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Background and aims - Understanding the traits that lead to the invasion potential of alien 

invasive species (AIS) provides insight for their management.  The reproductive traits of 

AIS help us to understand the mechanisms that allow for their invasive potential, and 

colonization into new ranges. Asphodelus fistulosus is a native Mediterranean species 

commonly found invading Australia, South-East Asia and North America. 

 

Materials and methods - Two populations in the Chihuahuan Desert of A. fistulosus were 

followed for reproductive phenology. Floral visitors and their behavior were described, and 

we assessed the breeding system through floral morphological characters and the mating 

system in controlled pollination experiments. 

Key results - Reproductive phenology shows a continuous reproduction throughout the 

year. Floral morphology suggests a facultative autogamous breeding system, but the mating 

system is mixed with autonomous selfing. Flowers longevity was one day, with anthesis 

lasting 11 h. Floral visitors of A. fistulosus consisted of a variety of taxa including species 

of Coleoptera, Hymenoptera and Lepidoptera, the exotic Apis mellifera being the most 

frequent visitor. 

  

Conclusions - The reproductive traits of A. fistulosus in the invaded range provide the 

biological potential for further invasion. The continuous production of reproductive 

structures attracts many pollinators, and the autonomous self- pollination implies that a 

single plant has the potential to develop new populations, posing the control of this AIS as 

a global challenge. 

 

Keywords:  breeding and mating system; floral visitors; alien invasive species; phenology 
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INTRODUCTION 

Current severe environmental threats are brought about by changes in land use, climate 

change and alien invasive species (AIS; Dirzo & Raven 2003), that have been identified as 

one of the leading causes of species extinctions worldwide (Pimentel et al. 2000; McNeely 

2001; Pejchar, & Mooney 2009). Several hypotheses have been put forward to explain the 

success of biological invasions (Essl et al. 2015) such that for successful invasive plant 

species, a subgroup of these hypotheses is linked to identifying traits that allow these 

species to establish new populations in their invaded range such as the ability for sexual 

and asexual reproduction (Moravcová et al. 2015), multiple phenological strategies 

(Wolkovic et al. 2011) and even high germination rates (Gioria & Pyšek 2009), among 

others. These traits, many of which were partially described by Baker (Baker 1965) in his 

treatment of the perfect weed, usually confer an advantage that favor population growth 

over native species (Doody et al. 2009) and provide a working hypothesis expected to be 

found in AIS. The identification of traits that confer invasive potential (Van Kleunen et al. 

2013) is also an important component of risk assessment protocols (Pheloung et al. 1999) 

and a means of characterizing weedy species (Baker 1965; Sutherland 2004), although 

results do not always support the predictions.  

The variation in mating and breeding systems of invasive plant species is broad (Barret 

2002). Reproductive systems can change after colonization (Ferrero et al. 2020) and 

Baker’s Law emphasizes a preference of self-compatible over self-incompatible species 

(Baker 1965; Williamson & Fitter 1996; Barret 2011). However successful invasive plant 

species have a wide variety of mating systems, from self-compatibility (Jacquemart et al. 

2015; Redmond & Stout 2018), self-incompatibility (Sutherland 2004; Friedman & Barrett 

2018) and even mixed mating systems (Souza et al. 2016). There is also the argument that 

AIS benefit from non-specialized pollination systems under the assumption that new 

habitats pose pollinator limitations that can be avoided (Stout et al. 2002) with generalized 

pollinators found in the invaded range (D’Antonio et al. 2000; Stotu & Tiedeken 2017) or 

in the absence of pollinators, favor species with autonomous self- pollination (Pannell et al. 

2015). Even though most plants including AIS are pollinated by animals (Ollerton et al. 

2011), self-compatibility and autonomous pollination reduces the dependence on biotic 

interactions (Van Kleunen, & Johnson 2005; Van Kleunen et al. 2008) favoring invasion 

success. The loose interactions with native pollinators can even decrease fitness (Knight et 

al. 2005; Burns et al. 2013) or may generate new interactions with native pollinators 

causing a shift in preference and a competition for floral visitors that negatively impact 

native plant species (Chittka & Schürkens 2001; Mitchell et al. 2009). 

