

PREPRINT

Author-formatted, not peer-reviewed document posted on 06/04/2022

DOI: https://doi.org/10.3897/arphapreprints.e84895

Reproduction of marble-mouth frogfish *Lophiocharon lithinostomus* (Lophiiformes, Antennariidae) and the evolution of parental care among frogfishes

២ Toshiaki Mori, Risa Murai, Takeshi Ito, ២ Seiya Okuno, Yuya Kobayashi, Tomoyuki Uehara, ២ Shun Satoh

Disclaimer on biological nomenclature and use of preprints

The preprints are preliminary versions of works accessible electronically in advance of publication of the final version. They are not issued for purposes of botanical, mycological or zoological nomenclature and **are not effectively/validly published in the meaning of the Codes** Therefore, nomenclatural novelties (new names) or other nomenclatural acts (designations of type, choices of priority between names, choices between orthographic variants, or choices of gender of names) **should NOT be posted in preprints**. The following provisions in the Codes of Nomenclature define their status:

International Code of Nomenclature for algae, fungi, and plants (ICNafp)

Article 30.2: "An electronic publication is not effectively published if there is evidence within or associated with the publication that its content is merely preliminary and was, or is to be, replaced by content that the publisher considers final, in which case only the version with that final content is effectively published." In order to be validly published, a nomenclatural novelty must be effectively published (Art. 32.1(a)); in order to take effect, other nomenclatural acts must be effectively published (Art. 7.10, 11.5, 53.5, 61.3, and 62.3).

International Code of Zoological Nomenclature (ICZN)

Article: 21.8.3: "Some works are accessible online in preliminary versions before the publication date of the final version. Such advance electronic access does not advance the date of publication of a work, as preliminary versions are not published (Article 9.9)".

1	Reproduction of marble-mouth frogfish Lophiocharon lithinostomus (Lophiiformes,
2	Antennariidae) and the evolution of parental care among frogfishes
3	
4	Author names
5	Toshiaki Mori ^{1*} , Risa Murai ¹ , Takeshi Ito ² , Seiya Okuno ² , Yuya Kobayashi ² ,
6	Tomoyuki Uehara ¹ and Shun Satoh ^{2,3*}
7	
8	Affiliation
9	1 Marine Science Museum, Fukushima (Aquamarine Fukushima), 50 Tatsumi-cho,
10	Onahama, Iwaki, Fukushima, 971-8101, Japan
11	2 Department of Biology and Geosciences, Graduate School of Science, Osaka City
12	University, Sumiyoshi, Osaka, 558-8585, Japan
13	3 Department of Evolutionary Studies of Biosystems, The Graduate University for
14	Advanced Studies, Miura, Kanagawa 240-0193, Japan
15	* Corresponding authors
16	
17	Running head
18	Reproduction of frogfish Lophiocharon lithinostomus

19 Abstract

Here, we observed the reproductive behavior of marble-mouth frogfish (Lophiocharon 20 lithinostomus) and the morphology of newly hatched juveniles under captive conditions. 21 22 Adult males showed pursuit behavior towards females approximately seven days before spawning; spawning and ejaculation took place almost simultaneously. An adult female 23 24 cared for a fertilized egg mass adhered to their right of the left side of the flank. The position of the adhered eggs on the flank was left-biased (3 on the right and 25 on the 25left). The females exhibited a proactive fanning behavior towards the egg masses using 26 27 their dorsal fins; the fanning frequency increased over time after spawning. Meanwhile, the males did not display any form of parental care behavior. The eggs had hook-like 28 structures that might enable the eggs to attach to the flank of the parent. Hatching 29 occurred between 22 and 28 days after spawning. Newly hatched juveniles already had 30 a full set of fin rays; their morphology was similar to that of adult fish. Moreover, we 31 32 reviewed the evolution of parental care behaviors and egg types among frogfish family.

33

34 Keywords

35 Antennariidae, aquarium experiment, early ontogeny, egg care, parental care

36 Introduction

38	Antennariidae, the frogfish, belongs to the order Lophiiformes and consists of two
39	subfamilies: Antennariinae and Histiophryninae, with 14 genera (Pietsch and Arnold
40	2020). Frogfishes are found in all tropical and subtropical oceans and seas except for the
41	Mediterranean (Jordan and Richardson 1908; Pietsch 2004; Pietsch and Arnold 2020),
42	and they are predatory fishes (Arnold et al. 2014). Almost all frogfishes resemble
43	certain environmental objects, such as sponges, rocks, and coral (Arnold et al. 2014).
44	Cryptic colorations can help frogfishes avoid predation and misidentification by prey
45	(Arnold et al. 2014). Although the fishes in the family Antennariidae have diverse egg
46	types and reproductive behaviors (Pietsch and Grobecker 1980; Pietsch and Grobecker
47	1987; Kuiter 1993; Liem 1998; Pietsch et al. 2009; Arnold et al. 2014; Arnold and
48	Pietsch 2018; Pietsch and Arnold 2020; Bray and Gomon 2020), there are few detailed
49	studies on their reproduction. According to the few reports in the literature (Mito 1960;
50	Fries 1973; Pietsch and Grobecker 1987), the fishes in the family Antennariidae are
51	divided into two types of species that lay an aggregated pelagic egg (e.g., Antennarius
52	spp. and Histrio spp.) and demersal eggs (e.g., Histiophryne spp. and Lophiocharon
53	spp.) (Friese 1974; Molter 1983; Fujita and Uchida 1985; Arnold et al. 2014).

