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Abstract 20 

Impacts of biological invasions are diverse and can have far-reaching consequences for 21 

ecosystems. The spotted wing drosophila, Drosophila suzukii, is a major invasive pest of 22 

fruits, which negatively affects fruit and wine production. However, little is known about the 23 

ecological impact of this fly species on the ecosystems it has invaded. In this study, we 24 

investigated the use of potential host plants by D. suzukii at 64 sites in different forest 25 

communities in Switzerland from mid-June to mid-October 2020. We examined more than 26 

12,000 fruits for egg deposits of D. suzukii to assess its direct impact on the plants. We 27 

recorded symptoms of fruit decay after egg deposition to determine if D. suzukii attacks 28 

trigger fruit decay. In addition, we monitored the drosophilid fauna with cup traps baited with 29 

apple cider vinegar, as we expected that D. suzukii would outnumber and potentially 30 

outcompete native controphics, especially other drosophilids. Egg deposits of D. suzukii were 31 

found on the fruit of 31 of the 39 potential host plant species studied, with 18 species showing 32 

an attack rate > 50%. Overall, fruits of Cotoneaster divaricatus (96%), Atropa bella-donna 33 

(91%), Rubus fruticosus corylifolius aggr. (91%), Frangula alnus (85%) and Sambucus nigra 34 

(83%) were attacked particularly frequently, resulting also in predicted attack probabilities 35 

that varied among forest communities. Later and longer fruiting, black fruit colour, larger fruit 36 

size and higher pulp pH all positively affected attack rates. More than 50% of the plant 37 

species showed severe symptoms of decay after egg deposition, with higher pulp sugar 38 

content leading to more severe symptoms. The high fruit attack rate observed was reflected in 39 

a high abundance and dominance of D. suzukii in trap catches, independent of forest 40 

community and elevation. Drosophila suzukii was by far the most abundant species, 41 

accounting for 86% (81,395 individuals) of all drosophilids. The abundance of D. suzukii was 42 

negatively associated with the abundance of the native drosophilids. Our results indicate that 43 

the invasive D. suzukii competes strongly with other frugivorous species and that its presence 44 

has far-reaching ecosystem-level consequences. The rapid decay of fruits attacked by D. 45 

suzukii leads to a loss of resources and may disrupt seed-dispersal mutualisms through the 46 

reduced consumption of fruits by dispersers such as birds. 47 

Key words 48 
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Introduction 50 

Biotic exchange and subsequent invasions by non-native species in natural and human-51 

modified ecosystems are among the greatest threats to biodiversity worldwide (Wilcove et al. 52 

1998, Pyšek et al. 2020). They can have far-reaching consequences for ecosystems (Vilà et al. 53 

2010), including their functioning (Mack et al. 2000, Ehrenfeld 2010), and for human well-54 

being (Shackleton et al. 2019), and they can have extraordinary economic costs (Pimentel et 55 

al. 2005, Diagne et al. 2021). The perception and recognition of impacts of biological 56 

invasions, as well as how they are measured, are diverse and depend on the variables and 57 

scales considered (Jeschke et al. 2014). While assessments of economic impacts are measured 58 

in terms of economic costs, ecological impacts are evaluated as measurable changes to the 59 

properties of an ecosystem by a non-native species. However, the ecological impact of an 60 

invader is not easy to define or quantify, due to the context dependency of impacts, the 61 

variation in the per capita effect within and across species, and the complex interactions 62 

between invaders and their biotic and abiotic environments (Pyšek and Richardson 2010, 63 

Ricciardi et al. 2013). 64 

Invasive non-native species may affect native species on the level of individuals (e.g. 65 

fecundity, mortality), populations (e.g. abundance, genetic diversity), communities (e.g. 66 

species richness and composition, trophic structure) and ecosystems (e.g. nutrient cycling, 67 

physical habitat, overall structure and function) (Parker et al. 1999). The impact of a non-68 

native species on native populations and communities varies greatly in temporal (Strayer et al. 69 

2006) and spatial (Mollot et al. 2017) terms and depends critically on the abundance and 70 

trophic position of the invasive species (Bradley 2019). This explains why the extent of 71 

ecological impact varies greatly between invaders (Kumschick et al. 2015, Lapin et al. 2021).  72 

Insects make up a large proportion of introduced species (DAISIE 2009, Seebens et al. 2017). 73 

They are usually introduced accidentally, rarely reach large populations, and/or are often not 74 

noticed. However, a small minority become highly abundant and ecologically significant 75 

(Liebhold and Tobin 2008). Impacts of non-native insects on native species and ecosystems 76 

have many potential mechanisms, but only a very small proportion of non-native insects have 77 

been studied regarding their ecological impacts (Kenis et al. 2009). While direct impacts 78 

through mechanisms such as predation or competition are more obvious, indirect impacts, 79 

such as apparent and exploitative competition or alteration of interactions between native 80 
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species, often remain unexplored (Traveset and Richardson 2006, White et al. 2006). For 81 

example, a meta-analysis of the effects of the invasions of the Argentine ant (Linepithema 82 

humile) showed that areas with L. humile had 92% fewer native ant seed dispersers than areas 83 

where L. humile was not present. In addition, the meta-analysis indicated that L. humile did 84 

not replace native seed dispersers in their functional role, as rates of seed removal and 85 

seedling establishment were lower in the presence of L. humile (Rodriguez-Cabal et al. 2009). 86 

A disruption of seed-dispersal mutualisms affects seedling recruitment, species populations 87 

and distributions, plant-community composition, and gene flow (Howe and Smallwood 1982). 88 

Such indirect effects of non-native species on plant species can have far-reaching ecological 89 

consequences.  90 

For frugivorous insects, the most significant effect on plants is thought to be indirect, namely 91 

the reduction of seed dispersal far from the mother plant by vertebrates (Sallabanks and 92 

Courtney 1992). Among frugivorous insects, Drosophila suzukii (Matsumura 1931; Diptera: 93 

Drosophilidae), also known as the spotted wing drosophila, is of particular importance. It is an 94 

invasive Drosophila species originating from Southeast Asia (Asplen et al. 2015). The 95 

presence of the species outside of its native range was first recorded in Japan (Matsumura 96 

1931), 1980 in Hawaii (Leblanc et al. 2009) and in 2008 synchronously in southwestern USA 97 

(Hauser 2011) and southern Europe (Cini et al. 2012). The species has spread rapidly and is 98 

now widespread on the Asian, European, and North and South American continents (dos 99 

Santos et al. 2017). The family Drosophilidae comprises more than 3,900 species, with more 100 

than 1,500 of the described species belonging to the genus Drosophila. These small flies are 101 

widespread in a variety of climates and environments throughout the world (Markow and 102 

O’Grady 2005, Bächli 2021). To date, around 36 species of the genus Drosophila and more 103 

than 30 species of other genera of the family Drosophilidae are distributed in Switzerland 104 

(personal communication G. Bächli 2021; Bächli et al. 2004). The habitat of most of these 105 

species is mainly restricted to forest areas (so-called wild species). In contrast, a few species 106 

of Drosophila, so-called domestic species, mainly occur in settlements and are mostly 107 

cosmopolitan in distribution (Atkinson and Shorrocks 1977, Shorrocks 1977, Burla and 108 

Bächli 1991). Oviposition and larval development of Drosophila are usually restricted to 109 

decaying organic resources such as slime flux, fruits, flowers and mushrooms (Markow and 110 

O’Grady 2008), but the degree of substrate specialisation varies widely, from generalists to 111 

obligate specialists (Mitsui and Kimura 2000, Markow and O’Grady 2005, Anholt et al. 112 

2020). This variability is also related to host location, host acceptance, and host use (Markow 113 

2019), with chemical recognition playing a crucial role (Anholt 2020). Most Drosophila show 114 
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some degree of fidelity in oviposition site selection, which often depends more on the decay 115 

state of the substrate, than on the identity of the plant or fungus (e.g. Kambysellis and Heed 116 

1971, Nunney 1990, Karageorgi et al. 2017). For example, D. suzukii prefers fruits that are 117 

more intact (Kienzle and Rohlfs 2021), firmer (Sato, Airi et al. 2021) and in an earlier 118 

maturation stage (Dweck et al. 2021) compared with D. melanogaster, another frugivore. 119 