Seed output in AIS is thought to be high (Díaz-Segura et al. 2020), and even though AIS 

invasions benefit from asexual reproduction as clonal spread (Guerra-García et al 2015) 

there are successful AIS that rely entirely on sexual reproduction (Forman & Kesseli 2003). 

The overall behavior of reproductive traits in terms of seasonality is correlated with overall 

fitness linked to environmental signals, for example, phenology is a key component of plant 

reproduction (Cleland et al. 2007), it provides relevant information to understand the 
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impacts of AIS in invaded ecosystems (Vilà et al. 2011) and hypotheses that help explain 

their success (Wolkovich et al. 2013; Wolkovich & Cleland 2014; Gioria & Pyšek 2017). 

The variation in phenological phases can increase or decrease niche overlap with native 

plants species or increase fitness when cued with the prevailing environmental conditions at 

the site of introduction (Alexander & Levine 2011).  

The purpose of this study was threefold (1) describe the flowering phenology of 

Asphodelus fistulosus at two invaded sites in the Chihuahuan Desert, (2) identify floral 

visitors and how these change over floral anthesis and (3) describe the breeding system 

using morphological floral characters and define the mating system through field-controlled 

pollination experiments to assess how these traits can favor the invasion potential of A. 

fistulosus in Mexico. 

 

MATERIAL AND METHODS 

Study area 

Field work was carried out at two sites in the Southern Chihuahuan Desert. Site QRO was 

located close to Cadereyta de Montes, Queretaro, Mexico (-99°42’53” W; 23°44´16” N), 

and the second site SLP was located in Guadalcazar, San Luis Potosí, Mexico (100°26´13” 

W; 22°38’18” N). The linear distance between sites was 224 km. This study was performed 

from September 2018 to July 2019. 

Study species 

Asphodelus fistulosus L. (Xanthorrhoeaceae) is a native herb from the South of Europe, 

found in the Mediterranean basin and considered invasive in Southeastern USA, Australia, 

India and New Zealand (Boatwright, 2012). Introductions have been intentional for 

ornamental purposes (Bailey & Bailey 1976; Russel 2008), but can easily escape from 

cultivation (USDA, 2016) and establish populations in disturbed, over-grazed habitats 

(Victoria State Department 2016) with impacted vegetation cover (Martínez-Cruz & Téllez-

Valdés 2004). In Australia, A. fistulosus forms dense populations in arid and semi-arid 

environments and disturbed areas (Parsons et al. 2001; Cullen 2012). The first reports of A. 

fistulosus in Mexico locate their presence in northern arid environments (Conzatti 1946; 

Villaseñor & Espinosa-Garcia 2004), and since then, the species has considerably increased 

its geographical distribution, now found in 15 out of 32 states in Mexico (Guerrero-Eloisa 

2017).   

Phenology  

Three phenophases (floral buds, flowers and fruits) were recorded on individuals of A. 

fistulosus.. At each site 1 × 1 m plots (N = 17 plots in QRO and N = 10 plots in SLP) were 

set up in 2018 and individuals of A. fistulosus were tagged, mapped and the frequency of 

their phenological phase recorded every two months from September 2018 to July 2019. 
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The number of plots was based on abundance of A. fistulosus individuals at each site, 

sample size started at QRO = 1015 and SLP= 999 individuals and diminished over the 

study period to QRO = 791 and SLP = 856 individuals. Phenophases were analyzed with 

circular statistics using a Rayleigh test and a Watson-Williams U2 test was used to detect 

significant differences in phenophases between sites. All circular statistics by phenophases 

were run with Oriana 4.0 (Kovach 2011).  

Meteorological data was obtained (average temperature and average precipitation) online 

(www.wundergound.com) from the nearest weather station. We correlated these 

environmental variables with the phenology observed in QRO. 

Floral visitors  

Observations of floral visitors were carried out in February 2019 at QRO and March 2019 

in SLP. At each site, five flowers of 15 individual of A. fistulosus in each of three plots 

were monitored for visitor activities. Each plot was monitored by one observer during 

anthesis (225 flowers in QRO, five observers, 15 flowers in three plots and 180 flowers in 

SLP, four observers, 15 flowers in three plots). Forty-five-minute observation periods were 

made at each site from 0700 to 1800 h with 15-minute breaks for each hour of observation. 