55	Some species of Antennariidae demonstrate egg care behavior. For instance,
56	Lophiocharon spp. cares for a demersal egg mass adhered to the flank of the parents
57	(Pietsch and Grobecker, 1980). Nevertheless, the sex of the parent engaging in egg care
58	remains unclear. For example, Pietsch and Grobecker (1980) reported that only male L .
59	trisignatus could care for their eggs; however, Pietsch and Arnold (2020) later observed
60	that Lophiocharon trisignatus females cared for their eggs. This confusion is likely due
61	to the difficulty in determining the sex of frogfishes based on their external
62	morphologies, although the females are usually are bigger than the males (Pietsch et al.
63	2013). Therefore, detailed studies of reproduction are needed to fully understand the
64	early-life history of frogfishes exhibiting various reproductive strategies.
65	
66	Here, we report the sequences of spawning and egg care behavior of marble-mouth
67	frogfish (L. lithinostomus). This species inhabits coastal reefs of Indonesia and the
68	Philippines and resembles algae-covered rocks (Arnold and Pietsch 2012; Arnold et al.
69	2014). There have been no reports on the species' reproductive behavior. In addition to
70	the analysis of the reproductive behavior, we report the unique egg structure adapting to
71	the egg care behavior by female parents and the morphology of newly hatched juveniles.

72	Moreover, we review the evolution of parental care behaviors and egg types, pelagic or
73	demersal eggs, among frogfish families using limited available reports.
74	
75	Materials and methods
76	Studied Fish
77	
78	Ten adult <i>L. lithinostomus</i> , including four males with a standard length (SL) of 105.7 \pm
79	15.6 mm and six females with an SL of 120.0 ± 10.1 mm, were obtained from the
80	ornamental fish company (Kamihata Fish Industries LTD, Hyogo, Japan) and identified
81	according to Pietsch (2004). The sexes of these individuals were determined by
82	dissection when they died. Moreover, we used one female with an SL of 89.5mm bred
83	by the Marine Science Museum, Fukushima. Thus, a total of 11 L. lithinostomus
84	individuals were used in this study. They were individually identified by observers
85	using their unique coloration and body morphology. The individuals used here have
86	been registered as voucher specimens in the Marine Science Museum, Fukushima
87	(registration number: AMF0053 and 0115).
88	

89 Fishkeeping and reproduction

$\mathbf{\Omega}$	0
u	11
~	

91	We used two water tanks in this study. Four fish (two males and two females) were held
92	in a 1-m ³ water tank ($1.0 \times 1.0 \times 1.0$ m) at 26.0°C from 2016 to 2019, and six fish (two
93	males and five females) were held in a 0.45-m ³ water tank ($0.7 \times 1.0 \times 0.6 \text{ m}$) at
94	25.0 $^{\circ}$ C from 2018 to 2019. The fish were fed silver-stripe round herrings
95	(Spratelloides gracilis) once daily. Between 2016 and 2019, 28 spawning events were
96	observed.
97	
98	Behavioral observation
99	
100	When tracking behavior by the males toward the females was observed, we videotaped
101	their reproductive behaviors and continued throughout the day until spawning was
102	observed. Then, we recorded individuals that cared for eggs and the lateral surface of
103	the body to which the eggs were attached.
104	
105	We quantified the investment in offspring by parents by conducting detailed behavioral
106	observation of four reproductive events ($n =$ four females). Female parents attached
107	spawned eggs to the left or right flank and exhibited fanning behavior toward the eggs

108	using their dorsal fin. We count the fanning behavior for 10 min per day. This
109	behavioral observation was conducted between 8:00 and 17:00. Lastly, statistical
110	analysis was performed using R (R development core team 2020).
111	
112	Morphology of Eggs and newly hatched juvenile
113	
114	Because one female (137.8 mm SL) renounced an egg mass twice during observation,
115	we used these the egg masses for measurements of egg morphology. The number of
116	eggs per clutch was estimated by comparing the weight of fifty eggs and the weight of
117	egg mass. Egg size was measured using a stereomicroscope (ZEISS SteREO
118	Discovery.V12, ZEISS Research Microscopy Solution, Ltd., Germany). The egg mass
119	was not consumed by other fish because we sampled them right after it was renounced.
120	
121	We observed the morphology of newly hatched juveniles by fixing them in 10%
122	formalin ($n = 10$). Their standard lengths were measured to the nearest 0.1 mm under a
123	microscope, according to Hubbs and Lagler (1958), after they were overdosed with an
124	anesthetic (MS-222, Wako Pure Chemical Industries). The number of fin ray of all fins
125	of the newly hatched juveniles were counted and compared with those of adult fish. The

