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Abstract 13 

Environmental biosecurity risks associated with the Illegal Wildlife Trade (IWT) include 14 

the loss of biodiversity, threats to public health, and the proliferation of invasive alien 15 

species. To assist enforcement agencies in identifying trafficked species, rapid 16 

forensic techniques enable the detection of trace Environmental DNA (eDNA) where 17 

physical identification is not possible. Loop Mediated Isothermal Amplification (LAMP) 18 

is an emerging technique with recent applications in biosecurity and forensic sciences, 19 

and with potential to function as a field-based detection tool. Here we provide an 20 

overview of current research that applies LAMP to human and wildlife forensic science, 21 

including identification of ornamental wildlife parts, consumer products, and invasive 22 

species monitoring and biosecurity detection. We discuss the current scope of LAMP 23 

as applied to various wildlife crime scenarios and biosecurity checkpoint monitoring, 24 

highlight the specificity, sensitivity, and robustness for these applications, and review 25 

the potential utility of LAMP for rapid field-based detection within the IWT. Based on 26 

our assessment of the literature we recommend broader interest, research, and 27 

investment in LAMP as an appropriate field-based species detection method for a wide 28 

range of environmental biosecurity scenarios.  29 

Keywords: Biosecurity; Illegal Wildlife Trade; Invasive Species; Loop Mediated 30 

Isothermal Amplification; Wildlife Forensics  31 
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Introduction  32 

Approximately one-quarter of all terrestrial vertebrates (birds, mammals, amphibians, 33 

and squamate reptiles) are traded globally (Scheffers et al. 2019). Correctly identifying 34 

these animals and their bio-products in the Illegal Wildlife Trade (IWT) is challenging, 35 

due to corruption, falsified documents, and imprecise species or wildlife product 36 

knowledge (Zain 2020). Ultimately, this results in less than 30% of wildlife crimes 37 

leading to successful prosecution (Gouda et al. 2020). To address this issue, wildlife 38 

forensic science techniques have been developed to identify the species common in 39 

the IWT, including derivative products such as rhino horn and elephant ivory (Conte 40 

et al. 2019; Ewart et al. 2018a). Molecular species identification methods generally 41 

follow a standardised approach which includes: 1) DNA extraction; 2) extract 42 

quantification; 3) Polymerase Chain Reaction (PCR) amplification of mitochondrial 43 

DNA section; 4) confirmation of PCR product generation; 5) amplicon purification; 6) 44 

bi-directional DNA sequencing; and 7) comparison to a reference dataset (Linacre 45 

2021). The problem with this approach is its limited application to the field-based 46 

detection of IWT, due to significant resources, time, expertise, and facilities required 47 

to conduct such intensive molecular protocols. Lengthy analysis can result in delayed 48 

legal action with substantial resource-based costs, including long turnaround times 49 

(Masters et al. 2019). Within the literature there is an ever-increasing emphasis on the 50 

benefits of cross disciplinary collaboration, and research to aid in the development of 51 

field-ready technologies to address these limitations and increase detection of illegal 52 

activities (Masters et al. 2019; Smith et al. 2019).  53 

 54 

A primary concern relating to environmental biosecurity is the role of IWT in the spread 55 

of novel invasive species (García-Díaz et al. 2017; Gore et al. 2019), and diseases 56 

(Bezerra-Santos et al. 2021). The costs of managing invasive species globally since 57 

1960 are at least $95 billion (Cuthbert et al. 2022), with the damages and losses 58 

caused being at least a magnitude greater; amounting to at least $1131 billion 59 

(Cuthbert et al. 2022). Yet proactive prevention measures accounted for only $3 billion 60 

of the $95 billion management cost (Cuthbert et al. 2022). This indicates a strong 61 

priority in most countries for post-invasion spending on control and eradication, despite 62 

the obvious role of proactive management, including strong onsite biosecurity 63 
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detection measures, being capable of reducing future costs in the order of trillions of 64 

dollars (Cuthbert et al. 2022).   65 

 66 

The need for onsite detection methods in biosecurity has led to a requirement for low-67 

cost, low-resource, rapid forms of molecular detection. To bridge this gap, recent 68 

research has focussed on novel applications of isothermal amplification methods such 69 

as Loop Mediated Isothermal Amplification (LAMP) (Yu et al. 2019) and Recombinase 70 

