivation of plant material  

The plant for the experimental part propagated in the laboratory aquarium tank. For the

analysis, we used a bi- distilled water solution mixed with 1.6 g/L (Merck, Hoagland's No. 2

Basal Salt Mixture) as a nutrient and various salt  concentrations: 0.584, 1.461 , 2.922,

5.844 PSU,  and control.  Changes in  pigment  content  and photosynthetic  activity  were

carried  out  every  week  for  three  weeks.  The  plants  were  grown  under  the  optimal

conditions  in  a  Versatile  Environmental  climate  test  chamber,  with  photoperiodicity:  16

hours a day and 8 hours a night, relative illumination 30 μE/m , temperature 18+/- 1 °С,

and ambient relative humidity (RH) in climate chamber ≈80% .

Measurement of Chl fluorescence 

All measurements were performed at room temperature (20°C) and carried out on a hand-

held pulse modulated chlorophyll fluorometer OS–30p (Opti-Sciences, US) with a leaf-clip

holder for plant leaves. It allowed simultaneously record fluorescence and measures the

pigment's redox state of the PSI reaction-centre, monitoring the reactions of PSII and PSI

simultaneously  and  recording  the  induction  of  changes  in  delayed  fluorescence.
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Measurements  of  fluorescence and determination of  the redox state  by  the change in

absorbance were accomplished at 700–750 nm wavelength, beam saturation intensity was

exposed at 6000 μM, as a saturation light source: an array of red LEDs 660 nm. Detection

method: pulse-modulated, test duration: 0.1–1.5 seconds, and automatic light calibration

set to 3500 μM. The default saturation pulse duration was set at 2.0 seconds; however, the

software takes a rolling eight-point 25 ms average to determine F  and F . Before dark

adaptation measuring the fluorescence indices, the samples were kept in the dark until 150

minutes as the plant dark adaptation in the wet state. The photochemical efficiency (F /F )

of dark-adapted plants calculated according to the formula: F /F  = (F –F )/F  (Murchie

and Lawson 2013, Hader et al. 1997, Antal et al. 2011, Franklin and Badger 2001).

Statistical analysis 

All  measurements  were  analyzed  statistically  and  presented  as  means  and  standard

deviations (SD). Statistical variance analysis of the independent data with three replicates

(n = 3) for Chl fluorescence parameters was analyzed using Statistica ver.13.3 ( StatSoft,

Palo Alto, California, USA ) and compared with the minor significant differences at P≤0.05

and P≤0.01, respectively.

Results and Discussion

Measurements are done employing a weak modulated light, which is just too low to drive

photosynthesis but enough to excite pre-photosynthetic antenna fluorescence. After dark

adaptation, the fluorometer allows the accurate measurement of minimum fluorescence (F

).  In  this state,  photosystem II  maximally  oxidized.  The  xanthophyll  cycle,  ∆pH of  the

thylakoid lumen, state transitions, chloroplast migration have relaxed in their inactive forms.

The modulated fluorometer then irradiates the plant leave-plates with an intense saturation

light that is high and long enough to reduce or close all available PSII reaction centres

entirely (Misra et al. 1998, Van Kooten and Snel 1990). Our studies have shown that high

salinity levels: 2.922 and 5.844 PSU after a prolonged time at the third week of influence

substantially reduce the growth of E. canadensis (data not shown). The F /F  ratio reflects

the maximum quantum yield of charge separation in PSII. Toward the donor side, partially

inhibit  the  oxygen-releasing  complex,  while  on  the  acceptor  side,  it  inhibits  electron

transport. This process also manifests itself in a negative effect on the efficiency of non-

cyclic electron transport. The combined parameters serve as indicators of the functional

activity of PSII, referred to as the absorbed energy (ABS). These parameters showed the

high sensitivity of plants to increasing salinity level (Ilik et al.  2003, Kolber et al.  1998, 

Krause and Weis 1991).