The identity (species or morphospecies) of the visitor, activity (catalogued as pollen or 

nectar collection) and period of observation were recorded for each visit (Dafni, 1992). 

Visitors were captured for identification in ethyl acetate lethal chambers for identification 

(Márquez 2005). The Shannon diversity index (H´) were calculated for both sites and 

evaluated the diversity between sites with a Hutcheson t test. 

Anthesis was followed in QRO (February 2019) and SLP (March 2019) in which three 

plots having A. fistulosus were selected and in these, 15 flowers of three different 

individuals were followed. Corolla aperture was measured with a digital caliper (0.05 mm) 

in 15-minute intervals from 0700 to 1800 h when flowers closed completely. Stigmas were 

considered receptive when surfaces developed moisture while anther dehiscence was 

detected with the presence of pollen. Circular statistics were used to describe floral 

behavior where the mean angle (μ) represents mean time of aperture and the vector (r) the 

concentration of frequency around the mean through a Rayleigh test (Batschelet 1981; 

Morellato et al. 2010). 

Accumulated nectar production was obtained from 30 flowers using microcapillary tubes (1 

μl) on flowers bagged before anthesis (0900 h) and evaluated at 1800 h, The total nectar 

production and concentration of sugars was estimated with a field refractometer (Atago 

mod. N-1α). 

Mating and breeding system  

The mating system was determined through controlled pollination experiments in the QRO 

population during February 2020. The same experiment was established at SLP but was 
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soon vandalized. One flower of each of 50 individuals was assigned to one of the following 

seven treatments: (1) control, flowers were tagged and exposed to natural pollination; (2) 

supplementary pollen to evaluate pollinator limitation, additional pollen from other 

individuals was deposited on exposed flowers; (3) artificial self-pollination, flowers were 

bagged with bridal cloth before anthesis, manually pollinated with self-pollen and 

rebagged; (4) autonomous self-pollination, flowers were bagged with bridal cloth before 

anthesis without further manipulation; (5) artificial cross pollination, flowers were bagged 

with bridal cloth before anthesis, emasculated at the onset of anthesis, pollinated manually 

with pollen from other individuals and rebagged; (6) natural cross pollination (cross 

pollination control), flowers were bagged before anthesis not emasculated at the onset of 

anthesis, pollinated manually with pollen from other individuals; (7) geitonogamy, flowers 

of the same plant were bagged and manually pollinated with pollen from flowers of the 

same individual. An agamospermy treatment was attempted, but self-pollen contamination 

precluded further evaluation. Fruit set was recorded three weeks after the onset of the 

pollination treatments. Results of the pollination experiments were analyzed through GLM 

with a binomial error distribution in JMP® version 16.0.0 (JMP, 2021).  

Floral morphological traits were taken to determine the breeding system. An out-crossing 

index (OCI) and pollen/ovule ratios (P/O; Cruden 1977) were estimated using (a) corolla 

aperture (mm), (b) presence of dichogamy (temporal separation of sexual functions) and (c) 

hercogamy (spatial separation of sexual functions). Five flowers of 65 individuals were 

collected and stored in FAA. A digital caliper (0.05 mm) was used to measure the 

following: corolla aperture (mm) (CA), minimum anther-stigma distance (mm) (ASD) and 

flower length (mm) (FL). To estimate the number of pollen grains per flower (GP), sixty-

five anthers were collected before pollen release, stored in 5 ml Eppendorf tubes with 

alcohol. Tubes were homogenized with a vortex before an aliquot (10 l) was sampled, and 

pollen grains counted. Data was then extrapolated to volume and number of stamens per 

flower (six stamens) (Cruden 1977). The number of ovules per flower were obtained 

dissecting the ovarian chamber and counting the ovules present in each of the 65 flowers.  