126	observed individuals were deposited as voucher specimens (registration number:
127	AMF0127). We classified the newly hatched fish as "juveniles," according to the
128	developmental classification by Kendall et al. (1984) because their fin rays already
129	attained the full complement right after hatching.
130	
131	Review of the evolution of egg care in the frogfish family
132	
133	To understand the functional role of egg care behaviors and morphology of eggs in L .
134	lithinostomus, we performed a phylogenic analysis to examine the evolution of egg care
135	behaviors in the frogfish family. The data on the reproductive characteristics, such as
136	the size and number of eggs, egg types such as pelagic or demersal, and egg care
137	behaviors, were collected from the primary literature. Eventually, we found a total of 14
138	reports on the reproduction of 14 frogfish species. The egg care behaviors were
139	classified into four types according to Arnold et al. (2014): 1) Attaching to the body of
140	the parent (A-type); 2) carrying within a pocket of parent (P-type); 3) guarding in the
141	nest (N-type); 4) no egg care. In the species with A-type behavior, an egg mass is
142	attached to the lateral side of the parent's body and nurtured (Pietsch and Grobecker
143	1980; Pietsch and Arnold 2020). In the species with P-type behavior, the parents

144	embrace their egg masses by curling their dorsal and anal fins (Pietsch and Grobecker
145	1987; Pietsch et al. 2009; Arnold and Pietsch 2018; Pietsch and Arnold 2020). Finally,
146	in species with N-type behavior, the parents spawn specific substrates and care for their
147	egg mass (Kuiter 1993; Liem 1998; Arnold et al. 2014; Bray and Gomon 2021). We also
148	recorded the flank that the A-type and P-type parents carried their egg mass because we
149	found a left-bias in egg caring on the flank in L. lithinostomus.
150	
151	In addition, the presence or absence of egg care and egg types (pelagic or demersal) in
152	major species relative to frogfishes were recorded. Reports on the presence or absence
153	of egg care and egg types for coffinfish Chaunax abei (Mimori 2015), anglerfish
154	Lophius litulon (Ishikawa et al. 2022), and batfish Ogcocephalus nasutus (Christie
155	2016) were obtained. Although footballfishes (e.g., Himantolophus appelii) are also a
156	major species relative to frogfishes (Rabosky et al. 2018), we could not find reports on
157	their reproduction because they inhabit the deep sea.
158	
159	For the phylogenetic analyses, the phylogenetic tree of frogfishes and related species
160	was obtained or modified from a previously published tree (Rabosky et al. 2018). This

161 tree was estimated using RAxML and dated using treePL, and non-target species were

162	excluded using the "droptip" function in R ver. 4.0.3 (R Core Team. 2014), package
163	"ape" (Paradis et al. 2004). Ancestral states of the egg were assessed by using Mesquite
164	Version 3.61 (Maddison and Maddison 2019) with the likelihood method in a Markov,
165	k-status, 1-parameter model, using the modified tree. The reconstruction of ancestral
166	states was conducted using 11 frogfish species and their related species because of their
167	clear phylogenetic relationships (Rabosky et al. 2018).
168	
169	Results
170	Spawning behavior
171	
172	During observation, we successfully videotaped three spawning behaviors
173	(Supplementary S1). Adult males and females were usually solitary in the water tank;
174	however, multiple males began to follow females approximately seven days before
175	spawning. When spawning began, a male ejaculated when a female released an egg
176	mass from its gonopore. Before the egg mass was attached to the side of the female, the
177	male left the female (Fig. 1a). A female attached the spawned egg mass to its side using
178	its caudal fin to wrap it around the lateral surface of its body. The egg mass was not
179	released into the water but transferred from the gonopore to the lateral surface of the

body (Fig. 1b). A female protected an egg mass by covering it with her dorsal, anal, and
caudal fins and occasionally fanned it with her dorsal fin (Supplementary S1).

182

183 Egg care and laterality of female parents

184

185	All egg care behaviors ($n = 28$) were performed only by the female parents, and no
186	males cared for the eggs, based on the spawning events by seven females. While one of
187	the females cared for its eggs on its right flank three times, 89.2 % of the egg masses
188	(25 out of 28 spawning events) were cared for on the left flank of the parent, suggesting
189	a significant bias towards egg care on the left flank (Pearson's chi-squared test χ^{2}_{1}
190	=37.605; p < .001). The number of fanning behaviors towards attached eggs varied
191	considerably, ranging from 0 to 537 per 10 min with a mean of 201.9 \pm 148.6; it
192	increased from the day after spawning until fifteen days after spawning. However, after
193	that, the number of fanning behaviors remained unchanged (Fig. 2). Hatching began 22
194	to 23 days after spawning; almost all juveniles hatched by days 27 to 28. The juveniles
195	were scattered throughout the tank after hatching.
196	

197 Morphological characteristics of eggs and newly hatched juveniles

199	The egg mass had an elliptic shape with a mean major axis of 91.2 mm and a mean
200	minor axis of 62.5 mm. The eggs were round; their average length was 2.9 ± 0.3 mm,
201	ranging from 2.4 to 4.1 mm ($n = 50$; from two egg masses from one female). The
202	coloration of eggs was semi-transparent white just after spawning. Eye pigmentation
203	was confirmed 11 days after spawning. Interestingly, demersal eggs had a unique
204	structure, an s-shaped hook (Fig. 3). Although juveniles ($n = 10$) had yolk sacs just after
205	hatching, all their fin rays already attained the full complement compared with the
206	adults (Fig. 4). The standard length (SL) of the newly hatched juveniles ($n = 10$) was
207	5.70 ± 0.20 mm, ranging from 5.40 to 6.09 mm. They already had esca, which was the
208	distinctive protuberance of this group used for predation as a lure; in addition, they
209	could swim freely and often they could attach to substrates in the water tank.
210	
211	Evolution of egg care among frogfish family
212	
213	We obtained 14 anecdotal or qualitative reports in the field associated with egg care

behaviors of frogfishes (Table 1). The species in Antennariinae do not display egg care
behaviors and have pelagic eggs. In contrast, the species in Histiophryninae have three