The influence of salinity level (5.844 PSU) on E. canadensis was manifested in a decrease

of chlorophyll F /F 's fluorescence by more than 42 % and, after dark adaptation phase,

on 86%, but in the substrate with a 2.922 PSU concentration, observed a decrease of 21%

and after dark adaptation phase, on 78% compared to control samples on the third week

(Fig. 1). The observed reduction in the F /F  value was mainly associated with a decrease

in the maximum fluorescence (F  value, which is characteristic of the process of photo-
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inhibition of PSII. A typical fluorescence trace made on a dark-adapted leaf showing how

minimum fluorescence intensity (F ) and maximum fluorescence intensity (Fm) are formed.

The measuring beam excites chlorophyll but is not of sufficient intensity to induce electron

transport  through PSII.  This  reaction gives (F )  the minimal  level  of  fluorescence,  and

reaction  centres  are  said  to  be  open.  A  brief  saturating  pulse  of  light  results  in  the

maximum  possible  yield  of  fluorescence  (F ).  During  this,  pulse  reaction  centres  are

effectively closed. The data shows how the values of the indicators: F , F , and F  have

changed over three weeks at different salt concentrations presented in the graphs (Fig. 2).

A short-lag phase probably preceded the exponential reduction of F /F  to the initiation

level due to the accumulation of the active concentration of salt inside the cells. Increased

salt levels also affect the donor/ acceptor part of PSII (Murchie and Lawson 2013, Butler

and  Kitajima 1975,  Genty  et  al.  1989,  Kuster  et  al.  2007).  The  F  output  during  this

saturating light  radiation represents  a sufficiently  reduced PSII.  It  has been found that

healthy aquatic macrophytes have an F /F  value in the range of 0.7 to 0.75; lower and

higher values possibly indicate plant stress, and these indicators differ significantly from

plants that grow in soil on the land surface (Maxwell and Johnson 2000).

The presence of photosynthetically active cells in the leaf may indicate their resistance to

the effect of small salt concentrations (1.461 PSU) and give the possibility of participation

in  further  plant  development  (data  not  shown)  .  Indeed,  the  F /F  ratio  initially  slowly

decreased from 0.72 to 0.68, after which it returned to its initial state or slightly exceeded

the  initial  value.  The  result  obtained  due  to  microfluorimetry  is  consistent  with  the

assumption that aquatic plant can adapt to the minor and short-lived negative effect of salt

by preserving individuals existing resistance and eliminating the unstable part of the plant

population. Photo-inhibition of photosynthesis associated with the development of photo-

oxidative stress in cells subjected to salinity level may be enhanced by combining other

adverse factors of different natures. The profound inhibition of photosynthesis is mainly

associated with the photooxidation of the D  proteins in the PSII reaction centres (Kuster et

al. 2007, Batjuka et al. 2016). The restoration of the activity of PSII is accompanied by

resynthesizes of this protein in the chloroplast. The concentration of active centres of PSII

in plant cells mainly depends on the ratio of its photo-oxidative destruction and repair level.

It can be determined by reducing the F /F  value in the light conditions and subsequent

relaxation in the dark phase, respectively (Baker 2008, Aro et al. 1993).

The low values of the F /F  parameter for samples grown with 2.922 and 5.844 PSU salt

concentration  indicate  a  decrease  in  the  functional  activity  of  PSII,  mainly  due  to  a

reduction in the proportion of active reaction centres and an increase in the quenching of

excited  states  in  the  antenna  due  to  heat  generation.  A  reduction  in  the  efficiency  of

transfer of  excitation energy from the light-harvesting complex to the reaction centre is

accompanied by an increase in  unused light  energy dissipation.  It  also noted that  the

quantum efficiency of energy dissipation in cells exposed to high salt  concentrations is

high.  Changes in  the redox state  of  the reaction centre  of  PSI  were less  sensitive  to

elevated concentrations of  salt.  However,  a decrease in the recovery rate of  PSII  was

observed. The appearance of delayed fluorescence is due to the accumulation of certain