Polymerase Amplification (RPA) (Hsu et al. 2021). LAMP effectively eliminates the 71 

operational constraints associated with PCR by processing the reaction at a constant 72 

temperature using an enzyme with strand displacement affinity (Tomita et al. 2008), 73 

commonly Bst polymerase (Hafner et al. 2001). This technique first emerged in the 74 

early 2000’s, with a primary focus on clinical medicine (Notomi et al. 2000). Soon after 75 

LAMP’s inception, the technique was advanced by the addition of loop primers, which 76 

significantly accelerated the reaction (Nagamine et al. 2002).  77 

 78 

In forensic science, LAMP has been explored as an inexpensive, rapid discriminatory 79 

testing tool to identify the presence of human DNA (Watthanapanpituck et al. 2014). 80 

This assay targeted the cytochrome b region for trace human DNA and was tested 81 

against 11 non-target animal species, including closely related species such as 82 

orangutans and chimpanzees (Watthanapanpituck et al. 2014). Resulting sensitivity 83 

was exceptional with a detection limit of as low as 718 fg of genomic DNA 84 

(Watthanapanpituck et al. 2014). Applications of LAMP extend to detection of human 85 

male DNA from sperm (Scott et al. 2019) and differentiation of unknown body fluids, 86 

including venous blood, semen, and saliva, based on colorimetric responses (Jackson 87 

et al. 2020; Layne et al. 2021); with promising results for forensic science casework 88 

protocols. Similarly, the application of isothermal amplification methods for onsite 89 

monitoring of invasive species crossing transnational borders has been explored 90 

(Kyei-Poku et al. 2020; Vythalingam et al. 2021); as it offers an operational tool well 91 

suited for highly sensitive and specific field-based detection (Figure 1). 92 
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 93 

Figure 1. Workflow indicating the integration of Loop Mediated Isothermal 94 
Amplification (LAMP) into an environmental biosecurity scenario. This generally 95 

requires appropriate sample collection and storage, in silico primer design and 96 
validation, isothermal incubation conditions with detection facilitated by changes in 97 

turbidity, colour or fluorescence.  LAMP reactions often lead to positive detection in 98 
under 1 hour without requiring specialist equipment.  99 

 100 

LAMP shows great potential for compliance checks, species level presumptive 101 

detection, and situations lacking physical evidence, which rely on remnant trace DNA 102 

on surfaces or from tissue samples (Raele et al. 2019). Here, we present an overview 103 

of the LAMP technique for combatting the IWT, highlighting the benefits for onsite 104 

detection and discuss research that has explored this tool for wildlife forensic science, 105 

biosecurity, and interrelated fields. We discuss emerging technologies and the future 106 
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direction of LAMP applied to field-based detection to address IWT. We recommend 107 

broader interest, research, and investment in LAMP as an appropriate field-based 108 

species detection method for environmental biosecurity scenarios.  109 

 110 

Loop Mediated Isothermal Amplification (LAMP) 111 

LAMP is a nucleotide amplification method that functions by auto-cycling strand 112 

displacement DNA synthesis, performed by a DNA polymerase with high strand 113 

displacement affinity (Nagamine et al. 2002; Notomi et al. 2000). This method 114 

combines rapid, simple, and highly specific target sequence amplification (Notomi et 115 

al. 2015). LAMP utilises two inner and two outer primers with the option of additional 116 

loop primers that together recognise six to eight distinct regions on the target DNA, 117 

facilitating high specificity (Nagamine et al. 2002; Tomita et al. 2008). The LAMP 118 

technique can amplify a few copies of DNA exponentially in less than one hour. The 119 

reaction process consists of two forms of elongation occurring via a loop region. This 120 

includes template self-elongation starting at the stem loop formed at the 3’-terminal 121 

end and subsequent binding and elongation of new primers to the loop region (Figure 122 