216	types of egg care behaviors, i.e., attaching to the body of the parent (A-type), carrying
217	within a pocket (P-type), and guarding at the nest (N-type). The species in
218	Histiophryninae have demersal eggs. Any form of egg care behavior has not been
219	reported from the species related to frogfishes. Ancestral state reconstruction revealed
220	that P-type and N-type egg care behaviors had been evolved independently from the
221	no-care species in Histiophryninae (Fig. 5). In addition, A-type care had been evolved
222	from a group within the P-type egg care (Fig. 5).
223	
224	Discussion
225	
226	In this study, we investigated the reproductive behavior of marble-mouth frogfish
227	(Lophiocharon lithinostomus). We found that multiple males stalked breeding females
228	before spawning, although only one male could participate in the spawning event.
229	Similar behavior by adult males before spawning has been observed in several fishes
230	and functions as mate guarding (Yokoi et al. 2016). Moreover, female filefish (Rudarius
231	ercodes) move around and choose any male following them as their reproductive
232	partners (Akagawa et al. 1998). Thus, the behavior of L. lithinostomus will be regarded
233	as a process of mate choice or mate guarding. For L. lithinostomus, fertilization

234	occurred immediately after the onset of spawning, and the male left the female before
235	the entire egg mass was laid. The time difference between fertilization and spawning did
236	not affect the fertilization rate, and most of the eggs were fertilized (Mori personal
237	observation). Fertilized eggs were covered with a gelatinous curtain. Since the activity
238	time of the sperms in the ovarian cavity fluid of females plays an important role in
239	fertilization, the gelatinous membrane covering the eggs may play a role similar to the
240	ovarian cavity fluid (Hayakawa and Munehara 2001).
241	
242	We found that only females attached egg masses to their flanks and began to fan the egg
243	masses after spawning. Also, regarding L. trisignatus, a related species to L.
244	lithinostomus, only female parents care for egg masses (Pietsch and Arnold 2020). In
245	many species in the frogfish family (Antennariidae), the females are larger and have
246	larger abdomens than the males (Pietsch et al. 2013). Moreover, according to the reports
247	on the sexual dimorphism in frogfishes, there are sexual differences in the number of
248	dermal spinules in striated frogfish (Antennarius scaber) (Breder and Rosen 1966).
249	However, no definitive sex differences have been found among frogfishes. Therefore,
250	the study of the sex of the frogfishes caring for egg mass should be reconsidered.
251	

252	More generally, the morphologies of newly hatched and developing teleost fishes are
253	incomplete compared with adults (Mosher 1954; Ehrlich et al. 1976; Martin and Drewry
254	1978; Kendall et al. 1984; Satoh et al. 2017). In some species, the mouth and anus of
255	the newly hatched larvae do not open, making feeding impossible (Satoh et al. 2017).
256	Even with an open mouth, it would be difficult for the larvae to catch small prey with
257	fin folds due to their low swimming ability (Satoh et al. 2017). Therefore,
258	morphological ontogeny can highly influence early-life history, especially foraging
259	ecology (Satoh et al. 2017). For example, the newly hatched larvae of frogfishes in the
260	Antennariinae with pelagic eggs, such as Histrio histrio, do not have advanced
261	organogenesis (Mosher 1954). In contrast, the newly hatched juveniles of L .
262	lithinostomus already have open mouths, and all their fin rays attain the full
263	complement, suggesting that they already have had robust foraging abilities
264	immediately after hatching.
265	
266	The dispersal of many marine fishes is commonly concentrated in egg or early larval
267	stages (Barlow 1981; James et al. 2002). However, the dispersal ability of <i>L</i> .
268	lithinostomus would be even lower than the pelagic egg group, such as Histrio histro
269	and Antennarius striatus, because L. lithinostomus eggs do not float and are cared for by

270	the female parents. Indeed, frogfishes in Histiophryninae have a smaller distribution
271	area than those in Antennariinae and highly depend on the specific local area (Arnold
272	and Pietsch 2012). In general, species with a low dispersal ability are more susceptible
273	to local environmental changes (Baguette et al. 2012; Gonçalves et al. 2016). Recently,
274	the deterioration of the coastal environment, including coral reefs, has been reported
275	(Kennish 2002). Trends in species such as L. lithinostomus, which are presumed to be
276	less tolerant of environmental changes, should be all eyes.
277	
278	According to the ancestral state reconstruction, three types of egg care had evolved only
279	among the species of Histiophryninae, which have demersal eggs, from non-egg care
280	species. These findings suggested that egg care behaviors had co-evolved with demersal
281	eggs. Demersal eggs are generally larger than pelagic eggs, and the fry can hatch with
282	advanced organogenesis (Sargent et al. 1987; Araujo - Lima 1994). Indeed, we found
283	newly hatched juveniles of <i>L. lithinostomus</i> had highly advanced organogenesis.
284	However, demersal eggs stick to substrates and thus, cannot change location. Therefore,
285	demersal eggs will be exposed to high predation pressure unless they have a chemical
286	defense or camouflage coloration (Eisner et al. 2000; Ruxton et al. 2004; Skelhorn

287 2015). The frogfishes of Histiophryninae may have evolved egg care as a

288 counter-strategy to avoid the high predation pressure applied on demersal eggs.