Drosophila species inoculate their oviposition substrate with microorganisms. They are 120 

considered important vectors, especially of yeasts but also of bacteria, and transport viable 121 

microbes to new substrates where they grow (Gilbert 1980, Rohlfs and Hoffmeister 2005, 122 

Stamps et al. 2012, Hamby and Becher 2016). Adults and larvae feed mainly on the microbes 123 

that decompose organic material, but also on the decomposing material itself (Markow and 124 

O’Grady 2008). Flies additionally benefit from the dispersal of such microbes, as they obtain 125 

signals from their metabolic products for finding sugar resources (Madden et al. 2018).  126 

Drosophila suzukii exploits resources that usually consist of small separate units and are 127 

patchy and ephemeral, i.e. they support only one generation. The temporal and spatial 128 

constraints of these unpredictable resources may favour generalists (Jaenike 1990). Niche 129 

breadth usually correlates positively with geographical range size (Slatyer et al. 2013), but 130 

does not necessarily explain invasion success (Carscadden et al. 2020). Following this general 131 

rule, the temporal and spatial niche breadth of the invasive D. suzukii have been shown to be 132 

relatively large compared with other Drosophila species in Japan (Yamamoto 1984). Besides 133 

using fruits as its preferred substrate for oviposition, it has also been found to develop on 134 

fungi (Kimura 1976) and can even complete development on chicken manure (Stockton et al. 135 

2019). Within its invasive range, D. suzukii can use the fleshy fruits of many crops and wild 136 

plants (e.g. Poyet et al. 2015, Arnó et al. 2016, Kenis et al. 2016). In the year 2020, 198 plant 137 

species representing 40 families were already confirmed as host plants (Little et al. 2020), so 138 

the fly can be considered extremely polyphagous (sensu Normark and Johnson 2011). 139 

Polyphagous herbivores (or generalists) are more impacted by plant toxicity than specialists 140 

(Ali and Agrawal 2012), as specialisation in phytophagous insects is thought to assist in the 141 

evolution of adaptations to overcome plant defences (Ehrlich and Raven 1964). However, D. 142 

suzukii hardly needs to specialise to overcome plant defences. On the one hand, because 143 

fleshy fruits are generally intended to be eaten by vertebrates (Lei et al. 2021), the pulp of 144 

such fruits is often of low toxicity when ripe (Cipollini 2000). On the other hand, the 145 

association with microbes may help with detoxification and digestion (Douglas 2009, 2015). 146 

Fruits share particular volatiles across plant species (Prasanna et al. 2007). As a resource 147 
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specialist utilising particular plant structures, i.e. fruits, with predictable odour cues, it may 148 

not be crucial for D. suzukii to specialise on particular plant species in order to increase host 149 

location, because olfactory responses to substrate-relevant volatiles of a resource instead of a 150 

plant species enables coping with a much narrower range of odours (e.g. Becher et al. 2012, 151 

Cunningham and Zalucki 2014, Cunningham et al. 2016).  152 

Drosophila suzukii attacks on the fruits of agricultural crops cause considerable economic 153 

damage to fruit growers through yield losses and the need to take measures to prevent attacks 154 

and minimise damage (Bolda et al. 2010, Knapp et al. 2020). Research on D. suzukii as a fruit 155 

crop pest is therefore ongoing and diverse. In recent studies, the occurrence of D. suzukii 156 

outside agricultural crops has been investigated to assess pest pressure from adjacent habitats. 157 

Woodlands have been shown to be suitable refugia and overwintering habitats (Briem et al. 158 

2016, Pelton et al. 2016, Thistlewood et al. 2018, Wallingford et al. 2018) and can provide a 159 

large reservoir of hosts that produce fruits, ensuring continuity of resource availability over 160 

time (Poyet et al. 2015, Arnó et al. 2016, Elsensohn and Loeb 2018, Thistlewood et al. 2019). 161 

Therefore, large numbers of D. suzukii can be expected in forests, as has also been shown in 162 

trapping case studies (e.g. Briem et al. 2018, Haro-Barchin et al. 2018, Santoiemma et al. 163 

2018), and population densities are likely to be more constant and higher than in semi-open 164 

habitats such as agricultural landscapes. So far, almost no research has been conducted to 165 

address the ecological impact of this fly on the ecosystems it has invaded. Roche et al. (2021) 166 

highlighted how D. suzukii may produce ecological changes to eastern forests in the USA. 167 

Invasion by D. suzukii may have consequences for food resources and, consequently, on 168 

species with which they compete for fruits. Competitive interactions, i.e. competition for 169 

shared resources or interference between species, generally increase with increasing 170 

phylogenetic relatedness (Li et al. 2015) and functional similarity (Dick et al. 2017) between 171 

the invader and the native species. Accordingly, D. suzukii could affect native drosophilids 172 

due to two main mechanisms. First, D. suzukii can use a wide range of substrates for 173 

oviposition, which gives it a competitive advantage over native drosophilids (Karageorgi et al. 174 

2017, Silva-Soares et al. 2017). Unlike other drosophilids that use damaged and overripe 175 

fruits, D. suzukii has an enlarged, serrated ovipositor which makes it possible for females to 176 

pierce the skin of fruits (Atallah et al. 2014). It thus can use undamaged fruit, i.e. it can 177 

occupy fruits earlier than other drosophilids. Second, according to the enemy release 178 

hypothesis, a lower parasitisation rate leads to a larger population size (Keane 2002, Shea 179 

2002), and parasitisation is an important cause of mortality for drosophilid larvae (Janssen et 180 

al. 1988, Fleury et al. 2009). 181 
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In this study, we assessed the use of potential host plants in forests by examining egg 182 

depositions of D. suzukii, reflecting its direct effect on the plants. Since there is a diverse 183 

abundance and varying availability of host plants within a plant community, which affects the 184 

choice of host plants for D. suzukii, we selected different forest communities and forest edges 185 

as study sites. We addressed the following questions: (1) Are there differences in the potential 186 

host plants of D. suzukii growing in different forest communities? (2) To what extent are the 187 

potential host plants attacked by D. suzukii, and what are the factors influencing the attack 188 

rates?  189 

Due to the large numbers of D. suzukii trapped in previous studies, we expected that this 190 

species would outnumber and potentially outcompete native controphics, especially 191 

drosophilids. To test this hypothesis, we trapped drosophilids during the study period and 192 

addressed the following questions: (3) What proportion of drosophilid individuals are D. 193 

suzukii? (4) Does the proportion of D. suzukii differ among forest communities? (5) Does the 194 

abundance of D. suzukii affect the abundance of other drosophilids? 195 

 196 

Materials and Methods 197 

Study area 198 

We conducted our study in the adjacent cantons of Zug (47.092440 – 47.218600 N, 8.407940 199 

– 8.680231 E; elevation 400-1200 m a.s.l) and Zurich (47.163290 – 47.365790 N, 8.424865 – 200 

8.687711 E; 440-1165 m a.s.l) in Switzerland from June to November in 2020 Figure 1). In 201 

both regions, the annual average temperature ranges between 4-6°C at higher elevation sites 202 

to 10-12°C at lower elevation sites and the annual precipitation ranges between 1100-1300 203 

mm and 1700-2000 mm at sites in the canton Zug and 900-1100 mm and 1100-1300 mm at 204 

sites in the canton Zurich (climate norm values 1991-2020; Federal Office of Meteorology 205 

and Climatology MeteoSwiss; extracted from https://map.geo.admin.ch/). We selected the 206 

forest communities 7a (GALIO ODORATI-FAGETUM TYPICUM), 19a (ABIETI-FAGETUM 207 

LUZULETOSUM) and 26f/g (ACERI-FRAXINETUM MERCURIALIDETOSUM) (see 208 

Ellenberg and Klötzli 1972) for our study, as they include a comparable range of fruiting 209 

plants. In addition, we investigated forest edges, as they serve as important habitat for a large 210 

range of fruiting plants. We examined the three forest communities at four sites ≥ 1 km apart, 211 

from 400 to 1165 m a.s.l. At each site, we selected four 25 m × 25 m plots of the particular 212 

forest community from the available grid cells (also 25 m × 25 m) in a stratified random 213 
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design, using a vegetation mapping GIS in the canton of Zurich (Kanton Zürich 2020) and 214 

vegetation maps in the canton of Zug. We applied the following criteria in selecting plots: (1) 215 

distance between plots ≥ 150 m, (2) distance to the forest edge ≥ 150 m (due to the shape of 216 

the area, only a distance of ≥ 70 m was possible at the site “Zollischlag”). We measured the 217 

distances between sites, between plots and to the edge of the forest using the mapping 218 

platform of the Swiss Confederation (www.map.geo.admin.ch) and subsequently checked 219 

them in the field. We reviewed the forest community classification in the field based on 220 

indicator plant species. We defined the centre of the plots as the tree nearest to the actual 221 

centre point of the 25 m × 25 m area. We moved a selected plot the adjacent grid cell if the 222 

area was temporarily unstocked (n=2), was covered with logging residues (n=1), or had no 223 

characteristics of the respective forest communities (n=3). We investigated forest edges at 224 

four sites with four plots each in the canton of Zug. We selected two sites at low elevations 225 