2) (Notomi et al. 2015). The primary advantages pertain to the speed of the reaction, 123 

which is conducted at a single reaction temperature (Francois et al. 2011). This 124 

reduces the need for sequential thermocycling stages and the associated expensive 125 

and specialised thermocycling equipment, most often restricted to a dedicated 126 

laboratory (Francois et al. 2011). LAMP has additionally shown tolerance to PCR 127 

inhibitors, pH and temperature variability (Francois et al. 2011).  128 
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 129 

Figure 2. Loop mediated amplification mechanism. Two inner primers consisting of 130 
the F3 and forward inner primer (FIP) and two backward primers, the B3 and backward 131 

inner primer (BIP) are used to target 6 regions. Additionally, loop primers are often 132 
used to accelerate the reaction, denoted here as LF (loop forward) and LB (loop 133 

backward) targeting two additional distinct regions. The Bst polymerase displaces 134 
each of the DNA strands and initiates synthesis, this leads to the formation of loop 135 

structures which facilitate subsequent rounds of amplification. 136 

 137 

LAMP is versatile, as detection methods can be divided into three primary categories 138 

including turbidity, fluorescence, or colorimetric. Initially detection was measured as a 139 

change in turbidity visible due to white by-product precipitation of magnesium 140 

pyrophosphate in the reaction mixture (Mori et al. 2001). This is possible as both an 141 

endpoint and real-time measurement, as the production of precipitate correlates with 142 
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the amount of DNA synthesised (Mori et al. 2004). In terms of fluorescence detection 143 

several studies indicated the use of intercalating fluorescent dyes, including SYBR 144 

green I (Kumari et al. 2019) and melting and annealing curve analysis post real-time 145 

monitoring (Cho et al. 2014). Additionally, results of the LAMP reaction are often 146 

visualised as a unique banding pattern by gel electrophoresis (Chen et al. 2013), which 147 

may also serve as a confirmatory indicator of LAMP reaction success (Jackson et al. 148 

2020). The use of colorimetric methods, particularly by use of additives such as 149 

hydroxy naphthol blue, phenol red, calcein, leuco crystal violet, and malachite green 150 

(Goto et al. 2009; Scott et al. 2020), are common and widespread in several 151 

applications and often depend on pH (Tanner et al. 2018). All three forms of detection 152 

can be monitored by eye at the endpoint of the reaction. However, innate subjectivity 153 

remains an issue, and as such, turbidimeters and fluorometers are often used to 154 

facilitate quantitative measures of the LAMP reaction (Zhang et al. 2014). Concerning 155 

colorimetric methods, LAMP detection is often accompanied by optimised imaging 156 

procedures (Rodriguez-Manzano et al. 2016) or software to eliminate innate colour 157 

subjectivity. In some cases, open source (e.g., ImageJ (Schneider et al. 2012)) plugins 158 

have been developed to distinguish between negative and positive reactions based 159 

on colour components such as hue (Layne et al. 2021; Scott et al. 2020; Woolf et al. 160 

2021). Additionally, the properties of colorimetric reactions can allow for conformation 161 

assessments by use of the UV-vis spectrum to observe the transition of colour altered 162 

peak intensities between positive and negative reactions (Nguyen et al. 2019a).  163 

 164 

Until recently, the primary role of LAMP was to detect single targets with reasonably 165 

high specificity. The use of turbidimetric, colorimetric and fluorometric detection is 166 

often considered a form of indirect evaluation functioning in a similar way to SYBR 167 

green qPCR assays (Liu et al. 2017b). The integration of molecular probes or beacons 168 

in LAMP research emerged as a means of reducing false positives due to non-specific 169 

amplification (Hardinge and Murray 2019; Liu et al. 2017b). One of the initial studies 170 

incorporated a quencher-fluorophore duplex region on LAMP primers aimed at 171 

expanding detection to multiple targets (Tanner et al. 2012). When primers anneal to 172 

the desired target the fluorophore is released and a gain of fluorescent signal can be 173 

observed. This has been showcased for real time detection of 1-4 targets utilising a 174 

fluorometer, with a detection limit of 100 copies of human genomic DNA (Tanner et al. 175 
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2012). The molecular probe-based approach has facilitated greater specificity and 176 

unlocked multiplexing capacity. These methods have also diversified to include 177 

assimilating probes (Kubota et al. 2011), TaqMan coupled LAMP (Yu et al. 2021), 178 

fluorogenic bidirectional displacement probe-based real-time LAMP (Ding et al. 2016), 179 

locked nucleic acid molecular beacons (Bakthavathsalam et al. 2018) and self-180 

quenching/de-quenching probes (Gadkar et al. 2018). Additionally, the role of primer 181 

dimer and self-amplifying hairpins on reverse transcription LAMP when detecting viral 182 