289

290	The N-type egg care is thought to have evolved independently of these lineages. Also,
291	we found that A-type egg care may have evolved from P-type egg care. It would be very
292	unusual for diverse modes of egg care to evolve among closely related species. In
293	species with P-type egg care, female parents embrace their egg masses by curling dorsal
294	and anal fins into a pocket-like structure (Arnold et al. 2014). In contrast, egg masses
295	are adhered to the flank for fishes with A-type egg care, such as L. lithinostomus. We
296	found an s-shaped hook structure in the egg masses of L. lithinostomus. This structure
297	may function as adhesives to attach the egg masses to the flank of female parents so that
298	the eggs are tightly glued to the parental body. Indeed, when a female parent abandoned
299	the glued eggs, she shook her body vigorously to remove the eggs. (Mori personal
300	observation).
301	

The number of eggs varies between egg care types. For example, speceis with N-type has the highest number of eggs at approximately 5000 eggs (n = 1 species), followed by A-type with 320 to 1311 eggs (n = 2 species) and P-type with 105 to 220 eggs (n = 3

305	species) (Table 1). The number of eggs by N-type fish will not be limited because the
306	fish spawn egg masses on a substrate (Arnold et al. 2014). However, in A-type and
307	P-type, the size of egg masses will be restricted by the flank of the parents because the
308	fish attach or entrap their eggs to the body (Arnold et al. 2014). Although they are
309	constrained by the number of eggs they can spawn in one reproductive event, the
310	parents with A- and P-type egg care can migrate while raising their eggs. Additionally,
311	the species with A-type egg care have more eggs than those with P-type egg care (Table
312	1). In general, oxygen demand, hence the frequency of fanning, increases with
313	embryonic development (Abe and Munehara 2005). Unlike a P-type species, an A-type
314	species can use its dorsal fins for fanning behavior, likely allowing it to hold more eggs,
315	even though the number of eggs is limited by body size (Bagenal and Braum 1978;
316	Warner 1984). Although these comparisons are constrained by the simplicity of the
317	evolution of egg care modes among frogfishes, they suggest that the number of eggs
318	will vary depending on the egg care mode.
319	
220	Finally, we found that <i>L_lithingstomus</i> fomales preferred to use the left side of their

Finally, we found that *L. lithinostomus* females preferred to use the left side of their
bodies for egg care. Interestingly, they also appeared able to use their right flank for egg

322 care because one female used the right flank. Lateralized (left-right asymmetry)

323	morphology and behavior among fishes have been reported in many species (Takeuchi
324	et al. 2016; Hori et al. 2017). Because left-biased egg care was not detected in species
325	with A-type egg care (L: $R = 3:2$ from 5 reports for 3 species, Table 1) but L. trisignatus
326	also displayed left-biased egg care similar to L. lithinostomus (Table 1), this tendency
327	may have co-evolved with A-type egg care. However, we could not determine why L .
328	lithinostomus females used their left side for egg care; this interesting phenomenon
329	requires further morphological or evolutionary validation.
330	
331	Acknowledgments
332	
333	We are grateful to Mr. Yoshitaka Abe and Mr. Takeshi Furukawa of Aquamarine
334	Fukushima for cooperation for fishkeeping. We would also like to thank Dr. Toshiro
335	Saruwatari and Dr. Toru Miura of University of Tokyo, Dr. Takashi Asahida and Dr. Go
336	Katayose of Kitasato University, and Dr. Atsushi Sogabe of Hirosaki University for the
337	comments on our study. We would also like to thank anonymous reviewers for their
338	helpful comments.
339	

340 **References**

- 341 Abe T, Munehara H (2005) Spawning and maternal care behaviours of a copulating
- 342 sculpin, *Radulinopsis taranetzi*. Journal of Fish Biology 67(1): 201–212.
- 343 https://doi.org/10.1111/j.0022-1112.2005.00728.x
- 344
- 345 Araujo Lima CARM (1994) Egg size and larval development in Central Amazonian
- 346 fish. Journal of Fish Biology 44(3): 371–389.
- 347 https://doi.org/10.1111/j.1095-8649.1994.tb01219.x
- 348
- 349 Arnold RJ, Pietsch TW (2018) Fantastic beasts and where to find them: a new species of
- 350 the frogfish genus *Histiophryne* Gill (Lophiiformes: Antennariidae: Histiophryninae)
- 351 from Western and South Australia, with a revised key to congeners. Copeia 106(4):
- 352 622–631. https://doi.org/10.1643/CI-18-112
- 353

```
354 Akagawa I, Kanda T, Okiyama M (1998). Female mate choice through spawning parade
```

- 355 formed by male-male competition in filefish *Rudarius ercodes*. Journal of Ethology
- 356 16(2): 105–113. https://doi.org/10.1007/BF02769289
- 357

