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Abstract

Essential Biodiversity Variables (EBVs) make it possible to evaluate and monitor the state

of biodiversity over time at different spatial scales. Its development is led by the Group on

Earth  Observations  Biodiversity  Observation  Network  (GEO  BON)  to  harmonize,

consolidate,  and  standardize  biodiversity  data  from  varied  biodiversity  sources.  This

document presents a mechanism to get baseline data to feed the Species Traits Variable

Phenology or other biodiversity indicators by extracting species characters and structure

names from morphological  descriptions of  specimens and classifying such descriptions

using machine learning (ML).

A  workflow  that  performs  Named  Entity  Recognition  (NER)  and  Classification  of

morphological  descriptions using ML algorithms was evaluated with excellent  results.  It

was implemented using Python, Pytorch, Scikit-Learn, Pomegranate, Python-crfsuite, and

other libraries applied to 106,804 herbarium records from the National Biodiversity Institute

of  Costa  Rica  (INBio).  The  text  classification  results  were  almost  excellent  (F1  score

between 96% and 99%) using  three  traditional  ML methods:  Multinomial  Naive  Bayes

(NB),  Linear  Support  Vector  Classification  (SVC),  and  Logistic  Regression  (LR).

Furthermore, results extracting names of species morphological structures (e.g., leaves,

trichomes, flowers, petals, sepals) and character names (e.g., length, width, pigmentation

patterns, and smell) using NER algorithms were competitive (F1 score between 95% and

98%)  using  Hidden  Markov  Models  (HMM),  Conditional  Random  Fields  (CRFs),  and

Bidirectional Long Short Term Memory Networks with CRF (BI-LSTM-CRF).
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Introduction

Biological diversity is a fundamental pillar of life on Earth. Therefore, the governments of

the  world  committed  themselves  through  the  United  Nations  Convention  on  Biological

Diversity (CBD) to reduce the loss of biodiversity by intending to meet the Aichi Biodiversity

Targets (Convention on Biological  Diversity  (CBD) 2011).  However,  the ambitious Aichi

Biodiversity Targets proposed in the 2011-2020 Strategic Plan for Biodiversity regarding

this subject were not achieved. According to reports from different countries to the CBD,

the  causes  of  failure related  to  knowledge  and  technologies included  the  lack  of

biodiversity data for relevant taxa and locations, and the lack of monitoring systems to

support conservation actions (Secretariat of the Convention on Biological Diversity 2020).

Essential  Biodiversity  Variables  (EBVs)  are recommended  as  a  global  harmonized

biodiversity monitoring and reporting system to assess the state of biodiversity over time.

They  provide  the  basis  for  generating  biodiversity  indicators  that  allow  repeated

assessments  of  progress  against  national  and  global  conservation  goals  (e.g.,  the

Sustainable Development Goals and the Aichi Biodiversity Targets) (Pereira et al. (2013),

Kissling et al. (2018), Hardisty et al. 2019,Turak et al. (2017)). The selected variables were

proposed by a group of international ecologists led by the Group on Earth Observations

Biodiversity Observation Network (GEO BON). The 22 EBV candidates were suggested in

2013  and  organized  into  six  classes  (i.e.,  genetic  composition,  species  populations,

species  traits,  community  composition,  ecosystem  structure,  and  ecosystem  function)

Pereira et al. (2013). Although EBVs were selected through a rigorous evaluation process

of dozens of options considering criteria on scalability, temporal sensitivity, feasibility, and

relevance,  their  practical  implementation  remains  a  challenge (Kissling  et  al.  (2018), 

Skidmore et al. (2015), Pettorelli et al. (2016), Brummitt et al. (2017), Turak et al. (2017), 

Kissling et al. (2018)). 

Species  traits  include  any  measurable  morphological,  phenological,  physiological,

reproductive, or behavioral characteristics of individual organisms; nevertheless, they can

also  be  generalized  at  the  taxa  and  population  levels. Recently,  increasing  efforts  to

integrate species traits have resulted in a significant amount of data available (Kissling et

al. (2018),Schneider et al. (2019)); however, most of these data are associated with taxa

rather than with specimens. Aggregating species traits at the taxa level causes critical data

to monitor changes in individual organisms or populations in a particular geographic area

(e.g., time and location) to be lost (Schneider et al. 2019).

Species traits have been suggested as indicator variables for monitoring the response of

organisms  to  changes  in  the  environment;  for  instance,  phenological  trait  information

related to changes in the timing of plant leafing, flowering, and fruiting can be used as an

indicator  of  climate  change  impacts  (Kissling  et  al.  2018,  Geijzendorffer  et  al.  (2015), 

Kissling  et  al.  (2018)).  Different  authors  suggest  frameworks  and  ideas  to  feed  the

Phenology  EBVs  from  specimen  data  (Kissling  et  al.  (2018),  Pereira  et  al.  (2016)). 