RESULTS 

Phenology 

Reproductive phenophases at the two studied populations in the Chihuahuan desert (QRO 

and SLP) were studied throughout the 10-month study period (Fig 1), with peaks in QRO 

during late autumn and peaks at SLP concentrated during spring. [QRO, floral buds (Z = 

14, r = 0.25, p < 0.0001), flowers (Z = 164.96, r = 0.15, p < 0.0001), fruits (Z=133.47, r = 

0.47, p < 0.0001)]; [SLP, floral buds (Z = 50.16, r = 0.38, p < 0.0001), flowers (Z = 25.5, r 

= 0.35, p < 0.0001), fruits (Z = 131.21, r = 0.47, p < 0.0001)] (Figure 1). The pattern on the 

periods of floral buds (F = 162.131, p < 0,001), flowers (F = 299.098, p < 0,001) and fruits 

(F = 1443.044, p < 0,001) did not match between sites. Results of phenology on A. 

fistulosus suggest that the floral buds, flowers, and fruits are influenced with at least one 
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environmental variable in QRO site. Floral buds shown a positive correlation with 

precipitation (r = 0.97, p < 0.001), flowers were positively correlated with temperature (r = 

0.69, p < 0.001) and fruits were correlated with precipitation (r = 0.30, p < 0.001) and 

temperature (r = 0.38, p < 0.001).  

Floral visitors and flowering time 

During the 10 observation periods at each site, 13 species were identified visiting flowers in 

QRO belonging to the Hymenoptera (six spp), Coleoptera (one sp) and Lepidoptera (six 

spp) and eight species were registered in SLP of the Formicidae (one sp), Hymenoptera 

(three spp) and Lepidoptera (four spp; Table 1). The diversity calculated for floral visitors 

was H´ = 0.923 (QRO) and H´ = 0.330 (SLP), a Hutcheson t test showed (t768 =18.45, p < 

0.0001) that QRO site was significantly more diverse than SLP. The exotic bee A. mellifera 

was the only common species at both sites. The genus Lasioglossum was also found at both 

sites, but we were unable to identify the specimen to the level of species. 

The activities (collecting nectar or pollen) were divided into the Lepidoptera that 

exclusively collected nectar (using their proboscis) while the Hymenoptera collected both 

nectar and pollen (bees fill pollen-bags with pollen) (Table 1). At both sites, visitors were 

mostly active at midday but the exotic bee A. mellifera was active throughout the 10 h 

observation period (Figure 2A, 2B). Flowering was of approximately 11 h (0700 - 1800), 

concentrated at midday for both sites (QRO Z = 32.58, r = 0.38, p < 0.0001, SLP Z = 26.89, 

r = 0.33, p < 0.0001) with maximum corolla aperture (QRO mean = 16.77 mm, ± SE = 

0.847; SLP mean = 15.80 mm, ± SE = 0.736), stigma receptivity (identifies by a change in 

coloration) and pollen release coinciding with the peak of visitor activities (1000 - 1200 h) 

(Figure 3A, 3B). 
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The average production of nectar was 0.15 µl (± SE = 2.778) per day, this volume is small, 

and it was not possible to measure the concentration of sugars in the nectar with the 

refractometer. When the measurement of the nectar was carried out, the presence of 

springtails (Subclass Collembola) was observed, possibly taking the nectar present in the 

ovary. 

Mating and breeding system 

Asphodelus fistulosus produced fruits without pollinators, had the capacity for autonomous 

pollination and is self-compatible. Pollination experiments showed high fruit set with no 

differences between treatments (χ2 = 9.17; df = 6; p = 0.164) which indicates a mixed 

mating system. Floral morphometric data (Table 2) as well as the timing of floral 

phenophases suggest a facultative autogamous breeding system according to Cruden´s 

index. 

The P/O ratio was high (QRO = 384:1 and SLP = 378:1) and consistent with the out-

crossing index (OCI) estimation for facultative autogamous species. When comparing 

autonomous pollination treatments (autonomous self- pollination, artificial self- pollination 

and geitonogamy) vs cross pollination treatments (supplementary pollen, natural cross 

pollination and artificial cross pollination), we found a small but significant difference (χ2 

= 9.17; df = 6; p = 0.028) in fruit set which means that even though A. fistulosus is basically 

capable of both self and cross pollination, autonomous pollination does have a slight 

advantage over cross pollination (Table 3). 