RNA has also been explored (Meagher et al. 2018). Minor displacements of primers 183 

to regions of self-complementarity away from the 3’ end of the primer dramatically 184 

reduced the occurrence of secondary structures and improved speed and in some 185 

cases sensitivity (Meagher et al. 2018). Furthermore, mathematical models to identify 186 

non-specific amplification, distinguishing between target and non-target amplification 187 

based on microchip electrophoresis have also been developed (Schneider et al. 2019). 188 

Stoichiometric and pseudo kinetic modelling has also been conducted to classify 189 

LAMP products into uniquely identifiable categories, aimed at aiding robust probe-190 

based detection strategies enhancing specificity (Kaur et al. 2020). 191 

 192 

LAMP research applied to environmental biosecurity 193 

The most common application of DNA based detection in environmental biosecurity 194 

investigations is species identification (Linacre 2021). As a result, the use of LAMP to 195 

combat IWT extends to adulterated meat products (Cho et al. 2014; Liu et al. 2019; 196 

Nikunj and Vivek 2019; Sul et al. 2019), detection of conservation significant species 197 

(But et al. 2020; Wimbles et al. 2021; Yu et al. 2019), biosecurity screening (Blaser et 198 

al. 2018b; Kyei-Poku et al. 2020), invasive species detection in novel ecosystems 199 

(Rizzo et al. 2021; Vythalingam et al. 2021; Williams et al. 2017), and disease 200 

monitoring (Sahoo et al. 2016). Additionally, LAMP has a strong presence in bacterial 201 

and viral point-of-care detection methods research (Kashir and Yaqinuddin 2020; 202 

Nguyen et al. 2019b).  203 

 204 

Falsified consumer items and product authenticity 205 

Detection of falsified fur products has been explored using a highly specific 206 

fluorescence based LAMP assay targeting the cytochrome oxidase subunit (CO1) 207 

gene for both fox and cat fur (Yu et al. 2019). This assay was developed in response 208 
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to commercial fraud and wildlife crimes and is tolerant to PCR inhibitors such as 209 

pigments, dyes, or other fur components (Yu et al. 2019). The authors highlighted the 210 

role of the assay as an on-site species identity test, without costly requirements or 211 

specialist equipment. Sensitivity is similar to PCR, detecting down to 10 and 1 pg of 212 

DNA for cats and foxes respectively (Yu et al. 2019).  213 

 214 

The detection of food products which have been mislabelled, tampered, or contain 215 

mixed species material is of particular interest. Assays targeting the 16s rRNA region 216 

have been developed to detect chicken from processed meat samples, in under 30 217 

minutes, with a detection limit of 10 fg (Sul et al. 2019). Similarly, targeting the 218 

cytochrome b region, ostrich meat can be detected in mixtures constituting only 0.01% 219 

in as little as 15-20 minutes (Abdulmawjood et al. 2014), and pork with a detection limit 220 

of 1 pg without cross reactivity (Yang et al. 2014). Additionally, a LAMP assay 221 

targetting the mitochondrial D-loop region has been developed for cattle, with a 222 

detection limit of 10 pg of DNA (Kumari et al. 2019). The underlying drivers behind this 223 

research interest are varied and includes religious certification, and concerns relating 224 

to allergens (Mao et al. 2020; Sheu et al. 2018), fraud (Kumari et al. 2019), disease 225 

(Pang et al. 2018; Zhao et al. 2010) and identifying species of conservation 226 

significance (But et al. 2020).  227 

 228 

LAMP assay development also extends to the seafood industry, including detection of 229 

jumbo flying squid, with a LAMP assay targeting CO1 with a detection limit of 10 pg of 230 

DNA per reaction (Ye et al. 2017). Several studies focussed on the detection of 231 

mislabelled or falsified seafood products have integrated molecular beacons into 232 