Additionally, there are focused efforts to measure trends in particular species: for example,
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the UK Spring Index that tracks the impact of temperature change on the annual mean

observation  date  of  four  biological  events.  These  events  include  the  first  flowering  of

hawthorn  (Crataegus  monogyna),  the  first  flowering  of  horse  chestnut  (Aesculus

hippocastanum), the first recorded flight of an orange-tip butterfly (Anthocharis cardamines

), and the first sighting of a swallow (Hirundo rustica) Parliamentary Office of Science and

Technology, UK Parliament (2021).

On the other hand, the transformation of texts from taxonomic literature into structured data

remains a key challenge in Biodiversity Informatics (BI) (Hobern and Miller (2019), Miralles

et  al.  (2020)).  NLP tools and algorithms have been successfully  applied in  information

extraction tasks in biodiversity texts; for example, to extract taxonomic names using rules

based on syntax, fuzzy logic, and dictionaries (Gerner et al. (2010), Leary (2014), Wei et

al.  (2010),  Sautter  et  al.  (2006)),  and in some cases probabilistic  models Akella  et  al.

(2012);  to  structure  complete  texts  using  rules,  regular  expressions,  dictionaries,  and

heuristics based on text style (Sautter et al. (2012),Cunningham et al. (2011), Curry and

Connor  2016);  and  to  extract  species  morphological  characteristics  using  rules,

dictionaries, and ontologies (Mora and Araya (2018), Duan et al. (2013),) Cui (2012), Cui

(2013), Balhoff et al. (2014)).

Additionally, some ML algorithms such as NER and Classification have been successfully

applied to bioinformatics and biomedicine, and more recently to BI. Text Classification and

Named  Entity  Recognition  (NER)  are  classic  research  topics  in  the  NLP  field.  Text

classification is a fundamental technique in NLP to categorize unstructured text data into

predefined labels or  tags (widely used in sentiment analysis).  The Allerdictor tool  is  an

example of an application in bioinformatics that models sequences as text documents and

uses  Multinomial  Naïve  Bayes  (NB)  or  Support  Vector  Machine  (SVM)  for  allergen

classification Dang  and  Lawrence  (2014);  In  addition,  Pan  et  al.  in  Pan  et  al.  (2018)

describe a method to predict bacteriophage virion proteins in ecology using a Multinomial

Naïve Bayes classification model; Delizo et al. used Multinomial Naïve-Bayes to analyze

users'  tweets  polarity  concerning  the  COVID-19  with  excellent  results D  (2020);  and

Demichelis  et  al.  proposed  a  hierarchical  Naïve  Bayes  Model  to  manage  biological

heterogeneity to improve classification accuracy using a  prostate cancer tissue microarray

dataset Demichelis et al. (2006).

NER is the first step in many NLP tasks. It seeks to locate and classify entities' names in

free text into categories such as organizations, and locations, among others. NER is widely

used; some  examples  in  BI  include:   the  Specialized  Information  Service  Biodiversity

Research  (BIOfid),  which  facilitates  automatic  extraction  of  regular  categories  (e.g.,

person, location, organization), and taxon names from printed literature about plants, birds,

moths, and butterflies hidden in German libraries for over the past 250 years Akella et al.

(2012), Rössler (2004). The National Commission for Knowledge and Understanding of

Biodiversity (CONABIO) in Mexico has trained models for NER to extract species names

from text written in Spanish Barrios et al. (2015). The "TaxonGrab'' method is a web-based

project that allows users to upload information and then displays the list of the candidates'

taxonomic names mentioned in the text Koning et al. (2005), NetiNeti (Name Extraction

from  Textual  Information-Name  Extraction  for  Taxonomic  Indexing)  and  TaxoNERD
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recognize scientific names in biodiversity publications using NER (Akella et al. (2012), Le

Guillarme and Thuiller (2021)). However, at this point, no applied research results have

been published to extract phenological data from morphological descriptions of specimens

using ML algorithms.

The main objective of  this project  was to get  baseline data to feed the Species Traits

Variable Phenology and other biodiversity indicators by extracting species characters and

structure  names  from  morphological  descriptions  of  specimens  and  classifying  the

descriptions using machine learning (ML). To achieve this goal, an ML workflow was tested

to classify specimen descriptions to determine if the plant had flowers and/or fruits at the

time of collection and to extract species characters and structure names mentioned in the

descriptions.  A  database  with  106,804  records  from  the  herbarium  of  the  National

Biodiversity Institute of Costa Rica (INBio) was used to illustrate the proposed approach.

The  remainder  of  the  paper  is  structured  as  follows:  Section  II  provides  the  detailed

workflow of proposed material and methods, section III presents the evaluation metrics and

results,  and section IV  discusses the results.  Finally,  conclusions and future work are

discussed in section V.

Materials and methods

This  research  work  presents an  effort  to  extract  species  morphological  characters  and

structure names using NER algorithms and classify specimen morphological descriptions

to determine if a given plant had flowers or/and fruits at the time of collection.

Successfully applying ML algorithms to NLP problems requires defining a workflow that

includes phases like data selection and pre-processing, model training and test, and model

deployment. Fig. 1 shows the general workflow used in this research.