DISCUSSION 

Reproductive traits in AIS are considered important components in their invasion potential 

(Baker 1974). Phenological events provide information on the success of AIS (Baker 1974) 

which can be expressed as: phenotypic plasticity whereby the potential to change 

phenophases in response to different habitats, anticipated or delayed flowering, and 

extended or continuous phenophases (Wolkovich & Cleland 2011, Wolkovich et al. 1013; 

Wolkovich & Cleland 2014). AIS have been shown to extend flowering periods that confer 

advantages over native plant species (Pyšek et al. 2008; Pyšek & Richardson 2008), with 

examples across the taxonomic spectrum such as in Bidens frondosa (Yan et al. 2017), 

Leonotis nepetifolia (Díaz-Segura et al. 2020), Coreopsis lanceolata (Zeng et al. 2021) and 

A. fistulosus (this study). When using A. fistulosus citizen science data for Mexico that 

compiled data for 578 observations (O.S. G-E. Pers. Obs.), reproductive phenophases could 

be seen year-round with two flowering peaks during March and September, consistent with 

what was found in this study. A second component in the success of AIS that is reflected in 

phenological events is plastic response. At our study sites in the Chihuahuan Desert, A. 

fistulosus reproduction peaked during two different seasons (autumn in QRO and spring in 

SLP) while data from USA suggests flowering peaks in summer (DiTomaso et al. 2013) 
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and during spring in South Africa (August-October; Boatwright 2012). In the 

Mediterranean native range of A. fistulosus, flowering occurs between December to June 

(Boatwright 2012), while congeners report of flowering in March-May for A. albus (Obeso 

1992) and June to September for A. aestivus in Spain and May to April in Portugal (Lifante 

1996). There is evidence then that phenologically, A. fistulosus and potentially the 

congeners obey two strategies: extended flowering periods as well as the potential to easily 

change phenophases depending on the local conditions.  

As a possible consequence to extended flowering periods, there is also an enhanced 

attraction of flower visitors (Ojija et al. 2019). The extended flowerings periods of A. 

fistulosus and the interaction with climatic variables suggest a response to different habitats 

that provides an advantage over native species (Pyšek et al. 2008, this study). The floral 

resources generated by a single individual of A. fistulosus can be significant, producing 30-

60 flowers per plant (O.S.G-E. Pers. Obs.). The abundance of floral resources has been 

shown to divert native pollinator species from visiting native flora (Powell et al. 2011; Yan 

et al. 2017) and even increases visitor frequency in congeneric sympatric species (Zeng et 

al. 2021). Generalist pollination systems are thought to favor invasive potential of AIS 

(Baker 1974) such that attraction is not confined to a specific group of visitors (Stout et al. 

2006). Within the genus Asphodelus, a diverse assemblage of species visits the flowers in 

its native range, A. mellifera being common but can also include Xylocopa, Bombus, 

Anthidium, Chelostoma and Megachile (Obeso 1992; Lifante 1996; Ruiz 2003). In Mexico 

(Ruiz 2003, this study), A. mellifera was the most common visitor, also described by Ruiz 

(2003), that would mean a first step in invasive species favoring the success of another AIS 

(invasion meltdown, Simberloff & Holle 1999) but there were also new associations with 

three insect orders (Hymenoptera, Lepidoptera and Coleoptera). The presence of A. 

mellifera impacts pollination systems in invaded ranges because of their negative effect on 

native plants and positive effects on invasives (Morales et al. 2017). Secondly, A. mellifera 

is not usually an efficient pollinator in native plants (Santos et al. 2012) and is resilient to 

disturbance (Winfree et al. 2009). In the native range of A. fistulosus, Agapanthia asphodeli 

(Coleoptera) acts as a floral visitor while Trichochrous sp. (Coleoptera) was found in QRO. 

If we consider the extended flowering period, generalist pollination systems, new 

associations with native visitors, and positive feedbacks with exotic floral visitors, the 

potential success of A. fistulosus as an AIS are certainly favored. These interactions not 

only benefit the exotic but may cause competition with native plant species for floral 

visitors (Stout & Tiedeken 2017). Of the native pollinator species found on A. fistulosus in 

this study, Lasioglossum sp. (native to America) and Trichochrous sp. have been reported 

as frequent visitors of the Cactaceae in the same area (Briseño-Sánchez et al. 2020). For the 

butterflies, even though the main activity on A. fistulosus was the collection of nectar, it is 

known that they can be an important pollinator for plant species (Zhang et al. 2011; Geerts 

& Adedoja 2021).  