(400–600 m a.s.l.) and two at high elevations (800–1000 m a.s.l.). We defined these plots as 226 

areas of 12.5 m × 50 m along the forest edge (instead of 25 m × 25 m). Where possible, the 227 

forest edges were orientated in different cardinal directions. Forest edge sites were ≥ 1 km 228 

apart and plots were separated by ≥ 250 m. All sites were located in managed forests. 229 

 230 

Figure 1. Map showing the locations of the 16 sites (forest communities 7a, 26f/g and 19a; 231 

forest edges (FE)) (European map data 2021 © Google maps, Switzerland map data 2021 © 232 

Swiss Confederation). 233 

 234 

Field surveys of potential host plants 235 
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We considered any fleshy-fruited species, characterised by a high fruit water content, a 236 

potential host plant. We used the term “fruit” for all fruit types (i.e. berries, drupes, aggregate 237 

drupelets, aggregate nutlets and pomes), independent of the tissue of origin of the pulp. We 238 

also examined the aril of European yew (Taxus baccata) for egg deposition and included it 239 

under the term “fruit” below. 240 

We carried out the field surveys in all plots during six observation sessions (interval of 20 241 

days) over the study period, starting on 22/06/2020 and ending on 15/10/2020: 4 plant 242 

communities (3 forest communities + forest edge) × 4 study sites × 4 plots (64 plots) × 6 243 

periods = 384 assessments.  244 

We mapped all potential reproducing host plant species in each plot (25 m × 25 m or 12.5 m × 245 

50 m = 625 m2) and noted its occurrence. We used an estimated dominance value to 246 

determine the area (m2) covered by a plant species, and used this value and the recorded 247 

height to calculate the plant species’ volume. For each potential host plant at each field survey 248 

per plot, we estimated the seasonal phenology and the number of ripe fruits present, assigning 249 

maturation stage between 0 and 2, corresponding to the majority of plant individuals: 0 = no 250 

ripe fruits, 0.25–0.75 = before main fruit maturity (some ripe fruits), 1.0–1.25 mainly ripe 251 

fruits, 1.5–1.75 = after main fruit maturity (more overripe, fermented fruits than ripe fruits), 2 252 

= no more fruits. Since fruit ripening is usually associated with a change in colour, we used 253 

colour change as an indicator of the maturity of the examined fruits. In some species, such as 254 

European fly honeysuckle (Lonicera xylosteum), rowan (Sorbus aucuparia) or alder 255 

buckthorn (Frangula alnus), changes in fruit flesh firmness during ripening were not 256 

advanced at the time of colour change. We judged these fruits to be ripe when they also 257 

softened. After maturity, fruits enter senescence (period during which chemical synthesis 258 

pathways give way to degradation processes). As an indicator of the “overripe” stage, we used 259 

loss of moisture, which becomes visible as a loss of turgor. At the end of the field survey, we 260 

calculated the maturity period with the unit of half a month and estimated the amount of fruit, 261 

both per potential host plant species per plot. The exact method used for these estimates 262 

depended on the species and was based on counts (e.g. all observed fruits, fruits per square 263 

metre, fruits per individual plant, or infructescence). We then extrapolated counts to the plot 264 

level. The number of fruits was likely underestimated by this approach and was thus a rather 265 

conservative estimate. Fruits that were removed, destroyed or lost due to drought stress near 266 

the end of the ripening process were not subtracted from the estimated numbers.  267 
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Near the plots and in the same forest communities, we additionally examined native potential 268 

host plants that occurred in less than three plots (Lonicera alpigena, Taxus baccata, Prunus 269 

spinosa, Crataegus laevigata, Lonicera periclymenum, Viburnum lantana). We conducted 270 

this additional investigation to estimate the average attack rate of plants with infrequent 271 

occurrence on the plots, but we excluded these fruits from the statistical analyses.  272 

European brambles (Rubus L. subg. Rubus) are taxonomically divided into three sections: 273 

Rubus, Corylifolii and Caesii (with one species, Rubus caesius). The most abundant species in 274 

our plots were R. hirtus agg. (sect. Rubus), occurring in the plots of forest community 19a, 275 

and R. villarsianus (sect. Corylifolii), occurring in the plots of forest communities 7a and 276 

26f/g. Especially at the forest edges, but also in the forest communities 26f/g and 7a, more 277 

than one species of the sections Rubus and/or Corylifolii occurred in the plots. We did not 278 

identify the described and named species of the sections Rubus and Corylifolii in the plots and 279 

therefore used the term Rubus fruticosus corylifolius aggr. as the taxonomic unit.  280 

Investigation of fruit attacks by Drosophila suzukii 281 

We examined ripe fruits at an accessible height (up to 2 m) for egg deposition using a hand 282 

lens (10× magnification). If we observed at least one D. suzukii egg on the fruit, we 283 

considered the fruit “attacked”, regardless of the number of egg deposits or larvae. We 284 

examined at least 10 fruits per population or individual of a potential host plant per plot, and 285 

we removed the examined fruits from the plants. If multiple individuals of a plant species 286 

occurred in the plot, we examined several individuals. In the case of large populations of 287 

brambles (R. fruticosus corylifolius agg.) or bilberry (Vaccinium myrtillus), i.e. covering > 288 

25% of the plot area, we randomly selected ≥ 5 areas of 1 m2 for investigating egg deposition. 289 

Egg deposition by D. suzukii is detectable for only a limited time, due to decay of the fruit 290 

substance, rotting, development of the larvae, feeding by other animals, or secondary 291 

infections such as grey mould. No larvae in a damaged fruit does not allow inference of non-292 

infestation. Further, damaged fruits may in turn be used as egg-laying substrate by other 293 

drosophilids. Therefore, we used only ripe, undamaged fruits to study egg deposition on 294 

potential host plants.  295 

We investigated the fruits of European holly (Ilex aquifolium) for egg deposition after the 296 

field surveys because they had not yet reached fruit maturity during the study period. To 297 

check the oviposition activity of D. suzukii, we simultaneously examined fruits of the 298 

European dwarf elder (Sambucus ebulus) and brambles (Rubus fruticosus corylifolius aggr.) 299 
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occurring near the European hollies under investigation. We did not examine European 300 

mistletoe (Viscum album) and common ivy (Hedera helix), which were also present in the 301 

plots, for D. suzukii attacks, as their fruit ripening period fell well outside our study period. 302 

The ripe fruits of the wild strawberry (Fragaria vesca) often showed numerous feeding marks 303 

and damage, such that egg deposition by D. suzukii could rarely be detected. We therefore 304 

decided not to investigate attacks further and excluded wild strawberry from the analyses. We 305 

could confirm its use as a host, however, as adults hatched from collected fruits and we found 306 

numerous drosophilid larvae in otherwise intact fruits.  307 

Fruit and decay traits 308 

We compiled fruit traits of the investigated plant species from Herrera (1987), Snow and 309 

Snow (1988), Eriksson and Ehrlen (1991), and Stiebel (2003) and from databases (eFloras 310 

2021, TRY 2021). When the records of fruit traits were comparable or convertible, we 311 

included the data from several literature references and used the average value. We included 312 

the fruit traits: type, colour, diameter (mm), mass (g), water content of the pulp (%), sugar 313 

content of the pulp (glucose and fructose, % of dry mass), lipid content of the pulp (% of dry 314 

mass), protein content of the pulp (% of dry mass), pH, persistence of individual fruits (days) 315 

and “attacked by non-dispersal frugivores” (%). In addition, we used the amount of ripe fruit 316 

and the maturation start and duration, based on our field assessments (see section “Field 317 

surveys of potential host plants”), as fruit traits in the analyses.  318 

Fruit decay is a complex natural phenomenon that is co-determined by numerous conditions. 319 