A. Data Selection and Processing Phase 

A.1. Atta Dataset: Atta is an information system developed by INBio to manage data of

specimens of different biological groups, such as plants, arthropods, fungi, and nematodes.

The  database  contains  350,007  records  from  the  kingdom  Plantae.  Data  related  to

taxonomy (i.e., scientific name and higher taxonomy); plant specimens (i.e., morphological

description, date collected, locality, collectors, and sampling protocol, among other data);

and geospatial data (i.e., locality and geographic coordinates) were obtained from Atta. All

the selected specimens were collected in Costa Rica.

Fig. 2 shows an example of a specimen collected by INBio; Fig. 3 presents the collection

sites for specimens available at the INBio's herbarium, which represent 354 plant families

and span 124 years from 1892 to 2016, with a higher concentration of records in the period

from 1990-2006; and Fig. 4 displays a histogram of records by year of collection.
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A.2. Cleaning and Random Selection of Data: In this project, 106,804 records from Atta

were used. Atta contains 350,007 records from the kingdom Plantae. Herbarium rules and

regulations state to send duplicate specimens to the National Museum of Costa Rica and

the  Missouri  Botanical  Garden,  so  from  this  figure,  64%  are  duplicate  records.  After

removing  duplicate  records,  records  without  morphological  description,  discarded

specimens, and descriptions written in English, about 93% of the remaining records (i.e.,

106,804 records) were tagged (i.e., they were assigned to one of the classification target

classes: has_flowers and has_fruits). 

A.3.  Tagging  Data  for  Multi-label  Classification: The  texts  used  in  the  experiments

correspond  to  the  morphological  description  of  106,804  specimens.  Morphological

descriptions  contain  statements  that  detail  morphological  aspects  (i.e.,  shape  and

structure)  of  specimens,  which are useful  to  study and identify  them. Statements  may

describe structures, substructures, characters, states, and relationships between structures

(e.g., leaves, apex, flowers, flower buds, or fruits). The characters are, for instance, length,

width,  pigmentation patterns,  smell,  or  architecture.  An example of  a description is  the

statement “Arbolito de 7-9 m x 10 cm dap. Corteza lisa, amarillo-cafezuzco, exfoliante.

Brotes  vegetativos  verde-tenue  con  pubescencia  blanca,  conspicua,  caulifloro.  Frutos

inmaduros, esferoides, verde-tenue.” (Small  tree 7-9 m x 10 cm DBH. Smooth, yellow-

brown, exfoliating bark. Faint-green vegetative shoots with white, conspicuous, cauliflorous

pubescence. Immature, spheroid, faint-green fruits).

Morphological  descriptions  of  plant  specimens  use  a  semi-structured  language

characterized by Mora and Araya (2018):

• They  use  many  abbreviations  and  omit functional  words  and  verbs,  making

sentences  become telegraph phrases to save space in scientific publications;

• Texts are written in a very technical language because the formal terminology is

based on Latin;

• They contain primarily names, adjectives, numbers (measures), and adverbs to a

lesser extent. Verbs are seldom used;

• The vocabulary used is repetitive;

• They are short because they are included on the specimen label, and sometimes

the  text  is  shortened  to  fit  on  the  label. Fig.  5 shows  the  distribution  of  the

descriptions length of specimens  from the INBio herbarium;

• They  use  highly  standardized  syntax  even  though  they  are  written  in  natural

language.

Supervised  machine  learning  algorithms  were  used  to  classify  descriptions.  Training

supervised models involves adjusting their parameters using examples that allow models

to map an input to the desired output, in this case, the target classes. Examples were built

from the specimens' morphological descriptions by manually assigning each description to

one  of  the  classes  (i.e.,  has_flowers  and  has_fruits).  For  example,  the  morphological

description "Creciendo en tronco seco. Flores naranjas. Muestra conservada en alcohol"

 ("Growing on the dry trunk. Orange flowers. Sample preserved in alcohol", in English) was

assigned  to  the  has_flowers  class,  and  the  description  "Arbusto  de  35  m.  en  el
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sotobosque.  Frutos  de  color  verde  y  rojo  a  púrpura  oscuro  cuando  están  maduros.

Escaso" ("35 m shrub in the understory. Green and red fruits to dark purple when ripe.

Scarce.", in English) was assigned to the has_fruits class. Descriptions were standardized

by changing their contents to lowercase, removing special characters, and tokenizing each

description  (i.e.,  breaking  descriptions  into  words,  symbols,  or  other  elements  called

tokens).

Two classes were used to classify specimen morphological descriptions and determine if a

plant  had  flowers  or/and  fruits  at  the  time  of  collection:  has_flowers  and  has_fruits,

accordingly. The 106,804 records from INBio’s database (i.e.,  Atta) were tagged. Fig. 6

shows the number of  records with zero,  one,  or  two classes assigned in  the selected

samples.   Records  were  tagged  manually  using  SQL  statements  in  a  PostgreSQL

database. Descriptions such as "sin flores" (no flowers), "sin frutos" (no fruits), "sin flores ni

frutos" (no flowers or fruit), among others, were not included in the experiments because

very few descriptions presented that pattern.