Not only is the length of the flowering period relevant for AIS success but also floral 

longevity, because these determine on one hand the seasonality in the reproduction periods 

and on the other the availability of resources at any given time (Janzen 1971). This can be 
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understood as two opposing strategies, short lived (< 1d) floral resources that are spread 

over a long period of time or long-lived floral resources (> 1 d) over a shorter time period 

usually associated to generalist pollination syndromes (Yan et al. 2016). There are few 

studies that have addressed floral longevity in AIS (single flower), with evidence in species 

with anthesis that can last several days as 4 - 5 d in Bidens frondosa (Yan et al. 2016), 5 - 6 

d in Coreopsis lanceolata (Zeng et al. 2021), 4 d in Stapelia gigantea and 6 - 11 d in 

Kalanchoe daigremontina (Herrera & Nassar 2009) and others that are short lived usually 

one day such as Leonotis nepetifolia (Díaz-Segura et al. 2020) or less than 24 h (Alegro et 

al. 2010, this study). Flowers provide nectar as a reward to insect visitors, that is especially 

relevant in generalist pollination syndromes that benefits invasive species as visitors (Lach 

2008, Zhang et al. 2011, this study). Short lived floral resources that are spread over a long 

time period can favor recurrent visitors, which maximize the amount and activity of the 

floral visitors and promotes outcrossing due to the number of receptive flowers in a short 

time period (Janzen 1971). Even though outcrossing is unnecessary for A. fistulosus, it 

generates genetic recombination and can potentially increase seed set in some species 

(Díaz-Segura et al. 2020).  

The role played by mating and breeding systems spurred Baker’s law in which selfing 

species would be better colonizers (Baker 19767). The evidence supporting this hypothesis 

seems to be quite widespread among AIS (Baker 19767). Furthermore, mixed mating 

systems guarantee offspring in new habitats whereby autonomous self- pollination 

generates progeny and dispersal without the need of another individual (Cruden 1977), the 

reproductive success in A. fistulosus is a consequence of outcrossing and selfing system, a 

trait that leads to higher genetic variability and long-term survival (Cruden, 1977). 

However, extreme cases of selfing may hinder future growth (Van Kleunen, & Johnson 

2007) through inbreeding (Novak 2005; Sakai et al. 2001) but flower visitors can favor 

outcrossing, generating more vigorous recombinant seeds. Evidence of this is contradictory, 

some AIS species are highly successful through entirely clonal reproduction (Corredor-

Prado et al. 20015; Guerra-García et al. 2015) while others have even higher genetic 

variation than the native populations (Wang et al. 2016; Lucardi et al. 2020; Smith et al. 

2020). Furthermore, many AIS possess self-incompatibility (17 species in South Africa; 

Rambuda & Johnson 2004) among others Mikania micrantha (Hong et al. 2007) and 

Ambrosia artemisiifolia (Friedman & Barrett 2008). Self-compatibility would favor 

continuous seed production, population maintenance and some degree of dispersal (Herrera 

& Nassar 2009; Zhang et al. 2011; Zeng et al. 2021).  The continuous periods of floral 

buds, flowers and fruits in A. fistulosus and the presence a mixed system could potentially 

lead to further invasion in arid environments (Janzen 1971; Díaz-Segura et al 2020).  

In addition to the number of reproductive traits found in A. fistulosus that very likely favor 

invasive success, the establishment of A. fistulosus in areas that present a high disturbance 

also contributes to their success (Elton 1958; Hobbs & Huenneke 1992). Asphodelus 

fistulosus forms large patches of vegetation causing a reduction of native species, impacting 

the biodiversity of the ecosystem (Elton 1958; Levine & D'Antonio 1999). The ornamental 
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use of A. fistulosus (Jeschke & Strayer 2006) and the lack of natural enemies (Keane & 

Crawley 2002) also favor invasion (Blumenthal 2006) increasing the availability of 

resources for pollinators and the possibility of pollination by exotic species (Simberloff & 

Holle 1999). The set of invasive traits described in A. fistulosus shows the invasive 

potential, especially given the wide range of attributes considered in the ideal weed that are 

expressed in the invaded range. 