It occurs as a result of physical and chemical damage, enzymatic digestion, and especially 320 

microbial activity. The fruit skin, which serves as an external barrier, is damaged by the egg 321 

deposition of D. suzukii. We documented the fruit response to egg deposition, i.e. decay, to 322 

determine if attacks trigger fruit decay. We recorded the following symptoms of fruit decay: 323 

oviposition scar, denting, oozing of pulp, reduction of fruit substance/loss of shape, and 324 

colour change. We categorised the symptoms as mild (1), moderate (2) or severe (3). 325 

Adult trapping 326 

At each site of the forest communities (including forest edges), we installed two baited (80–327 

100 ml) transparent plastic cup traps covered by a red lid with 3 mm diameter entry holes 328 

(Profatec AG, Malans, Switzerland) to trap Drosophilidae including D. suzukii. As an 329 

attractant, we used a mixture of apple cider vinegar and water (3:1; apple cider vinegar IP-330 

Suisse, Denner AG, 8045 Zurich, Switzerland; acetic acid 50 g/l) with 1–2 drops of liquid 331 
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soap (Oecoplan Abwaschmittel, Coop, 4002 Basel, Switzerland) per 5 dl. We positioned the 332 

traps at a height of 1.2–1.5 m on branches of plants that do not bear fleshy fruits, mostly 333 

beech (Fagus sylvatica), at a distance of 150–200 m from the field survey plots. We installed 334 

the traps from 22/06/2020 to 07/07/2020, during the first session of the egg deposition 335 

assessment. At the forest edges, we placed the traps approx. 3 m inside the forest (from the 336 

shrub belt). We kept the traps in the same positions throughout the experiment and visited 337 

them on the same dates as the egg deposition assessments. Therefore, each sampling period of 338 

adult drosophilids also lasted 20 days.  339 

During each sampling session, we removed the contents of the traps and preserved them in 340 

ethanol, and we renewed the bait. We sorted the trap content into different taxa, which we 341 

identified to different taxonomic levels. We identified the non-native D. suzukii and other 342 

drosophilids to the species level using the identification key of Bächli et al. (2004). “Domestic 343 

species”, in particular Drosophila simulans and Drosophila immigrans, and other non-native 344 

species (e.g. Drosophila curvispina and Chymomyza amoena) were occasionally trapped. 345 

Other non-native drosophilid species accounted for < 1% of all trapped individuals. 346 

Therefore, we used the term “native drosophilids” for all drosophilids other than D. suzukii. 347 

We identified other Diptera to the family level following Oosterbroek (2006). See 348 

Supplementary Material Table S1 for a list of the trap catches. 349 

Statistical analysis 350 

We carried out all statistical analyses using R version 4.0.2 (R Core Team 2020). We tested 351 

all models for multicollinearity using the ‘check_collinearity’ function of the performance 352 

package (Lüdecke et al. 2021) . We performed a tests for dispersion, zero inflation and 353 

residual diagnostics with the DHARMa package (Hartig 2022). 354 

Differences in fruiting plant communities 355 

To test whether the composition of the plant communities differed between the forest 356 

communities with respect to the plants with fruits relevant for D. suzukii, we conducted non-357 

metric multidimensional scaling (NMDS) based on a Bray-Curtis distance matrix (function 358 

‘metaMDS’, package vegan; Oksanen et al. 2020). We defined the abundance of plant species 359 

as the estimated number of fruits per study plot and season, square-root transformed. We used 360 

the ‘adonis’ function in vegan (permutational multivariate analysis of variance, 361 

PERMANOVA) to test for statistical differences between the forest communities. 362 

Attack rate and probability of fruits of different plant species 363 
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We applied a binomial generalised mixed effects model (package glmmTMB; Brooks et al. 364 

2017) to test for differences in fruit attacks between forest communities (including forest 365 

edges) and plant species. The ratio of attacked to unattacked fruits per study plot and time of 366 

recording (cbind(N attacked, N not attacked)) was the response variable, whereas the forest 367 

community, the plant species, the elevation (m a.s.l.), the number of ripe fruits, the fruit 368 

maturity status, and the canton were the predictor variables. We included study plot as a 369 

random term to account for the nested study design. We used an additional observation-level 370 

random factor due to dispersion issues.  371 

We simplified our model stepwise by excluding the factor with the highest p-value and 372 

comparing the two models with the anova function based on a CHI2-test. If the more complex 373 

model did not differ significantly in model performance from the simpler model, we used the 374 

latter. This procedure resulted in the exclusion of canton and elevation (height_NN) from the 375 

final model. 376 

We calculated the attack probabilities (LS-means ± SE) of the different plant species in the 377 

forest communities and plotted them using the emmeans package (Lenth 2022) based on the 378 

final model. 379 

The role of fruit traits in fruit attack and decay 380 

We explored whether fruit traits could explain observed differences in attack rates. We first 381 

used NMDS to illustrate the fruit trait space of the 39 studied plant species. See the section 382 

“fruit traits” for a list of the fruit traits considered. We treated each plant species in each forest 383 

community separately to relate it to attack rate and phenology, which both differed between 384 

forest communities for a given plant species. We used the Gower dissimilarity coefficient 385 

(Gower 1971) with Podani’s (Podani 1999) extension for ordinal variables to create a distance 386 

matrix from our fruit trait data (‘gowdis’ function in the FD package (Laliberté and Legendre 387 

2010, Laliberté et al. 2014). 388 

We performed NMDS (with two axes) on the Gower distance matrix using the ‘metaMDS’ 389 

function in the vegan package (Oksanen et al. 2020). For illustration, we plotted attack rates 390 

of the fruits with different circle sizes and the phenology (month of maturation start) in 391 

different colours. We plotted traits post-hoc using the ‘envfit’ function in vegan, with 1000 392 

permutations. 393 

We used a binomial generalised mixed effects model (package glmmTMB; Brooks et al. 2017) 394 

to test whether fruit attacks were related to fruit traits. The ratio of attacked to unattacked 395 
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fruits per study plot and time of recording (cbind(N attacked, N not attacked)) was the 396 

response variable, whereas fruit availability (amount of fruit per plot), start of ripe fruit 397 

availability and duration of ripe fruit availability (both 0.5 month resolution), fruit colour, 398 

fruit diameter, sugar content of the pulp, and pulp pH were the predictor variables. We 399 

excluded fruit type and mass as well as water content of the pulp because of multicollinearity 400 

issues, and lipid and protein content of the pulp, as well as persistence and “attacked by non-401 

dispersal frugivores”, because they had too many missing values. We defined study plot and 402 

plant species as random terms to respect the nested study design and the repeated measures on 403 

plant species. We used an additional observation-level random factor due to dispersion issues. 404 

We standardised all quantitative variables to zero mean and unit variance using the 405 

‘decostand’ function in the vegan package (Oksanen et al. 2020) to allow comparisons of 406 

effect sizes.  407 

We used a general linear model (‘glm’) with a Poisson distribution to test whether fruit traits 408 

determined the decay status of the fruits after the attack by D. suzukii. We used the sum of 409 

decay traits (see section “fruit and decay traits”) as the response variable and fruit traits (fruit 410 

diameter, pulp pH, pulp water, sugar, lipid and protein content) as predictors. We excluded 411 

fruit type and mass because of multicollinearity issues. We standardised all quantitative 412 

variables to zero mean and unit variance using the ‘decostand’ function in the vegan package 413 

(Oksanen et al. 2020) to allow comparisons of effect sizes.  414 

 415 

Effects of D. suzukii on native Drosophilidae 416 

To test for the effects of forest community and canton on the abundance of D. suzukii adults 417 

captured in traps, we used a binomial generalised mixed effects model (package glmmTMB; 418 

Brooks et al. 2017) with the ratio of D. suzukii and native Drosophilidae (cbind(N D. suzukii, 419 

N native Drosophilidae)) as response variable and study plot as random term. We calculated 420 

the predicted proportions of D. suzukii (LS-means ± 95% CI) of the Drosophilidae species 421 

caught in the traps in the forest communities and plotted them using the emmeans package 422 