A.4. Tagging Data for NER: A small part of the clean records used in the classification

process was randomly  selected for  extracting species  characters  and structure  names

using supervised ML algorithms. Eight thousand specimen records were chosen for this

purpose.

To  prepare  examples,  different  standard  approaches  to  sequence  tagging Goyal  et  al.

(2018) were  evaluated,  such  as  IO  (Inside,  Outside),  BIO  (Begin,  Inside,  Outside), 

Ramshaw and Marcus (1999), and BIOE (Begin, Inside, Outside, End) Sang and Veenstra

(1999). Due to the characteristics of the morphological descriptions mentioned above, the

BIO standard was selected. BIO assigns a tag or class to each token within the text of the

descriptions; it captures the named entity type, the entity boundary, and tokens outside.

For  example,  the  description  "palma  solitaria  de  3  m.  tallos  de  hasta  0.50  m.

inflorescencias interfoliares, botones florales crema. comun." (solitary palm of 3 m. stems

up to  0.50  m.  interfoliar  inflorescences,  cream flower  buds.  common.)  was  tagged as

"palma  solitaria  de  3  m.  tallos[B]  de  hasta  0.50  m.  inflorescencias[B]  interfoliares,

botones[B] florales[I] crema. comun.", where, [B] represents the beginning of an entity, [I]

represents the intermediate tokens in multiword entities (e.g.,  "botones florales",  flower

buds), and O any other token including punctuation marks (not marked in the example).

Very few multiword entities were found in the specimen morphological descriptions. Fig. 7

shows the number of words in the records assigned with each label (i.e., B, I, O).

The following activities were carried out for the tagging process:

• In addition to the has_flowers and has_fruits classes, the 106,804 specimens were

associated with other classes such as has_leaves and has_stems (has_root was

not  used because very  few descriptions mentioned roots).  These classes were

used to randomly select two thousand records of each to balance the presence of

structures belonging to all classes. In total, eight thousand records were selected,

including records for classes has_flowers, has_fruits, has_leaves, and has_stems.
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• FreeLing v4.2 morphological analyzers and taggers Padró and Stanilovsky (2012)

were used for tokenizing, lemmatizing, and PoS-tagging (part-of-speech tagging)

the morphological descriptions. PoS-tagging was used to semi-automatically assign

a  class  (e.g.,  noun,  adjective,  verb,  adverb,  article)  to  each  token.  Most  plant

structures and characters correspond to nouns in sentences.

• Using the POS tags generated by FreeLing, each token was assigned a B, I, or O

tag depending on its role in the sentence.

• Two thousand records randomly selected from the eight thousand were assigned to

each team member to manually review the labels (4 team members).

B) Models Training and Evaluation Phase 

B.1.  Classification:  Train  Models  using  NB,  SVC,  and  LR:  The  Classification  of

morphological description involved 106,804 specimen records used for training and test

models.  The  experiments  were  carried  out  using  Python  version  3  Python  Software

Foundation  (2021),  Scikit  Learn  version  0.24.2  Pedregosa  (2011),  and  the  Natural

Language Toolkit (NLTK) version 3.5 Elhadad (2010).

The classification objective was to determine if each of the morphological descriptions of

the specimens mentioned or not the presence of flowers or fruits, that is, to assign each

description to the has_flowers and/or has_fruits classes. Each sample could be assigned

to zero, one, or both classes; therefore, the classification problem corresponds to a multi-

label classification task. The algorithms Multinomial Naive Bayes (NB) Klampanos (2009),

Linear Support Vector Classification (SVC) Chang et al. (2008), and Logistic Regression

(LR) Bishop (2006) were used for the experiments. 

The  input  to  the  models  was  a  one-dimensional  vector  (x1,  x2,  ...,  xn)  with  the

morphological  descriptions.  Features  were  extracted  from  this  1D  vector  that  was

converted  to  a  matrix  of  values  using  TF-IDF  (Term  Frequency-Inverse  Document-

Frequency) or the frequency of words occurring in the descriptions. With a lower and upper

boundary of the range of (1,3) for different n-grams to be extracted.

To estimate the skill of the models on new data, ten-fold cross-validation was used with the

function  cross_val_score  (Scikit  Learn)  in  combination  with  the  NB,  SVC,  and  LR

algorithms Pedregosa (2011). The One-vs-Rest (OvR) strategy was applied to solve the

problem of  multi-label  Classification. The parameters  used with  each of  the  algorithms

were as follows: NB (with learn class prior probabilities equal to true and priors adjusted

according to the data), SVC (with hinge loss function, tolerance equal to 1e-4, strength

regularization inversely proportional to 1.0, calculate the intercept equal to true, multi-class

strategy one-vs-res,  and 1000 maximum number of  iterations),  and LR (with  tolerance

equal to 1e-4, L2 the norm of the penalty, strength regularization inversely proportional to

1.0, and lbfgs solver for optimization).