 

CONCLUSIONS 

All reproductive phenophases of the species in both populations were found throughout the 

year, providing continuous availability of resources for floral visitors. However, flower and 

fruit production peaks differ between populations, suggesting that reproductive phenology 

responds to local conditions. The large number of flowers favors the presence of native 

visitors, which range from nectarivorous species of the Lepidoptera, and species of native 

bees (e.g., Lasioglossum sp. and Ceratina sp.) and exotic bees (e.g., Apis mellifera) that 

collect pollen and nectar. Our evidence supports Baker's law that self-pollinated species 

would be better colonizers. Furthermore, the mixed mating system of A. fistulosus 

guarantees variable offspring and dispersal to new habitats; and through autonomous 

pollination it generates progeny without the need for another individual to mate. The 

invasive potential of onionweed within the Chihuahuan Desert is favored by its mating 

system and phenological plasticity facilitating its expansion to other areas, prompting an 

urgent need to establish plans for its control. 
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Table 1. Floral visitors and activity (N = nectar, P = pollen) and origin (NA = North 

America, A = America, E= exotic) on Asphodelus fistulosus flowers and mean time spent in 

the flowers (seconds). 

Order Family Genus Species Activity 

Mean time 

spent in 

activity (s) 

Site Provenance 

Coleoptera Melyridae Trichochrous - N, P 113 QRO NA 

Hymenoptera Apidae Ceratina - N, P 20 QRO - 

Hymenoptera Apidae Apis A. mellifera N, P 
11 

16 

QRO 

SLP 
E 

Hymenoptera Formicidae - - N, P 15 SLP - 

Hymenoptera Halictidae Lasioglossum - N, P 
11 

7 

QRO 

SLP 
- 

Lepidoptera Geometridae Metanema 
M. 

inatomaria 
N  6 SLP A 

Lepidoptera Hesperiidae Copaeodes C. minima N 7 QRO  

Lepidoptera Lycaenidae Echinargus E. isola N 27 SLP NA 

Lepidoptera Lycaenidae Hemiargus H. ceraunus N 13 QRO A 

Lepidoptera Lycaenidae Leptotes L. marina N 8 QRO NA 

Lepidoptera Nymphalidae Anthanassa A. texana N 4 QRO NA 

Lepidoptera Nymphalidae Agraulis A. vaniallae N 6 SLP A 

Lepidoptera Nymphalidae Texola T. elata N 3 QRO NA 

Lepidoptera Pieridae Catasticta C. nimbice N 10 QRO A 

 

Table 2. Floral morphological measurements (mean ± SE) of Asphodelus fistulosus (N = 65 

flowers) from different individuals for each site (QRO and SLP).  

Floral trait QRO SLP 

Perianth width (mm) 16.77 ± 0.22 15.80 ± 0.21 

Spatial separation of stamens-stigmas (mm) 0.30 ± 0.12 0.16 ± 0.28 

Stigma heigh (mm) 6.24 ± 0.12 5.56 ± 0.05 

Number of ovules 6 6 

Pollen grains per flower  2304 ± 61 2268 ± 72 

 

Table 3. Production of fruits (fruit set) after Asphodelus fistulosus pollination experiments 

in QRO. N = sample size (number of flowers); mean ± SE for each treatment. 

Pollination treatment N Fruit set 

Control 40 0.85 ± 0.36 

Supplementary pollen  42 0.71 ± 0.45 

Artificial self-pollination 44 0.84 ± 0.36 

Autonomous self- pollination 40 0.82 ± 0.38 

Artificial cross pollination  44 0.65 ± 0.47 

Natural (control) cross pollination  43 0.67 ± 0.47 

Geitonogamy 41 0.75 ± 0.44 
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Figure 1. Circular plots of the reproductive structures phenophases (floral buds, flowers 
and fruits). Upper plots correspond to the QRO site (A-C) and lower plots to GCZ (D-F). 
Bars represent the frequency of each phenophases, the arrow the magnitude of the mean 
vector (r). 

 

Figure 2. Time of day and floral visitors of Asphodelus fistulosus for (A) QRO and B) GCZ. 
The color represents the family blue= Lepidoptera, red = Hymenoptera, green = Coleoptera. 
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Figure 3. Circular plots of the corolla width. (A) of flowers followed at the QRO site and 
(B) for the GCZ site. Bars represent the frequency of each phenophases, the arrow the 
magnitude of the mean vector (r). 
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