(Lenth 2022) based on the above model. To predict the abundance of native Drosophilidae as 423 

a function of the abundance of D. suzukii, we used a generalised mixed effects model with a 424 

Poisson distribution (package glmmTMB; Brooks et al. 2017) and defined forest community 425 

and canton as additional fixed effect and study plot as random term. We then plotted the 426 
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predicted effect of N D. suzukii on N native Drosophilidae using the effects package (Fox and 427 

Weisberg 2018). 428 

For all GLMs and GLMMS, we performed a type II Wald chi-square test using the R package 429 

car (Fox and Weisberg 2019). For most analyses we plotted the standardised estimates (effect 430 

sizes) using the ‘plot_model’ function in the sjPlot package (Lüdecke et al. 2021). 431 

Results 432 

Attacks on potential host plants  433 

The composition of the potential host plants of D. suzukii differed among forest communities 434 

(PERMANOVA, F=5.432, R2=0.22, P=0.001). The effect of forest community in structuring 435 

the plant communities is illustrated by the clustering of the forest communities in the 436 

ordination plot, except for the plant community of the study site of a former alluvial forest 437 

(site 26_1), which was more similar to forest community 7a than to 26f/g (Figure 2). The 438 

greatest differences in the potential host plant composition were evident between forest 439 

communities 19a and 26f/g (pairwise adonis, R2=0.21, P=0.001). Forest community 26f/g and 440 

the forest edge community were most similar (R2=0.07, P=0.08). 441 
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 442 

Figure 2. Non-metric multidimensional scaling (NMDS) based on Bray-Curtis distances, 443 

showing the host plant composition with its estimated number of fruits for Drosophila suzukii 444 

at the study sites (four plots each) of the different forest communities. Different forest 445 

communities are indicated by different colours. Each dot represents the community in one 446 

plot. All the plots in a given site are connected by thick lines, and centroids are indicated by 447 

thin lines. The asterisks indicate the centroids of the forest communities. Stress=0.145 (k=3). 448 

Forest communities: 7a – GALIO ODORATI-FAGETUM TYPICUM, 19a – ABIETI-449 

FAGETUM LUZULETOSUM, 26f/g – ACERI-FRAXINETUM MERCURIALIDETOSUM) 450 

(see Ellenberg and Klötzli 1972), FE = forest edge. 451 

 452 

At the study sites of forest community 19a, 7 potential host plant species with an estimated 453 

34,000 fruits were recorded. At the study sites of the forest community 26f/g, there were 30 454 

potential host plant species and an estimated 60,200 fruits; in forest community 7a there were 455 

21 potential host plant species and 140,500 fruits, and at the forest edge study sites 32 456 
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potential host plant species and 161,000 fruits were observed (Supplementary Material Table 457 

S1). 458 

Of the 39 potential host plants investigated, attacks were observed on 31 species. Overall, 459 

fruits of Cotoneaster divaricatus (96%), Atropa bella-donna (91%), Rubus fruticosus 460 

corylifolius aggr. (91%), Frangula alnus (85%) and Sambucus nigra (83%) were attacked 461 

particularly frequently (Supplementary Material Figure S1, proportions of fruits attacked by 462 

Drosophila suzukii per plant species, separated by forest community). Based on the 463 

standardised assessments within the plots, the attack rates differed significantly between plant 464 

species and forest communities (Table 1), with forest edges exhibiting particularly high rates, 465 

followed by 7a. Lonicera alpigena, Taxus baccata and Atropa bella-donna had the highest 466 

probability of being attacked (Figure 3). Larger numbers of ripe fruits and fruits in a later 467 

maturation stage corresponded to higher attack rates (Table 1). Canton and elevation did not 468 

have a significant effect on the attack rate and were dropped during model simplification. 469 

Table 1. Results of the binomial generalised mixed effects model (glmmTMB) testing the 470 

drivers of attack rates of fruits by Drosophila suzukii. Plot nested in study site was defined as 471 

a random term. Results of the Wald Chi-square test are given. For continuous variables the 472 

direction of the effect (+) is given. 473 

 Chi2 Degrees of freedom P 

Forest community 34.385 3 <0.001  

Plant species 396.861 36 <0.001  

Number of ripe fruits 7.513 1 <0.01 (+) 

Status of maturation 69.353  1 <0.001 (+) 

R2 conditional 0.840   

R2 marginal 0.826   

 474 
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 475 

Figure 3. Attack probabilities of fruits of different plant species by Drosophila suzukii. 476 

Model-derived (for model results, see Table 1) probability estimates are shown (LS-means ± 477 

SE, back-transformed from the logit scale to the original probability scale). Only fruits 478 

observed within the plots were considered. For average attack rates per species, including 479 

fruits outside the plots, see Supplementary Material Figure S1. 480 

Author-formatted, not peer-reviewed document posted on 08/06/2022. DOI:  https://doi.org/10.3897/arphapreprints.e87489



17 

 

 481 

The fruit trait space covered by the studied fruits was quite large (Figure 4, left). The 482 

ordination plot illustrates that the attack rate differed greatly among plant species and was 483 

determined by the maturation start. Later maturation and longer availability of ripe fruits had 484 

a positive effect on attack rate (Table 2, Figure 4 right). In addition, fruit colour affected 485 

attack rate, with orange fruits having a lower attack rate than black fruits, and blue and red 486 

ones tending to be attacked less than black fruits. In addition, larger fruits and fruits with a 487 

higher pulp pH had higher attack rates.  488 

Table 2. Results of a binomial generalised mixed effects model (binomial glmmTMB) testing 489 

the effects of fruit traits on the attack rates of fruits by Drosophila suzukii. Plot nested in 490 

study site, as well as plant species and an observation-level random factor, were included as 491 

random terms. Results of a Wald Chi-squared test are given. For continuous variables the 492 

direction of the effect (+) is given. 493 

 Chi2 Degrees of freedom P 

Amount of ripe fruit 0.375  1 0.540 

Maturation start 11.334 1 <0.001 (+) 

Maturation duration 8.967  1 <0.01 (+) 

Fruit colour 16.944  3 <0.001 

Fruit size Ø 5.024 1 <0.05 (+) 

Pulp sugar content <0.001  1 0.996   

Pulp pH 11.090 1 <0.001 (+) 

R2 conditional 0.678   

R2 marginal 0.461   

 494 

Author-formatted, not peer-reviewed document posted on 08/06/2022. DOI:  https://doi.org/10.3897/arphapreprints.e87489



18 

 

 495 

Figure 4. Left: Ordination plot of a non-metric multidimensional scaling (NMDS) analysis 496 

illustrating the fruit trait space of the 39 studied plant species (stress-value 0.198). The centre 497 

of each circle represents the position of a plant species in the fruit trait space. Attack rates by 498 

Drosophila suzukii are represented by the size of the circles, and the maturation start month of 499 

a plant species in a forest community is illustrated by the colour. FT = fruit type, Col = fruit 500 

color, Cont = content of the pulp, Persist = persistence of individual fruits (days), AttackFrugi 501 

= “attacked by non-dispersal frugivores” (%).  Right: Effect size plot of a generalised linear 502 

mixed effects model (binomial glmmTMB) testing the effects of fruit traits, including fruit 503 

density and maturation start and duration (both 0.5-month resolution), on the attack rate by D. 504 

suzukii. Please note that some traits shown in the figure were excluded from the model due to 505 

multicollinearity issues or a large number of missing values (see Materials and Methods). The 506 

asterisks indicate significance levels: *p<0.05, **p<0.01, ***p<0.001.  507 

 508 

Of the studied fruit traits, only pulp sugar content affected fruit decay status after an attack by 509 

D. suzukii, with a higher sugar content leading to more severe symptoms of decay (Table 3, 510 

Figure 5). 511 

Table 3. Results of a generalised linear model (poisson glm) testing for the effects of fruit 512 

traits on fruit decay status after an attack by Drosophila suzukii. Results of a Wald Chi-513 

squared test are given. 514 

 Chi2 Degrees of freedom P 

Fruit size Ø 0.108  1 0.743 

Pulp water content 1.0408   1 0.308 

Pulp sugar content 7.967 1 <0.01 (+) 

Pulp lipid content 1.004 1 0.316 
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Pulp protein content 2.591 1 0.107 