B.2.  NER: Train Models using HMM, CRFs,  and BI-LSTM-CRF:  Out  of  the 106,804

specimen records, 8,000 were randomly selected, where 80% of the records were used for

training while the remaining 20% were for testing the models. The training and testing of
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the  models  were  done  using  Python  version  3  Python  Software  Foundation  (2021),

Pomegranate 0.14.7 Schreiber (2018) for HMM, Pytorch 1.8.1 Paszke et al. (2019) for BI-

LSTM-CRF, and Pycrfsuite J and N (2007) for CRFs.

The aim of  applying NER tagging to  the data was to  extract  characters  and structure

names from morphological  descriptions (e.g.,  flowers,  trunk,  color,  height)  where every

token of  a  description  was assigned a  B,  I,  or  O tag.  With  this  purpose in  mind,  the

algorithms CRFs Lafferty et al. (2001), BI-LSTM-CRF Huang et al. (2015), and HMM Baum

and Petrie (1966) were used for NER tagging. The information considered relevant to train

the models of CRFs and BI-LSTM-CRF was the token, its pos tag, and the label assigned;

for the case of HMM, only the token and its label were considered.

In order to train the HMM model, bigram, sequence starting, and sequence ending counts

were used to estimate the probability distribution and generate every state and transition

that the model would use for its predictions.

The way the data were handled to train the CRFs model was to convert each token in the

training  data  into  a  feature  that  would  later  be  fed  to  the  model.  The  characteristics

considered for every word were the word itself, its last 3 letters, if it was a punctuation

mark, or if it was a digit, its POS tag, and the first two letters of the POS tag. Each feature

was processed using its own characteristics combined with the next and previous words in

the sentence (if applicable). Afterward, the model was trained with the hyperparameters

established in Table 1.

To train the BI-LSTM-CRF model, every word in the dataset was put into a dictionary that

was later passed to the model; this had to be done with all records. The model worked with

every sentence not as a string of words but as a tensor of their respective indexes in the

word  dictionary.  After  getting  the  data  ready,  the  model  ran  a  forward  pass  with  the

negative  log-likelihood  cost  function,  then  computed the  loss  and  gradients,  and

updated the model parameters. This process was done for every sentence in the training

set for every epoch. The model was trained with the hyperparameters established in Table

2.

B.3.  Models  Evaluation   (Accuracy,  Precision,  Recall,  and  F1  score): The  metrics

generally used in classification and NER problems to evaluate the results are precision and

recall  Dandapat  (2011).  They measure the percentage of  correct  classification and the

completeness of the method, respectively. In addition, the accuracy and the F1-score (the

harmonic mean between precision and recall) were computed. 

Results

This section presents a report of the experimental results for both classification and NER

tests.

Classification of morphological descriptions of specimens. Performance of the NB,

SVC,  and LR algorithms: Fig.  1 presents  the  general  workflow of  the  project. Table  3
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gives examples of  morphological  descriptions obtained from the Atta database.  After  a

cleaning  process  that  involved  removing  duplicate  records,  specimens  without

morphological  description,  discarded  specimens,  descriptions  written  in  English,  and

records with phrases such as "sin flores" (no flowers), "sin futos" (no fruits), "sin flores ni

frutos" (no flowers  or  no fruit),  among other  issues in  the data,  106,804 records were

tagged  for  the  experiments. Table  4 presents  the  amount  of  specimen  morphological

descriptions distributed by class, the average length in characters of the descriptions, and

the standard deviation. The objective of the experiment was to train models that could

automatically  associate  the  non-exclusive  classes  has_flowers  and  has_fruits  to  the

morphological descriptions. Because each description can be assigned to more than one

class, the One-vs-Rest (OvR) strategy was used with three traditional ML algorithms: NB,

SVC, and LR.

Models'  skills  were  estimated  using  ten-fold  cross-validation  to  prevent  overfitting  and

reduce bias.  After  executing  the  ten  training  sequences and tests  of  different  models,

metrics such as accuracy,  precision,  recall,  and F1 score by algorithm and class were

computed, and the average of the results was calculated. Table 5 presents the results of

the metrics used to estimate the model's skills.

NER tagging  of  morphological  descriptions. Performance  of  the  CRFs,  BI-LSTM-

CRF, and HMM algorithms: Records such as those shown in Table 6 were used to test

the models and data cleaning was similar to the one used in the classification experiments.

Records that were duplicated, discarded, lacked a morphological description, or contained

descriptions in English were not used in the research.

As seen in the examples the aim was to tag the entities that appeared in the specimen’s

description. With this purpose in mind CRFs, HMM, and BI-LSTM-CRF were used.

The  Sklearn  Pedregosa  (2011) library  was  used  to  get  the  metrics  to  evaluate  every

model’s performance with the test data; including the accuracy, precision, recall, and F1-

score. Table 7 shows the results obtained by each model used in the NER experiment.