358	Arnold RJ, Harcourt R, Pietsch TW (2014) A new genus and species of the frogfish
359	family Antennariidae (Teleostei: Lophiiformes: Antennarioidei) from New South Wales,
360	Australia, with a diagnosis and key to the genera of the Histiophryninae. Copeia
361	2014(3): 534–539. https://doi.org/10.1643/CI-13-155
362	
363	Bagenal TB, Braum E (1978) Eggs and early life history. In: Bagenal TB (ed) Fish
364	reproduction in freshwaters. Blackwell, Oxford, 165–201.
365	
366	Baguette M, Benton TG, Bullock JM (2012) Dispersal ecology and evolution. Oxford
367	University Press, 498 pp.
368	
369	Bray DJ, Gomon MF (eds) (2021) Fishes of Australia. Museums Victoria and
370	OzFishNet. http://fishesofaustralia.net.au/ [Accessed on 19 January 2021]
371	
372	Barlow GW (1981) Patterns of parental investment, dispersal and size among coral-reef
373	fishes. In Ecology and ethology of fishes. Springer, Dordrecht, 65-85.
374	

375	Breder GMJ, Rosen DE (1966) Modes of reproduction in fishes. Natural History Press,
376	Garden City, NY, 941 pp.
377	
378	Christie BL, Monyoya PZ, Torres LA, John WF (2016) The natural history and
379	husbandry of the walking batfishes (Lphiformes: Ogcocephalidae). Drum and Croaker
380	47: 6–40.
381	
382	Ehrlich KF, Blaxter JHS, Pemberton R (1976) Morphological and histological changes
383	during the growth and starvation of herring and plaice larvae. Marine Biology 35(2):
384	105–118.
385	
386	Eisner T, Eisner M, Rossini C, Iyengar VK, Roach BL, Benedikt E, Meinwald J (2000)
387	Chemical defense against predation in an insect egg. Proceedings of the National
388	Academy of Sciences 97(4): 1634–1639.
389	
390	Friese UE (1973) Anglerfishes. Marine Aquarist 4(5): 29–36.
391	

392	Fujita S, Uchida K (1959) Spawning habits and early development of a sargassum fish,
393	Pterophryne histrio ('Linne'). Science Bulletin of the Faculty of Agriculture Kyushu
394	University 17(3): 277–282.
395	
396	Gonçalves J, Honrado JP, Vicente JR, Civantos E (2016) A model-based framework for
397	assessing the vulnerability of low dispersal vertebrates to landscape fragmentation
398	under environmental change. Ecological Complexity 28: 174–186.
399	https://doi.org/10.1016/j.ecocom.2016.05.003
400	
401	Hayakawa Y, Munehara H (2001) Facultatively internal fertilization and anomalous
402	embryonic development of a non-copulatory sculpin Hemilepidotus gilberti Jordan and

- 404 https://doi.org/10.1016/S0022-0981(00)00303-8
- 405

406 Hori M, Nakajima M, Hata H, Yasugi M, Takahashi S, Nakae M, Kosaku Yamaoka,

Starks (Scorpaeniformes: Cottidae). J Exp Mar Biol Ecol 256 (1): 51-58.

- 407 Masanori Kohda, Jyun-ichi Kitamura, Masayoshi Marhata, Hirokazu Tanaka, Norihiro
- 408 Okada, Takeuchi Y (2017) Laterality is universal among fishes but increasingly cryptic

409 among derived groups. Zoological Science 34(4): 267-
--

- 410 https://doi.org/10.2108/zs160196
- 411

412 Hubbs CL, Lagler KF (1958) Fishes of the great lakes region. Bull. Carbrook Inst. Sci
413 26: 1–213.

414

415 I.O.P. diving news (2001) 139, Vol.12, No.10, pp.1.

416

417	Ishikawa	T, Nakaya	a M, Takatsı	ı T (2022) Embr	yonic develo	opment and	effect of water
-----	----------	-----------	--------------	-----------	--------	--------------	------------	-----------------

418 temperature on hatching of Lophius litulon. Environmental Biology of Fishes 105, 77-

419 86. https://doi.org/10.1007/s10641-021-01195-4

420

421	James MK, A	Armsworth PR,	Mason LB	, Bode L	(2002)) The structure	of reef fish

- 422 metapopulations: modelling larval dispersal and retention patterns. Proceedings of the
- 423 Royal Society of London. Series B: Biological Sciences 269(1505): 2079–2086.
- 424 https://doi.org/10.1098/rspb.2002.2128

	x 1 D 0 D 1 1 T				0 1 D		
426	Jordan DS, Richardson H	₹E (1908)) Fishes ti	rom islands	of the P	hilonnine A	rchinelago
120	berduit DB, Hienurdbeit I			ioni ibianab	01 110 1	moppmer	in emperage.

- 427 Bulletin of the United States Bureau of Fisheries 27: 233–287.
- 428
- 429 Kendall AW Jr, Ahlstrom EH, Moser HG (1984) Early life history stages of fishes and
- 430 their characters. In: Moser HG, Richards WJ, Cohen DM, Fahay MP, Kendall AW Jr,
- 431 Richardson SL (eds) Ontogeny and systematics of fishes, Am Soc Ichthyol Herpetol
- 432 Spec Publ No 1. Allen Press, Lawrence, 11–22.
- 433
- 434 Kennish MJ (2002) Environmental threats and environmental future of estuaries.
- 435 Environmental Conservation 29(1): 78–107.
- 436 https://doi.org/10.1017/S0376892902000061
- 437
- 438 Kuiter RH (1993) Coastal Fishes of South-Eastern Australia. University of Hawaii Press,
- 439 Honolulu, Hawaii, 437 pp.
- 440
- 441 Liem KF (1998) Introducing fishes. In: Paxton JR, Eschemeyer WN (ed) Encyclopedia
- 442 of Fishes, 2nd edition. Academic Press, San Diego, California, 14–19.