Pulp pH 0.655 1 0.418 

R2 Nagelkerke 0.547   

 515 

 516 

Figure 5. Effect size plot of a generalised linear model (poisson glm) testing the effects of 517 

fruit traits (size of the fruits and contents and pH of the pulp) on the decay status of fruits 518 

attacked by Drosophila suzukii. The asterisks indicate significance level: **p<0.01. 519 

 520 

Adult trapping 521 
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During the investigation period, the traps captured 99,366 insects from four orders, each with 522 

at least 75 individuals (97,965 Diptera, 751 Hymenoptera, 552 Coleoptera, 75 Dermaptera) 523 

(160 traps). Hemiptera, Lepidoptera, Blattodea and Thysanoptera occurred less frequently. 524 

Within the Diptera, species from 27 families were found, with Drosophilidae accounting for 525 

almost all observed individuals (97%; 94,624 individuals), followed by Anisopodidae (1%; 526 

1399), Heleomyzidae (<1%; 486), Mycetophilidae (<1%; 310), Phoridae (<1%; 278), 527 

Scatopsidae (<1%; 247), Sciaridae (<1%; 127), Chloropidae (<1%; 118), and Dryomyzidae 528 

(<1%; 103) etc. Drosophila suzukii was by far the most abundant species (82% of all trapped 529 

insects, 81,395 individuals) and accounted for 86% of all drosophilids (Supplementary 530 

Material Table S2). 531 

The species composition of drosophilids in the different forest communities differed, e.g. D. 532 

alpina was only found in forest community 19a and species of the genus Amiota were mainly 533 

caught in forest community 26f/g. However, the drosophilid assemblages were dominated by 534 

D. suzukii, independent of forest community (Figure 6). We trapped 21,758 (84%) D. suzukii 535 

and 4,117 (16%) native drosophilids in the forest community 19a, 17,031 (81%) and 4,054 536 

(19%) in 26f/g, 15,708 (86%) and 2,528 (14%) in 7a, and 26,871 (91%) and 2,530 (9%) at the 537 

forest edge. The ratio of D. suzukii to native drosophilids did not differ significantly between 538 

forest communities (Wald Chi-squared test, Chi2=3.053, DF=1, P=0.384) and cantons 539 

(Chi2=0.036, DF=1, P=0.849). The proportion of D. suzukii predicted by the models (purple 540 

symbols) was between 0.81 and 0.95 (Figure 6). 541 
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 542 

Figure 6. Ratio of Drosophila suzukii to native Drosophilidae species adults captured in traps 543 

in different forest communities. The boxplots (median, 25%/75% quantiles, min and max 544 

values) show raw values for the cantons Zug (orange) and Zurich (blue). Model-derived 545 

predicted estimates are shown in purple (LS-means ± 95% CI, back-transformed from the 546 

logit scale to the original probability scale). Forest communities: 7a – GALIO ODORATI-547 

FAGETUM TYPICUM, 19a – ABIETI-FAGETUM LUZULETOSUM, 26f/g – ACERI-548 

FRAXINETUM MERCURIALIDETOSUM) (see Ellenberg and Klötzli 1972), FE = forest 549 

edge. 550 

 551 

Author-formatted, not peer-reviewed document posted on 08/06/2022. DOI:  https://doi.org/10.3897/arphapreprints.e87489



22 

 

 552 

Figure 7. Predicted abundance of other drosophilids as function of the abundance of 553 

Drosophila suzukii (LS-means ± 95% CI) from a generalised linear model including forest 554 

community and canton as covariates. 555 

The abundance of D. suzukii significantly affected the abundance of native drosophilids 556 

captured in the traps (Wald Chi-squared Test, Chi2=74.072, DF=1, P<0.001). The higher the 557 

abundance of D. suzukii, the smaller the abundance of native drosophilids predicted (Figure 558 

7). The forest community (Chi2=2.445, DF=3, P=0.485) and the canton (Chi2=0.192, DF=1, 559 

P= 0.661) did not affect the abundance of native drosophilids.  560 

 561 

Discussion 562 

Drosophila suzukii, an invasive parasite of forest fruits, attacked 31 species from 15 different 563 

plant families (79% of all potential host plants investigated) in the forests of cantons Zug and 564 

Zurich. This not only confirms the broad host plant spectrum described in previous studies, 565 

but points towards a broad host use for reproduction. A broad host plant spectrum was to be 566 

expected, as D. suzukii is specialised on fruits and not on plant species per se. Furthermore, D. 567 
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suzukii has been shown to have high plasticity in its host choice (Kienzle et al. 2020, Little et 568 

al. 2020). Our results suggest that a large number of fruiting plant species in forests are 569 

affected by D. suzukii, with likely far-reaching consequences for ecosystem processes (e.g. 570 

plant recruitment, resource availability for frugivores) and services (e.g. berry picking).  571 

 572 

What influences attacks on the forest plants studied? 573 

The observed broad host plant spectrum raises the question of what limits the host spectrum. 574 

Species of Rosa or Sorbus, which bear rather hard fruits, were hardly infested. We assume 575 

that the pulp and skin firmness act as a barrier to egg deposition, as insects have a limited 576 

ability to penetrate the skin of the fruit and to lay an egg in hard fruit flesh. It has been 577 

reported that the probability of oviposition increases as the force required to penetrate fruit 578 

skin decreases (Burrack et al. 2013, Lee et al. 2016). Further, within grape cultivars and single 579 

berries, berry skin resistance was found to explain the oviposition preferences of D. suzukii 580 

(Entling et al. 2019; Tonina et al. 2020). The fact that Ilex aquifolium was not infested was 581 

probably because its maturity coincides with the reproductive diapause of the fly (Grassi et al. 582 

2018). We found that the red or blue, soft-skinned fruits of Polygonatum (Asparagaceae) were 583 

hardly used as a host, although this genus is widespread in the fly’s area of origin (eFloras 584 

2021). Drosophila suzukii may not detect all of the numerous potential host plants because its 585 

ability to process multiple sensory inputs is limited (Bernays 2001). Polyphagous herbivores 586 

have been shown to be attentive to the volatiles that are shared across host species (Silva and 587 

Clarke 2020). As the Asparagaceae are relatively distantly related to other host plants, the 588 

fruits and their microbial association with Asparagaceae species might not share certain 589 

volatiles with other host plants, making them undetectable to the fly. 590 

The fruits of our 39 potential forest host plants differed in several characteristics that affect 591 

host location and oviposition site selection (Markow 2019), reflected by differences in 592 

observed attack rates in our study. Within the host plant range of D suzukii, preferences 593 

(disproportionate use of potential host plants, i.e. egg deposits) have also been shown for 594 

crops in agricultural systems (Lee et al. 2011, Burrack et al. 2013, Olazcuaga et al. 2019) and 595 

for wild and ornamental non-crop hosts (Poyet et al. 2015) when fruits were exposed to flies 596 

in laboratory assays. These preferences may be due to numerous characteristics of the fruit, 597 

such as colour, diameter, shape, volatile compound content, firmness, skin texture, or 598 

chemical composition, such as sugar content. In the field, several plant characteristics and the 599 
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diverse abundance and fluctuating availability of host plants, as well as other biotic and 600 

abiotic factors of the host site, may also affect the choice of hosts, which makes comparisons 601 

of our findings with laboratory assays difficult. 602 

Our non-metric multidimensional scaling (NMDS) indicated high variability in fruit traits and 603 

phenology in relation to attack rate. The attack rate varied among fruit colours, with black 604 

fruits being most frequently attacked. Drosophila suzukii has previously been shown to use 605 

colour as visual cue, but that colour contrast rather than colour appearance may be of greater 606 

importance.(Little et al. 2019). While visual cues are of some importance, especially in 607 

behaviours such as courtship (Anholt et al. 2020), the olfactory and gustatory systems of 608 

Drosophila are crucial for host localisation and selection (Anholt 2020). We therefore expect 609 

that other factors correlated with colour might be decisive. For example, the fruit type “pome” 610 

or “hips, which usually has high pulp firmness, mostly had a low attack rate and was often 611 

orange or red in colour. Larger fruit size also had a positive effect on attack rate. This could 612 

be because a larger surface area, especially with aggregated fruits such as brambles, makes it 613 

is easier for D. suzukii to find a preferred substrate, e.g. one without damage (mechanical or 614 

due to infection) or in an earlier maturation state. We also found that the attack rate increased 615 

with higher pulp pH (from pH 2.89 to 6.48). During host location and selection, the fly can 616 

hardly detect a pH value, and thus this effect might be indirect. Microbes can act as the 617 

interface between insect herbivores and their hosts (Janson et al. 2008, Hansen and Moran 618 