Discussion

A successful workflow was tested with the current project to extract phenological data from

morphological  descriptions  of  botanical  specimens.  Some  elements  of  the  project  to

highlight are:

• The results achieved in the classification experiments showed that was feasible

and generalizable to other biological groups to use the specimen morphological

descriptions to automatically obtain phenological data, which most of the time, is

only available in text format. The SVC models surpassed NB and LR models with

an average F1 score higher than 0.995 (Table 5 compares the performance of SVC

with two other ML methods). For more complex texts, more robust algorithms such

as Recurrent Neural Networks - LSTM and Transformers can be applied.
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• The  NER  experiments  results  showed  that  the  HMM  and  CRFs  model's

performance had better results than the BI-LSTM-CRF model as shown in Table 7.

The most significant difference between HMM and CRFs can be observed with

the [I] tag results where CRFs outperform HMM in precision and F1-score while

HMM surpassed CRFs in accuracy and recall. Otherwise, the models showed very

similar results in the other two tags.

• Certain words in the Spanish vocabulary had mistaken pos tags, where FreeLing

would often confuse nouns with similar-sounding verbs, for example, words like

"morado /  morar" (purple  /  dwell)  or  "sépalo  /  sepa-lo" (sepal  /  to  know).  This

resulted  in  many  words  being  mistagged  and  others  being  separated  into  two

different words.

• The NER models had problems differentiating when an entity was composed by the

name of an entity and an adjective (i.e., “frutos[B] maduros[I] rojos” - ”red ripe fruit”)

and  when  that  same adjective  was  used  to  describe  the  entity  (i.e.,  “frutos[B]

maduros” - ”ripe fruits”).

• The characteristics of descriptions could have influenced that FreeLing tools were

not as effective in tagging nouns that are key elements to perform NER. This result

made the manual review of the tagging text more time-consuming.

• Although classes were highly unbalanced in all  experiments and the description

length ranges from 4 to 952 characters, the model's performance was not affected.

This was mainly due to the large amount of data used during the training phase and

the characteristics of the descriptions.

• The data used were collected by INBio throughout the country, over a long time,

and  by  more  than  400  botanists  and  technicians,  which  gives  an  idea  of  how

variable the descriptions were. Figures 4 and 5 present these data in detail.

• Most of the time, data of morphological descriptions of specimens is not shared in

global  networks that  integrate biodiversity  data,  such as the Global  Biodiversity

Information Facility (GBIF), which could make it  easier to carry out experiments

integrating multiple sources and multiple languages.

Conclusions

Phenological traits data such as the timing of plant leafing, flowering, and fruiting, have

been suggested as indicators to measure how organisms respond to disturbances and

changes in environmental conditions. This document has proposed a workflow that uses

ML  and  NLP  algorithms  to  integrate  phenological  data  extracted  from  morphological

descriptions in text format with other structured data available in specimen records (such

as geographic coordinates, taxonomy, and collection date). The integrated data, combined

with abiotic  records (e.g.,  temperature,  precipitation,  and humidity),  could enable users

(e.g., decision-makers, researchers, biodiversity institutes) to answer questions related to

the possible effects of environmental changes that occur in time and space on particular

species.
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As far as we know, this work is the first to apply ML algorithms to specimen morphological

descriptions to extract phenological data on flowering and fruiting. Results showed that it is

possible to classify specimen morphological descriptions with more than 99% success (F1-

score) using a multi-label approach (with classes like has_flowers and has_fruits) and to

extract the characters and structure names from descriptions with more than 98% success

(F1-score) using NER.

Although models like the one proposed in this project achieve excellent results, it is crucial

to consider that even though there are records of the planet’s biodiversity that have been

systematically collected over hundreds of years, the available data are strongly unbalanced

regarding taxa, locality, time, and the number of individuals.

The results of this project can be used to generate baseline data to feed the Phenology

EBV from morphological descriptions of specimens written in any language, among other

applications. Although data about the event duration as proposed by the USA-National

Ecological  Observatory  Network  (NEON) Jones  et  al.  (2014) cannot  be  obtained  from

specimens, different authors present frameworks and ideas to feed the Phenology EBVs

from specimen data (Kissling et al. (2018), Pereira et al. (2016)).

The proposed workflow can be applied to the morphological descriptions of specimens of

different  biological  groups,  and  there  are  no  restrictions  on  the  language  used.  For

biodiversity networks that integrate data from multiple sources using different languages, it

is  also  vital  to  evaluate  cross-lingual  algorithms to  alleviate  the  need to  manually  tag

descriptions in a target language by leveraging tagged descriptions from other languages. 

Data and Code

Data from the National Biodiversity Institute of Costa Rica is used in this paper. The full

dataset  and  documentation  can  be  downloaded  from  https://www.gbif.org/dataset/

3717f916-d983-4a81-bb13-5f91200871a6. Code for data cleaning and analysis is provided

as part of the replication package. It is available at https://github.com/colibri-itcr.
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Figure 1. 