LAMP assays, facilitating increased specificity. Two such studies utilise self-233 

quenching fluorogenic probes targeting skipjack tuna (Xu et al. 2021) and Atlantic 234 

salmon (Li et al. 2022). An initial skipjack tuna LAMP assay utilised non-specific 235 

fluorescent dyes targeting the cytochrome b region relying primarily on the specificity 236 

of primer annealing for species-specific sequences (Xiong et al. 2021b). The 237 

integration of a self-quenching fluorogenic probe, attached to the FIP primer, facilitated 238 

skipjack tuna authentication, and decreased the likelihood of false-positive signals 239 

when assessing six commercial tuna products (Xu et al. 2021). This assay displayed 240 
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exceptional sensitivity detecting as little as 5 fg of skipjack tuna DNA (Xu et al. 2021). 241 

Similarly, an initial non-specific fluorescence based LAMP assay was developed for 242 

Atlantic salmon targeting a section of the cytochrome b (Xiong et al. 2021a), prior to 243 

integrating a self-quenching fluorogenic probe attached to the backward loop primer 244 

with a detection limit of 5 pg (Li et al. 2022). 245 

 246 

Highly specific, sensitive, and rapid detection of bushmeat samples is of considerable 247 

interest to conservation scientists and environmental biosecurity enforcement bodies, 248 

as these crimes are directly linked to biodiversity loss (Ripple et al. 2016) and 249 

emerging zoonotic disease (Hilderink and de Winter 2021). Therefore, research 250 

presented here could have similar implications for the detection of bushmeat related 251 

wildlife crimes. Providing point-of-entry detection could facilitate greater biosecurity 252 

preparedness and decrease transnational incursions through wildlife crime 253 

interception. Genetic reference frameworks for African forest bushmeat have already 254 

been established (Gaubert et al. 2015) and could form the basis for LAMP onsite 255 

detection of transnational trafficking. This is particularly true when identifying 256 

bushmeat for species covered by national or international protections as conducted 257 

for the Cameroonian bushmeat trade, where >50% of bushmeat species traded were 258 

nationally protected (Din Dipita et al. 2022). Nearly half of all samples collected from 259 

the Cameroonian bushmeat trade, subject to morphological identification, were 260 

corrected when subject to DNA based analysis, with additional high rates of incorrect 261 

identification at Parisian customs (Din Dipita et al. 2022). This further illustrates the 262 

need for highly specific, rapid forms of species identification based on LAMP, 263 

operationalised for a field environment.  264 

 265 

Biodiversity and wildlife crime  266 

The intersection of conservation goals and wildlife forensic science objectives is an 267 

under explored application of LAMP. This includes the bilateral benefits of optimal 268 

onsite detection capacity for live animal, wildlife part, medicinal or consumable trade 269 

concerning protected species. PCR based techniques, which are more routinely used 270 

for these types of compliance checks, are time consuming and require facilities and 271 

expertise which can hinder biosecurity practices. LAMP has been showcased for field-272 
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based detection of illegal trade in shark fin products, which can be directly applied to 273 

enforcing CITES obligations; as rapid LAMP detection has been developed for all 274 

twelve CITES-listed shark species (But et al. 2020). The assays include primers which 275 

target the CO1 and NADH2 sequences and can detect all twelve species individually 276 

within an hour at constant temperatures (But et al. 2020). The cost of each LAMP 277 

reaction was c. US$0.6 compared with US$0.25 for a comparable PCR workflow, with 278 

the advantages of LAMP primarily spanning field applicability and high specificity (But 279 

et al. 2020). This study presented a novel application of LAMP onsite checkpoint 280 

monitoring for species with high wildlife crime concern. Similar methods could be 281 

explored for the rapid identification of other endangered species including those 282 

common in the illegal pet trades. This is also true for current wildlife forensic methods 283 

which employ PCR, as they could benefit from LAMP based presumptive testing prior 284 

to laboratory validation reducing the number of samples requiring exhaustive 285 

laboratory-based testing.  286 

 287 

The mutual benefits of field-based LAMP monitoring for conservation, biosecurity and 288 

the prevention of wildlife crime has already been realised for combatting cases of 289 

wildlife poaching, specifically for the white rhinoceros (Wimbles et al. 2021). 290 