444	Martin FD, Drewry GE (1978) Development of fishes of the Mid-Atlantic Bight. An
445	atlas of egg, larval and juvenile stages. VI. Stromateidae through Ogcocephalidae U S
446	Fish Wild Serv Biol Serv Prog. FWS/OBS-78/12: 1-416.
447	
448	Molter TJ (1983) A spawning of the Atlantic anglerfish Antennarius scaber. Cuvier.
449	Freshwater and Marine Aquarium 6(1): 34–35, 66, 69.
450	
451	Mosher C (1954) Observations on the behavior and the early larval development of the
452	Sargasum fish Histrio histrio (Linnaeus). Zoologica 39: 141-152.
453	
454	Mimori R (2015)
455	https://www.tokyo-zoo.net/topic/topics_detail?kind=news&inst=&link_num=22733_
456	[Accessed on 20 February 2022]
457	
458	Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution
459	in R language. Bioinformatics 20(2): 289–290.
460	

461	Pietsch TW (2004) A new species of the anglerfish genus Lophiocharon Whiteley
462	(Lophiiformes: Antennaridae) from Australian waters. Records of the Australian
463	Museum 56(2): 159–162. https://doi.org/10.3853/j.0067-1975.56.2004.1418
464	
465	Pietsch TW, Grobecker DB (1980) Parental care as an alternative reproductive mode in
466	an antennariid anglerfish. Copeia 1980: 551–553.
467	
468	Pietsch TW, Grobecker DB (1987) Frogfishes of the world: systematics, zoogeography,
469	and behavioral ecology. Stanford Univ Press, Stanford, CA, 420 pp.
470	
471	Pietsch TW, Arnold RJ (2020) Forogfishes: biodiversity, zoogeography, and behavioral
472	ecology. Johns Hopkins University Press, Baltimore, 624 pp.
473	
474	Pietsch TW, Arnold RJ, Hall DW (2009) A bizarre new species of frogfish of the genus
475	Histiophryne from Ambon and Bali, Indonesia. Copeia 2009: 37-45.

477	Pietsch TW, Ross SW, Caruso JH, Saunders MG, Fisher CR (2013) In-situ observations
478	of deep-sea goosefish sladenia shafersi caruso and bulis (Lophiiformes: Lophiidae),
479	with evidence of extreme sexual dimorphism. Copeia 2013(4): 660-665.
480	
481	Rabosky DL, Chang J, Cowman PF, Sallan L, Friedman M., Kaschner K, Garilao C
482	Near TJ, M Coll, Alfaro ME (2018) An inverse latitudinal gradient in speciation rate for
483	marine fishes. Nature 559: 392-395. https://doi.org/10.1038/s41586-018-0273-1
484	
485	Ruxton G, Sherratt T, Speed M (2004) Avoiding attack: The evolutionary ecology of
486	crypsis, warning signals and mimicry. Oxford, U.K.: Oxford University Press, 278 pp.
487	
488	Sargent RC, Taylor PD, Gross MR (1987) Parental care and the evolution of egg size in
489	fishes. The American Naturalist 129(1): 32–46.
490	
491	Satoh S, Tanoue H, Ruitton S, Mohri M, Komatsu T (2017) Morphological and
492	behavioral ontogeny in larval and early juvenile discus fish Symphysodon
493	aequifasciatus. Ichthyological Research 64(1): 37-44.
494	https://doi.org/10.1007/s10228-016-0530-y

- 496 Skelhorn, J (2015) Masquerade. Current Biology 25: 643–644.
- 497 https://doi.org/10.1016/j.cub.2015.02.069

498

- 499 Maddison WP, Maddison DR (2019) Mesquite: a modular system for evolutionary
- 500 analysis. Version 3. <u>http://www.mesquiteproject.org</u>.

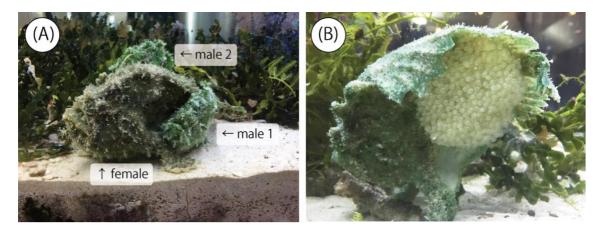
501

- 502 Takeuchi Y, Hori M, Tada S, Oda Y (2016) Acquisition of lateralized predation behavior
- 503 associated with development of mouth asymmetry in Lake Tanganyika scale-eating
- 504 cichlid fish. PLOS ONE. https://doi.org/10.1371/journal.pone.0147476
- 505
- 506 Yokoi S, Ansai S, Kinoshita M, Naruse K, Kamei Y, Young LJ, T Okuyama Takeuchi H
- 507 (2016) Mate-guarding behavior enhances male reproductive success via familiarization
- with mating partners in medaka fish. Frontiers in Zoology 13(1): 1–10.
- 509 https://doi.org/10.1186/s12983-016-0152-2