The proposed general workflow includes two phases: A) Data Selection and Preprocessing

using the Atta database (INBio). First, the data were cleaned by removing duplicate records,

records written in English, and null morphological descriptions, among other processes. Then,

two data sets were selected for the next phase, one for Classification and one for NER. Those

data sets were used for training and test activities. B) During Models Training and Test phase,

models  were  generated  using  algorithms  such  as:  Multinomial  Naive  Bayes  (NB),  Linear

Support  Vector  Classification (SVC),  and  Logistic  Regression  (LR)  for  Classification  and

 Hidden Markov  Model  (HMM),  Conditional  Random Fields  (CRF),  and  Bidirectional  Long

Short  Term  Memory  Networks  with  CRF  (BI-LSTM-CRF)  for  NER.  Metrics  like  accuracy,

precision, recall, and F1 score were used to test them.
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Figure 2. 

Specimen  from  INBio’s  collection  shows  the  morphological  description  of  a  holotype

of Stemmadenia  abbreviata  J.  F.  Morales,  Novon  9(2):  236.  1999.  TYPE.  Costa  Rica.

Heredia: La Selva,  OTS Field  Station  on the  Río  Peje,  April  13,  1982,  B.  Hammel  11680

(holotype, INB) Morales (2005).
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Figure 3. 

Collection sites of INBio’s herbarium specimens currently available at the data portal of the 

National Commission for Biodiversity Management (CONAGEBIO), Ministry of Environment

and Energy (MINAE) Costa Rica. (2018).
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Figure 4. 

Histogram of records by year of collection. Years with few records, from 1892 to 1981, were

excluded in the graph (i.e., 110 specimen records were not taken into consideration).
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Figure 5. 

Histogram  of  the  number  of  characters,  including  blanks,  in  specimen  morphological

descriptions from the INBio herbarium.
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Figure 6. 

The  number  of  morphological  descriptions  assigned  to  zero, one,  or  two  classes (i.e.,

has_flowers and has_fruits).
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Figure 7. 

Number of words in the specimen morphological descriptions with the B, I, O labels assigned

in the selected samples.
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Hyperparameters Values 

Coefficient for L1 penalty 0.1

Coefficient for L2 penalty 0.1

Maximum Iterations 40

Table 1. 

Hyperparameters used to train the CRFs model. 
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Hyperparameters Values 

Hidden dimension 4

Embedding dimension 5

Learning rate 0.01

Weight decay 1e-4

Epochs 20

Table 2. 

Hyperparameters used to train the BI-LSTM-CRF model. 
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Specimen Morphological Description English Translation  Data 

"Epífita colgante. Brácteas y cáliz

morado. Corola morado y blanco, estilo

y estambres verde-morado, pedicelo

blanco-morado. Orillas del sendero." 

Hanging epiphyte. Bracts and calyx purple.

Purple and white corolla, purple-green style

and stamens, purple-white pedicel. Path

shores.

Scientific name: 

Cavendishia    

atroviolacea 

Classes:

has_flowers = Yes

has_fruits = No

"Arbusto juvenil, 1.2 m; Hojas nuevas

rojizas, las viejas coriáceas. Común en

barrancos al lado de la carretera.

Voucher para estudio filogenético/adn-

k. sytsma." 

Juvenile shrub, 1.2 m; New leaves reddish,

old leathery. Common in ravines next to the

road. Voucher for phylogenetic/k-dna study.

sytsma.

Scientific name:  

Alzatea       verticillata

Classes: 

has_flowers = No

has_fruits = No

"Hierba de 4-5 m. Pecíolos ca. 1.5-2.5

m, lámina foliar de 2-4 m. Inflorescencia

péndulas,bracteas circinadas disticas,

rojas, 1/4 basal rojo-amarillo. Flores

amarillas, escondidas entre las

brácteas. Frutos violeta, inmadura. Bajo

dosel, escaso." 

Grass of 4-5 m. Petioles ca. 1.5-2.5 m, leaf

blade 2-4 m. Pendulous inflorescence,

circinate distichous bracts, red, basal 1/4 red-

yellow. Yellow flowers, hidden among the

bracts. Fruits violet, immature. low canopy,

scarce.

Scientific name: 

Heliconia     

pogonantha

Classes: 

has_flowers = Yes

has_fruits = Yes

 

"Arbolito de 6 m x 8 cm dap. Follaje de

haz verde-intenso y envés verde-tenue.

Brotes vegetativos y ramitas café-tenue.

Frutos anaranjado-tenue con semillas

blanco-verdoso, recubierta de arillo rojo-

intenso, brillante." 

Small tree of 6 m x 8 cm dbh. Foliage with an

intense-green upper surface and a faint green

underside. Vegetative buds and twigs light

brown. Faint-orange fruits with greenish-white

seeds, covered with bright, intense red arils.

Scientific name: 

Trichilia        quadrijuga

Classes: 

has_flowers = No

has_fruits = Yes

 

Table 3. 

Examples of types of morphological descriptions used in these experiments. 
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has_flowers has_fruits Amount of records Min-Max

Length

(number of

characters)

Average

Length

Standard

Deviation

of Length

No No 23,254 4-575 59.88 40.18

No Yes 26,900 7-952 66.15 34.64

Yes No 42,949 11-708 69.55 38.44

Yes Yes 13,701 27-895 93.88 51.13

Table 4. 