Rhinoceros horn is a commodity common in illegal transnational marketplaces 291 

(Hübschle 2016), consequently nefarious trade has received wildlife forensic attention 292 

(Ewart et al. 2018a; Ewart et al. 2018b). The internationally standardised rhinoceros 293 

horn identification test is PCR based and as such has limited applicability to onsite 294 

detection outside of a laboratory setting. Wimbles et al. (2021) presented a white 295 

rhinoceros specific LAMP assay, targeting the cytochrome b region, integrated into a 296 

microfluidic device capable of field-based detection in 30 minutes from dung samples, 297 

including field testing carried out at the Knowsley Safari, the approach could similarly 298 

play a role in the detection of wildlife crimes. The microfluidic device presented by 299 

Wimbles et al. 2021 included DNA extraction followed by three wash chambers prior 300 

to LAMP, with positive and negative control chambers adjacent to the field sample 301 

chamber for confirmation of positive detection. This study highlighted the possibility of 302 

LAMP microfluidic devices to operate in a myriad of wildlife crime situations, offering 303 

rapid, cost-effective, portable presumptive genetic testing.  304 
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Other forms of wildlife crime, including additional cases of poaching (Ghosh et al. 305 

2019; Kumar et al. 2012) and trafficking of wildlife parts (Gupta 2018), could also 306 

benefit from on-site presumptive detection. This is particularly true for situations in 307 

which the sample itself bears insufficient physical characteristics or on-site detection 308 

to species level is time sensitive. Onsite identification has been showcased for a 309 

species susceptible to illegal hunting, the Formosan Reeves’ Muntjac (Hsu et al. 310 

2021). An RPA assay has been developed for the isothermal detection of bush meat 311 

in combination with a lateral flow strip. The described assay targeted the cytochrome 312 

b gene region and detected the target species from extraction to result in around 30 313 

minutes. As such, the application of isothermal amplification methods to the detection 314 

of a range of wildlife crimes seems well suited.  315 

 316 

Invasive species monitoring  317 

Monitoring and related control programs have recently focussed on the role of eDNA 318 

in invasive species detection (Hunter et al. 2015; Morisette et al. 2021), with several 319 

studies focusing on LAMP as a potential eDNA monitoring tool (Vythalingam et al. 320 

2021; Williams et al. 2017). The emphasis on monitoring primarily concerns 321 

invertebrate pests, as demonstrated by the development of LAMP assays as a means 322 

of point of entry detection or field-based detection.  323 

 324 

Border surveillance of emerging insect incursions  325 

A range of LAMP assays have been developed for multiple insect species commonly 326 

of environmental biosecurity concern (Table 1). This primarily concerns stowaways, 327 

with some assays developed as early warning tools for incursion events (Kyei-Poku et 328 

al. 2020). In addition to early detection some have tested detection in mixed samples 329 

including for red fire ants (Nakajima et al. 2019). Red fire ants are classed as a super 330 

pest with introductions as stowaways linked to early global trade routes (Gotzek et al. 331 

2015), continued interest in their further spread throughout Australia and Asia 332 

demands robust biosecurity testing (Wylie et al. 2020). A large focus area is the 333 

detection of fruit fly species (Blaser et al. 2018a; Blaser et al. 2018b; Huang et al. 334 

2009; Sabahi et al. 2018). One study focussed on the detection of several regulated 335 

quarantine insects at Swiss borders which included fruit fly 336 
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genera Bactrocera and Zeugodacus (Blaser et al. 2018a). Several primer sets 337 

targeting CO1 were used to detect fruit fly and Bemisia tabaci, Thrips palmi, which are 338 

two additional species of biosecurity concern (Blaser et al. 2018a). Laboratory 339 

evaluations of the developed assays for 282 specimens suspected to be invasive, 340 

indicate a 99% test efficiency in under 1 hour (Blaser et al. 2018a). Several studies 341 

have focused on the detection of fall armyworm (Agarwal et al. 2022; Congdon et al. 342 