emitted redox states responsible for the reverse recombination of charges and quanta's
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emission (Massachiro and Takuo 1994, Riis  and Hawes 2003,   Schreiber 2004).  Small

concentrations  of  salt  increase  the  photosynthesis  rate  and  stimulate  the  growth  and

development of the aquatic plant. However, at the same time, increased concentrations of

dissolved  sodium  chloride  could  lead  to  photo-inhibition  and  cause  photo-oxidative

destruction  of  plant  photosynthetic pigments  and  even  death  of  the  organism  after

prolonged exposure (Petjukevičs et  al.  2015,  Savicka et  al.  2018, Sigaud-Kutner  et  al.

2005).

F /F  analysis could be confirmed as a method with high sensitivities, performance, and

accuracy. It  allows non-destructive in situ measurements to be carried out in real-time,

which  is  important  for  solving  various  environmental  tasks.  The  basis  of  fluorescence

methods is  that  chlorophyll,  located in photosynthetic  membranes,  serves as a natural

indicator of plant cells' state when cells are disturbed under adverse conditions. Our data

have proven its robust way to measure aquatic plant early-stress that affects photosystem

II, and Chl fluorescence changes serve as a source of vital information. P robably high salt

concentration  also  leads  to  the  destruction  of  chlorophyll-a  and  chlorophyll-b  while

increasing the synthesis of  carotenoids as plant  protection mechanisms occur until  the

complete destruction of chloroplasts. These processes can be considered responses to

ROS generation in the cell under adverse abiotic factors in the first stage in protecting plant

chloroplasts (Loeblich 1982, Petjukevičs and Škute 2017, Yang et al. 2008, Skute et al.

2020).

The  destructive  effect  of  salt  stress  on  chlorophyll  biosynthesis  may  be  due  to  the

formation of proteolytic enzymes, such as chlorophyllase, but chlorophyllase responsible

for  photosynthetic  apparatus damage and chlorophyll  degradation (Tanaka et  al.  2008, 

Lichtenthaler 1987). Reducing photosynthesis rate under high salt levels associated with

decreased plant stomatal conductance and absorption of carbon dioxide occurs outside the

stoma. As a result, carbon dioxide content in the intercellular space is reduced (Hasegawa

et al. 2000). The photosynthesis reaction rate in the dark phase is reduced, and absorbed

light  negatively  affects  chloroplasts'  reaction  centres.  The  impaired  growth  and

development of  plants under sodium chloride stress is  a consequence of  physiological

response reactions and involves changes in the cellular ionic balance, mineral nutrition,

transfer  of  water  through  the  plant's  stomata  conductance,  photosynthetic  rate,  and

ultimately in the fixation and utilization of carbon dioxide. The pigment-protein complex's

instability,  together  with  disrupted  photosynthetic  electron  transport  chain,  increased

chlorophyllase activity, which is the main reason for chlorophyll destruction under salinity (

Brugnoli and Bjorkman 1992).

The effect of various salt levels on the aquatic, invasive plant E. canadensis was studied.

Results suggest that F /F  distribution pattern in an individual plant may change according

to the imposed stress factor. Analyzing F /F  parameter fluctuations may be an effective

pattern of identifying stress factors. Our study results suggest that the long-term influence

of salt in high concentrations suppressed the E. canadensis synthesis of chlorophyll and

photosynthetic activity in general, and disturbs physiological processes, apparently directly

affecting the activity or metabolic enzyme synthesis of plant pigments.
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Figure 1. 

Measurement of changes in maximum quantum efficiency of PSII photochemistry (F /F ) at

different salinities during different exposure days (7, 14 & 21). The error bar represents the

standard deviation, n = 3, (P ≤ 0.01).
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Figure 2. 

Changes in maximum fluorescence intensity (F ), minimum fluorescence intensity (F ), and

variable fluorescence (F ) at different salinities during different exposure days (7, 14 & 21).

The error bar represents the standard deviation, n = 3, (P ≤ 0.05).
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