Amount of specimen morphological descriptions distributed by class, average length in characters,

and standard deviation. 

26

Author-formatted, not peer-reviewed document posted on 09/05/2022. DOI:  
https://doi.org/10.3897/arphapreprints.e86014



Algorithm Class Accuracy Precision Recall F1- score  

Multinomial Naive Bayes (NB) has_flowers 0.9626 0.9462 0.9855 0.9655

has_fruits 0.9759 0.9851 0.9510 0.9677

Average 0.9693 0.9657 0.9682 0.9666

Logistic Regression (LR) has_flowers 0.9888 0.9979 0.9810 0.9894

has_fruits 0.9904 0.9998 0.9749 0.9872

Average 0.9896 0.9989 0.9780 0.9883

Linear Support Vector Classification (SVC) has_flowers 0.9946 0.9996 0.9903 0.9949 

has_fruits 0.9958 0.9999 0.9891 0.9944 

Average 0,9952 0,9997 0,9897 0,9947 

Table 5. 

Average precision (P),  recall  (R),  accuracy, and F1- score (F1) computed using ten-fold cross-

validation for each algorithm and class.
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Specimen Morphological

Description 

English Translation  Tagged Data 

"Epifita. Flores con corola rojo rosado

de bordes blancos, tubo floral externo

rojo rosado con pubescencia blanca,

filamentos blancos, anteras y caliz

verde tenue." 

Epiphyte. Flowers with corolla

pink red with white borders,

external floral tube pink red with

white pubescense, white

filaments, dim green anthers

and corolla.

Epifita. Flores[B] con corola[B] rojo

rosado de bordes blancos, tubo[B] floral

[I] externo[I] rojo rosado con

pubescencia[B] blanca, filamentos[B]

blancos, anteras[B] y caliz[B] verde

tenue.

"Liana trepadora, colgante. Brotes

vegetativos cafe-rojizo. Caliz verde,

corola blanca. Frutos inmaduros

verdes, maduros rosado brillante." 

Hanging climbing liana.

Vegetative buds reddish-brown.

Green calyx, white corolla.

Immature fruits green, mature

bright pink.

Liana trepadora, colgante. Brotes[B]

vegetativos[I] cafe-rojizo. Caliz[B] verde,

corola[B] blanca. Frutos[B] inmaduros[I]

verdes, maduros rosado brillante.

"Arbol 15 m x 25 m dap; nervios

secundarios casi invisibles; vena

principal hundida en el haz; hojas

muy suaves; el peciolo carece de

savia lechosa. Nombre comun:

ninguno." 

Tree 15 m x 25 m dbh;

secondary nerves almost

invisible; main vein sunken in

the adaxis; very smooth leaves;

the petiole lacks milky sap.

Common name: none.

Arbol 15 m x 25 m dap[B]; nervios[B]

secundarios[I] casi invisibles; vena[B]

principal[I] hundida en el haz[B]; hojas

[B] muy suaves; el peciolo[B] carece de

savia[B] lechosa. Nombre comun:

ninguno.

"Arbol de 13 m x 25 cm dap. Flores

blancas con un exquisito olor a dulce

de caramelo. Floracion abundante.

Tronco derecho, corteza escamosa

pardo clara. Hojas lustrosas en

ambas caras." 

Tree of 13 m x 25 cm dbh. White

flowers with an exquisite smell

of sweet caramel. Abundant

flowering. Straight trunk, light

brown scaly bark. Glossy leaves

on both sides.

Arbol de 13 m x 25 cm dap[B]. Flores[B]

blancas con un exquisito olor[B] a dulce

de caramelo. Floracion[B] abundante.

Tronco[B] derecho, corteza[B]

escamosa pardo clara. Hojas[B]

lustrosas en ambas caras[B].

Table 6. 

Examples of types of morphological descriptions used in NER experiments. 
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Algorithm Class Accuracy Precision Recall F1-

score 

Conditional Random Fields (CRFs) B 0.9739 0.9799 0.9739 0.9769

I 0.8908 0.9480 0.8908 0.9185 

O 0.9953 0.9933 0.9954 0.9943

Average 0.9533 0.9737 0.9534 0.9633 

Weighted Average 0.9905 0.9906 0.9906 0.9906

BIi-LSTM Conditional Random Field (BI-LSTM-

CRF)

B 0.9781 0.9573 0.9782 0.9676

I 0.8821 0.8037 0.8822 0.8411

O 0.9887 0.9944 0.9887 0.9916

Average 0.9494 0.9495 0.9536 0.9515

Weighted 

Average

0.9856 0.9880 0.9880 0.9880

Hidden Markov Model (HMM) B 0.9823 0.9776 0.9824 0.9800 

I 0.9712 0.8346 0.9713 0.8977

O 0.9927 0.9962 0.9927 0.9945 

Average 0.9820 0.9361 0.9821 0.9574

Weighted 

Average

0.9908 0.9912 0.9908 0.9909 

Table 7. 

Average precision (P), recall (R), accuracy, and F1- score (F1).
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