2021; Kim et al. 2021). The most recent is based on the CO1 gene, with high specificity 343 

and sensitivity down to 2.4 pg of DNA (Agarwal et al. 2022). Furthermore, the study 344 

contrast previous work (Kim et al. 2021) conducted for a tRNA based LAMP assay 345 

indicating the time based advantage of added loop primers for the described CO1 346 

assay (approx. 10 mins to result) (Agarwal et al. 2022). These examples illustrate the 347 

role LAMP methods can play in an environmental biosecurity setting and provide 348 

exemplars for the detection of key emerging incursion species yet to establish in novel 349 

ecosystems.  350 

Table 1. Summarised LAMP assays as applied to environmental biosecurity of high-351 

risk insects. Includes the species name the gene which the LAMP primers target, the 352 

detection limit tested in the described study, time to detection and source. Fields 353 

containing ‘not applicable’ (N/A) are those for which detection limit wasn’t tested 354 

directly or a different measure of sensitivity was used.  355 

Species  Target Limit of 

detection 

Time to 

detection 

Source 

Emerald ash 

borer 

CO1 0.1 ng 30 min (Kyei-Poku 

et al. 2020) 

Red fire ant CO1 N/A 90 min (Nakajima et 

al. 2019) 

Species belong 

to genera 

Bactrocera and 

Zeugodacus 

and Bemisia 

tabaci and 

Thrips palmi 

CO1 N/A 60 min (Blaser et al. 

2018a) 
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Aedes mosquito 

species 

ITS1 and 

ITS2 

N/A 60 min (Schenkel et 

al. 2019) 

Walnut twig 

beetle 

28S rRNA 1.28 pg and 

6.4 pg for 

adults and 

frass, 

respectively 

<30 min (Rizzo et al. 

2021) 

Fall army worm CO1 2.4 pg <20 min (Agarwal et 

al. 2022) 

Fall army worm CO1 24 pg <30 min (Congdon et 

al. 2021) 

Fall army worm Transfer RNA 

coding region 

between ND3, 

and ND5 

10 pg 90 min (Kim et al. 

2021) 

Khapra Beetle 18s rRNA 1.02 fg <25 min (Rako et al. 

2021) 

 356 

Additionally, a LAMP assay has been developed for Khapra beetle targeting the 16s 357 

rRNA region with an additional LAMP assay targeting the 18s rRNA region used to 358 

detect the presence of interspecific beetle DNA (Rako et al. 2021). The Khapra LAMP 359 

assay had a limit of detection comparable to the Khapra real-time PCR test with a 360 

detection limit of 1.02 fg (Rako et al. 2021). This assay was assessed for extracts from 361 

Khapra beetle tissue samples using both laboratory-based, destructive, and crude 362 

extraction methods. A subsequent comparative study assessed the utility of this 363 

Khapra LAMP assay against two Khapra beetle specific TaqMan PCR assays for 364 

onsite biosecurity for samples collected from airborne and floor dust (Trujillo-González 365 

et al. 2022). Notably, extracted Khapra beetle eDNA from dust samples was amplified 366 

by qPCR but not using the LAMP assay (Trujillo-González et al. 2022). A potential 367 

reason for the discrepancy between amplification methods could be the use of six 368 

primers which may not all anneal to desired template DNA in situations with degraded 369 

DNA (Trujillo-González et al. 2022). These results highlighted an important 370 

consideration for LAMP application to environmental biosecurity, primarily sample 371 

Author-formatted, not peer-reviewed document posted on 29/06/2022. DOI:  https://doi.org/10.3897/arphapreprints.e89465



16 
 

types and end user application prior and throughout the assay development. LAMP 372 

assays may thus function best in environmental biosecurity scenarios from which high-373 

quality DNA can be acquired, offering rapid presumptive species level testing.  374 

 375 

Invasive aquatic species detection  376 

A primary issue concerning biosecurity and IWT is the role transnational trade in exotic 377 

pets can play as a source of invasive species, documented by the pet release pathway 378 

(Sinclair et al. 2020). Pet releases are often a driver of invasive species introductions 379 