2014, Ljunggren et al. 2019). Drosophila suzukii, like other Drosophila, is strongly attracted 619 

to volatiles produced by microorganisms in particular yeasts associated with fruits (Wright 620 

2015, Hamby and Becher 2016, Bueno et al. 2020). It has also been shown that yeast 621 

volatiles, not fruit volatiles, mediate attraction and oviposition in D. melanogaster (Becher et 622 

al. 2012). In general, within the range of the fruit pulp pH, yeast and bacteria thrive better at 623 

higher pH values (Barth et al. 2009, Howell 2016). Fruits with a higher pH may host more 624 

microbes and could therefore be more attractive and easier to locate. In addition, moulds 625 

(filamentous fungi), an important competitor of Drosophila larvae (Wertheim et al. 2002, 626 

Rohlfs et al. 2005, Trienens et al. 2010), generally exhibit better growth in a lower pH 627 

environment (Zhao et al. 2020). This could have led to a lower attractiveness for D. suzukii in 628 

our study, as decreased egg deposition in response to grey mould (Botrytis cinerea) was 629 

observed in a recent study (Chakraborty et al. 2022). 630 

Host preferences are considered evidence of specialisation (Loxdale and Harvey 2016). In this 631 

case, however, we would expect phylogenetic relatedness in the preferred hosts, which we did 632 
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not find, as the plant species with the highest observed attack rate belong to very distinct plant 633 

clades. Since the larvae feed in particular on microbes, host preferences, unlike those of 634 

folivorous insects, are determined more by the quality of the substrate in promoting the yeasts 635 

and bacteria associated with D. suzukii than by the phylogeny of the host plants. Our results 636 

suggest that D. suzukii responds to common cues from multiple host species, as well as 637 

specific cues from individual host species, as has been shown for other polyphagous 638 

herbivores (Silva and Clarke 2020). Other polyphagous herbivores also exhibit preference 639 

hierarchies for their hosts (e.g. Clarke et al. 2011, Wang et al. 2017), which may change 640 

through learning (West and Paul Cunningham 2002). Preferences should evolve toward 641 

maximising offspring fitness (Jaenike, John 1978), although preferences do not always 642 

correlate positively with offspring performance (e.g. Valladares and Lawton 1991, Clark et al. 643 

2011), because other ecological, behavioural and physiological factors additionally influence 644 

host choice and host use (Jaenike 1990). While D. suzukii deposited its eggs on fruits from 16 645 

different plant families in our study, we do not expect its offspring to perform equally well 646 

across the host spectrum, because preferences of insects with a broader host plant spectrum 647 

are less strongly associated with better offspring performance than insects specialised on 648 

plants within a certain family (Gripenberg et al. 2010). However, invasions are biologically 649 

unusual situations, and D. suzukii cannot be expected to show strong adaptive patterns of host 650 

use yet, as it was only recently introduced. Thus, some differences in larval performance 651 

might be expected and have also been shown between many non-crop hosts of D. suzukii (e.g. 652 

Poyet et al. 2015, Kenis et al. 2016, Olazcuaga et al. 2019) 653 

Plant communities differ floristically and phytophysiognomically (Braun-Blanquet 1932) 654 

because species traits and an interacting milieu affect performance across environmental 655 

gradients such as temperature, moisture and soil chemistry (Mcgill et al. 2006). Therefore, the 656 

abundance and availability of host plants among forest communities must also differ. In our 657 

NMDS of available fruits of potential host plants in the plots, the forest communities were 658 

clustered. This finding and our model results indicated that the availability of different plant 659 

species determines the use of the host plants, as the forest community affected the attack rate. 660 

In addition to the diversity of host plants in an area, other associational effects, such as the 661 

density and frequency of neighbouring host plants, can influence the likelihood of a particular 662 

plant being used as a host, as can the density of the particular host plant (Underwood et al. 663 

2014). As stated by the resource concentration hypothesis (Root 1973), a high density of host 664 

plants may increase the likelihood that the fly will find the fruits and remain on the host plant. 665 

This was supported by our results, as the number of ripe fruits present in our plots strongly 666 
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affected the attack rate. Furthermore, since optimal oviposition behaviour depends not only on 667 

the suitability of the substrate, but also on the probability of finding a more suitable host in 668 

the time available (Jaenike, John 1978), adherence to a particular host plant species might be 669 

advantageous. A large amount of fruit may be more obvious to D. suzukii and thus increase 670 

the attack rate. A strong preference for more apparent resources in complex environments has 671 

also been shown for D. melanogaster (Verschut et al. 2016).  672 

Our results further show that a longer fruit duration of fruits present increased the attack rate. 673 

Plants with more fruits, and especially plants such as brambles that produce ripe fruits over a 674 

long period, ensure continuous availability of resources without the need to search for new 675 

hosts, thus promoting the presence of overlapping generations of D. suzukii on the same host, 676 

further increasing attack rate. In Switzerland, between four and eight generations of D. suzukii 677 

per year are expected (Wiman et al. 2014). In addition, prior experience with olfactory and 678 

visual cues can enhance host location (Silva and Clarke 2020). Furthermore, a later ripening 679 

date was related to a higher attack rate, which may occur when the peak of abundance of D. 680 

suzukii and the period of fruit maturity coincide. The predominant maturity status of the plants 681 

in the plots also affected the attack rate. The more advanced the maturity, the greater the 682 

attack rate of the ripe fruits investigated. An advanced maturity status attracts more flies 683 

(Keesey et al. 2015), but also indicates overlapping generations on the same plant. 684 

Adult trapping revealed Drosophila suzukii as a dominant species 685 

The high fruit attack rate observed in our study was also reflected in a high abundance and 686 

dominance of D. suzukii in trap catches, independent of forest community and elevation. This 687 

indicates the broad environmental tolerance of the fly. However, the frequent occurrence in 688 

mountainous regions does not necessarily mean that D. suzukii inhabits these regions all year 689 

round, as the fly has been demonstrated to show extensive movement between low and high 690 

elevations in Japan (Mitsui H. et al. 2010) and is able to cover distances of up to 9 km (Tait et 691 

al. 2018). However, it can be assumed that the fly can survive the winter at these sites, as D. 692 

suzukii is firmly established on the island of Hokkaido in Japan, where winters average -4 to -693 

12°C (Kimura 2004). 694 

Although our forest communities differed significantly in host composition, there were no 695 

differences in the proportion of D. suzukii between the forest communities. Drosophila 696 

suzukii accounted for 86% of the drosophilids caught during our study period. Recent 697 

snapshot studies of trap catches in forests also showed a high proportion of D. suzukii. In a 698 

Author-formatted, not peer-reviewed document posted on 08/06/2022. DOI:  https://doi.org/10.3897/arphapreprints.e87489



27 

 

survey in native riparian and non-riparian chestnut forest patches in northwestern Spain in 699 

August, D. suzukii accounted for 30% and 27% of the drosophilids caught in beer traps 700 

(Maceda-Veiga et al. 2021). Kremmer et al. (2017) reported 56% D. suzukii of the summed 701 

trap catches across natural habitat and crops in February (baited with apple cider vinegar). 702 

Studies in agricultural areas similar to our sites in terms of trapping period, climate and 703 

sampling method do not confirm D. suzukii as the most abundant taxon: D. suzukii accounted 704 

for 7% in Apulia, Italy (Antonacci et al. 2017), 11% in Kansas, USA (but baited with mashed 705 

banana; Gleason et al. 2019), and 18% in Washington, USA) (but some unmanaged habitats 706 

included; Bahder et al. 2016). Several factors could have caused these differences. First, 707 

agricultural and forested areas differ in biotic and abiotic factors, and species composition 708 

thus also differs (Burla and Bächli 1991). The assemblages of drosophilids, excluding D. 709 

suzukii, trapped in these agricultural areas were dominated by domestic species (distributed 710 

worldwide), while native species dominated in our area. Similarly, the occurrence of 711 

controphics, such as other insects, vertebrates or mould, and the occurrence of predators 712 

differ. Second, competition between D. suzukii and native species might be different in the 713 

two habitat types, due to differences in the occurrence of ecologically related species and 714 

available resources. Third, different measures taken to control the fly in agricultural fields 715 

might have reduced the populations of D. suzukii. However, these measures usually also 716 

affect other drosophilids. Fourth, forests can be expected to be the preferred habitat of D. 717 

suzukii, resulting in high overall proportions. Numerous forest fruits are suitable for the 718 

development of D. suzukii, due to its wide host niche (Little et al. 2020), and forests may offer 719 

preferred climatic conditions for D. suzukii, especially higher humidity (Hamby et al. 2016, 720 