510

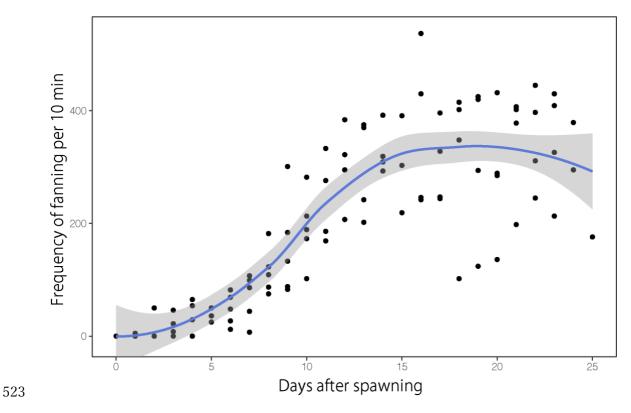
511 Warner RR (1984) Mating behavior and hermaphroditism in coral reef fishes. American

512 Scientist 72: 128–136.


515 **Table 1.** Comparison of reproduction modes for frogfish family Antennaridae.

516

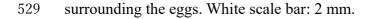
Species	 Egg size (mm) 	The number of eggs	Type of egg	Parental care mode	Laterality of body side used for egg care	Reference(s)
Antennariinae						
Antennarius striatus	0.6	89635	pelagic	No care	_	Fujita and Uchida 1959
Antennarius nummifer	0.7	73000-288000	pelagic	No care	_	Piestch and Grobecker 1987
Histrio histro	0.7	48800	pelagic	No care	—	Ray 1961
Histiophryninae						
Histiophryne cryptacanthus	3.6-4.2	115	demersal	P-type	L:R = 1:0 ($n = 1$ report)	Piestch and Grobecker 1987
Histiophryne bouganivilli	3.2-3.9	105	demersal	P-type	L:R = 1:1 ($n = 2$ reports)	Piestch and Arnold 2020
Histiophryne psychedelica	3.0-4.0	220	demersal	P-type	L:R = 1:1 ($n = 2$ reports)	Piestch et al. 2009; Piestch and Arnold 2020
Histiophryne narungga	No data	No data	demersal	P-type	No data	Arnold and Piestch 2018
Lophiocharon trisignatus	3.2-3.6	650	demersal	A-type	L:R = 4:0 (n = 4 reports)	Piestch and Grobecker 1980; Piestch and Arnold 2020
Lophiocharon lithinostomus	2.1-4.1	320-1311	demersal	A-type	L:R = 26:3 (n = 3 reports)	I.O.P Diving News 2001; Piestch and Arnold 2020; Present study
Echinophryne crassispina	No data	150	demersal	N-type	_	Liem 1998; Bray and Gomon 2021
Echioophryne reynoldsi	No data	No data	demersal	N-type	_	Bray and Gomon 2021
Rhycherus filamentosus	5.0	5000	demersal	N-type	_	Kuiter 1993; Bray and Gomon 2021
Porophryne erythrodactylus	No data	No data	demersal	N-type	_	Arnold et al. 2014
Phyllophryne scortea	No data	No data	demersal	N-type	_	Bray and Gomon 2021


517 A-type: attaching to the body of the parent, P-type: carrying within a pocket of parent, N-type: guarding in the nest.

518 **Figure and legends**

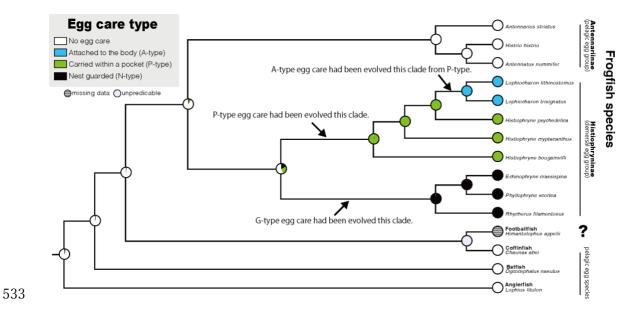


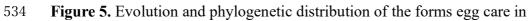
520 **Figure 1. A** Photograph of a gravid female (dark brown color) marble-mouth frogfish


- 521 Lophiocharon lithinostomus) surrounded by two courting males (green color). B Female
- 522 marble-mouth frogfish with egg mass attached on the left side of bodies.



- 524 **Figure 2.** Relationship between days after spawning and the frequency of fanning
- 525 behavior by female marble-mouth frogfish *Lophiocharon lithinostomus*. A solid line
- 526 and a grey area indicate the loess regression and 95% Confidence interval, respectively.




528 Figure 3. Photograph of fertilized eggs and gelatinous curtains with S-shaped hooks

- **Figure 4.** Photographs of a marble-mouth frogfish *Lophiocharon lithinostomus* juvenile
- 532 just after hatching. A Overhead view. B Lateral view. White scale bar: 1 mm.

Antennariidae and related species. The ultrametric tree was modified from Rabosky et
al. (2018). Egg care behaviors were classified into four types: 1) Attaching to the body
of the parent (blue); 2) carrying within a pocket of a parent (green); 3) guarding in the
nest (black); 4) no egg care (white).
ESM S1
Spawning and fanning behavior of marble-mouth frogfish *Lophiocharon lithinostomus*.