Tochen et al. 2016, Eben et al. 2018). 721 

Unlike in our study, surveys of drosophilid assemblages from trapping studies in various 722 

habitats in Asia, where D. suzukii is native or has been established for many years, do not 723 

show D. suzukii to be a dominant species: its proportion in relation to other drosophilids is 724 

reported to be up to 0.02 (e.g. Kaneko and Tokumitsu 1969, Toda 1992, Hirai et al. 2000, 725 

Guruprasad et al. 2010) and reached a value of 0.05 in a study in Korea (Lee 1964). 726 

Parasitisation is, however, an important mortality factor for drosophilid larvae (Janssen et al. 727 

1988, Fleury et al. 2009), and the abundance of potential hosts is one factor determining the 728 

evolution of parasitoid host use (Novković et al. 2012). The degree of parasitisation is much 729 

higher in native populations (Torchin et al. 2003). The expected lower parasitisation of D. 730 

suzukii could be one of the main factors contributing to its frequent occurrence outside its 731 
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native range, as escape from natural enemies can explain the success of introduced species 732 

(Keane 2002, Shea 2002). 733 

Impact on native drosophilids  734 

Our trap catches revealed that the abundance of D. suzukii was significantly negatively 735 

associated with the abundance of other drosophilids. Its dominance indicates a superiority 736 

over the native species. The heavily sclerotised, serrated ovipositor serves as a competitively 737 

unique trait (Karageorgi et al. 2017, Silva-Soares et al. 2017). Besides the capability of using 738 

a wider range of substrates for oviposition, we propose that the broader temporal niche of 739 

resource use is a competitive advantage. Drosophila suzukii can use substrates for oviposition 740 

earlier than other drosophilid species. Consequently, oviposition by D. suzukii induces 741 

substrate decay, rendering the substrate time-limited for the larval development of other fruit 742 

pulp consumers. While ripe fruits are inherently a temporally limited resource, this limitation 743 

is probably enhanced in forests compared with agricultural areas, because the fleshy fruits of 744 

wild plants are usually much smaller, than those of cultivated plants. Furthermore, D. suzukii 745 

may outcompete native drosophilids, due to different development times. This might lead to 746 

different competitiveness in forests and agriculture. Cold adaptation in Drosophila to colonise 747 

temperate climates seems to be linked to longer development times (Santos et al. 2006, 748 

Kinzner et al. 2018), and domestic species such as D. melanogaster, which originate in 749 

warmer regions, have comparatively short development times (Markow and O’Grady 2005). 750 

In laboratory experiments, it has been found that the presence of D. melanogaster on the 751 

substrate significantly reduced adult D. suzukii emergence, reflecting a difference in minimum 752 

development time (7 days for D. melanogaster and 11 days for D. suzukii at 25°C; (Dancau et 753 

al. 2017, Shaw et al. 2018). Presumably, the presence of D. suzukii reduces native drosophilid 754 

emergence as well. Coexistence of drosophilids across food-limited resource patches is 755 

facilitated by aggregation over patches (eggs in clutches of more than one egg, as well as non-756 

random distributions of ovipositing females), which creates partial refuges and allows inferior 757 

species to exist (Rosewell et al. 1990, Jaenike and James 1991, Sevenster and Alphen 1996, 758 

Rohlfs and Hoffmeister 2003). In addition, parasitism facilitates the coexistence of 759 

drosophilid species (Mitsui and Kimura 2000). However, as an invasive species, D. suzukii is 760 

expected to be exposed to lower pressure from parasitoids (Torchin et al. 2003), resulting in 761 

larger populations. Unlike other drosophilids, D. suzukii has been shown not to aggregate over 762 

patches (Mitsui et al. 2006). Therefore, we suggest that it may exclude and outcompete other 763 
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drosophilids in the exploitation of resource patches, which is supported by our results: higher 764 

abundance of D. suzukii was associated with lower abundance of other drosophilids. 765 

Potential impact on host plants 766 

Piercing of the skin of undamaged fruit by D. suzukii provides an entry point for infestation 767 

by pathogens, and inoculated microbes can act as a jump-start for decay. Microbes that infect 768 

fruits have been hypothesised to make fruits unattractive to vertebrate frugivores that 769 

potentially compete for fruit pulp (Janzen 1977, Ruxton et al. 2014). Just as humans respond 770 

to infested fruit with rejection, birds have been shown to prefer intact fruit to infested fruit 771 

(e.g. Manzur and Courtney 1984, Jordano 1987, Borowicz 1988, Buchholz and Levey 1990, 772 

Cipollini and Stiles 1993, Traveset et al. 1995, but see Valburg 1992). Attacks by D. suzukii 773 

alter the attractiveness of the fruit because it changes the chemical composition and visual 774 

cues, such as colour, shape and reflective patterns. Since the choice of fruits by birds depends 775 

on visual perception (Schaefer and Ruxton 2011), we assume that attacks on fruits by D. 776 

suzukii could reduce the attractiveness for birds, resulting in reduced seed dispersal. This is 777 

because many host plants of D. suzukii rely especially on frugivorous birds for dispersal 778 

(Garcia et al. 2010). Negative effects on seeds are unexpected because attacks occur after seed 779 

set. 780 

In the field, when we observed symptoms of fruit decay after D. suzukii attacks, we noticed 781 

that fruit decay progressed at very different rates among plant species, which may be due to 782 

their different compounds and compositions. For example, the bright red fruits of Lonicera 783 

alpigena were found to change into dry, brown fruit mummies (rotten fruits) within a short 784 

time, while fruits of Prunus padus had hardly any symptoms of decay and hung intact on the 785 

bushes for more than 40 days without decaying. On Prunus padus, a significant reduction in 786 

the number of emerged D. suzukii adults and a significant delay in the larval-pupal 787 

development time was detected compared with on Prunus avium (Alhmedi et al. 2019), where 788 

oviposition by D. suzukii is known to trigger microbial development (Ayyanath et al. 2018). 789 

Because larval development depends on the development of microbes (Sang 1956, Schwarz et 790 

al. 2014, Hamby and Becher 2016), decay within a short time indicates a strong response of 791 

microbial growth and development and better host suitability to D. suzukii offspring 792 

development. Among the fruit traits we studied, we found that the pulp sugar content 793 

determined the severity of the symptoms of decay after an attack by D. suzukii. The rapid 794 

decomposition of simple carbohydrates leads to rapid microbial growth (Zhao et al. 2020), 795 

explaining why more severe symptoms of decay were evident at higher sugar levels. Nutrient 796 
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levels deplete over time as microbes and larvae consume the resources, so rapid fruit decay 797 

after an attack by D. suzukii means a loss of resources for other frugivores. 798 

  799 

Conclusion 800 

Almost half of the 39 studied forest plant species showed attack rates by D. suzukii of > 50%, 801 

with a high percentage showing severe symptoms of fruit decay after egg deposition. This 802 

may lead to reduced fruit consumption by vertebrate seed dispersers. Drosophila suzukii is a 803 

damaging agent for plants, and if the fly reproduces in large numbers, dispersal agents and 804 

host plant may both suffer. Besides the direct effect of parasitism of forest fruits by D. suzukii, 805 

leading to competition with other frugivorous species, the indirect effect of disrupting seed-806 

dispersal mutualisms can have far-reaching consequences for ecosystems. With ongoing 807 

climate change, these potentially severe ecological impacts might be amplified, as higher 808 

average and winter temperatures will most likely lead to shorter generation times and lower 809 

winter mortality, which will eventually further increase the pressure on forest fruits and the 810 

competitiveness of D. suzukii over native drosophilids. 811 
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