(Lockwood et al. 2019). Additionally, the import and export of pets is often highly 380 

regulated or strictly banned under national jurisdictional law (Ege et al. 2020). This has 381 

led to the development of detection methods for common aquatic pet species which 382 

double as invasive species in Malaysian waterways (Vythalingam et al. 2021). The 383 

focus species included guppies, goldfish, siamese fighting fish, Amazon sailfin catfish, 384 

koi and African sharptooth catfish which were collected from pet shops  and local 385 

aquariums for the purpose of LAMP development. The resulting highly sensitive 386 

assays utilised 5 separate species-specific primer sets with a detection limit of 387 

between 0.02 pg and 2 x 10-12 pg for all 5 species (Vythalingam et al. 2021). The aim 388 

of the developed assay is to aid authorities in handling monitoring programs by 389 

providing rapid identification of non-native fish in ecosystems. Coupling this technique 390 

with optimal environmental DNA sampling has great potential for onsite monitoring. As 391 

such, programs tackling ecosystem monitoring for invasive species could benefit from 392 

assays targeting wider range of invasive species. It is generally agreed that prevention 393 

is preferable to control of an established pest (Leung et al. 2002), as such investment 394 

in appropriate on-site LAMP detection could be paramount in preventing novel 395 

introductions.  396 

 397 

Confirming the presence of aquatic pest species has been explored through the 398 

development of LAMP based assays for monitoring quagga and zebra mussels in river 399 

basins (Carvalho et al. 2021; Williams et al. 2017). The first study addressing LAMP 400 

development aimed at streamlining the eDNA detection of quagga and zebra mussels 401 

in Michigan lakes (Williams et al. 2017). This included the development of three LAMP 402 

assays, one targetting the 18s rRNA gene, amplifiying both target species DNA with a 403 
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detection limit of 0.1 fg. A further two CO1 assays targetting quagga and zebra 404 

mussels seperately, with a sensitivity of 0.001 pg and 0.01 pg respectively (Williams 405 

et al. 2017). A subsequent novel zebra mussel assay targetted the CO1 gene with a 406 

detection limit of 1.12 pg, which was also developed and field tested for a range of 407 

sample types collected from Portuguese, Spanish and French sources (Carvalho et 408 

al. 2021). An additional application has been the delimitation of eels in the genus 409 

Anguilla, with a focus on Anguilla anguilla, a critically endangered species (Spielmann 410 

et al. 2019). This assay was developed as a detection method for introduced foreign 411 

eel species in Europeam rivers, protecting consumers against mislabelled eel 412 

consumables and could serve a role in ecological studies (Spielmann et al. 2019). One 413 

LAMP assay was developed to detect all Anguilla species targetting the C-type lectin 414 

gene, while another targetted the mitochodrial D-loop region of A. anguilla with high 415 

specificty, both assays had a limit of detection of 500 pg (Spielmann et al. 2019).  416 

 417 

Border surveillance using invasive species-specific LAMP assays with the capacity for 418 

field-based community or ecosystem wide surveillance show potential. The use of 419 

LAMP as an emerging surveillance technique for biosecurity officers and wildlife 420 

managers could thus be instrumental for conducting routine monitoring programs.  421 

 422 

Health and disease: detection and prevention 423 

An often-overlooked component of transnational wildlife crime is the potential 424 

introduction of foreign or novel wildlife diseases or zoonoses (Smith et al. 2012). An 425 

influx in zoonotic disease research brought on by the COVID-19 pandemic has 426 

highlighted the role of wildlife trade and conservation initiatives in the emergence of 427 

zoonotic diseases (Hilderink and de Winter 2021). Consequently, LAMP based 428 

detection could be highly suitable to the detection of wildlife related introductions of 429 

novel diseases. There are in fact a myriad of studies which explore LAMP based 430 

detection of COVID-19 to address on-site testing capacity of this global health concern 431 

(Augustine et al. 2020; Dewhurst et al. 2022; Kashir and Yaqinuddin 2020). Extending 432 

this research to a broader range of emerging pathogens and hosts common in the IWT 433 

could prevent future outbreaks and curb pandemics.  434 
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He et al. (2022) has presented multiple threatening pathogens, which are hosted by 435 

wild animals prized as delicacies in the Chinese IWT. When 1941 animals from five 436 

mammalian orders were surveyed, 102 mammalian infecting viruses were discovered 437 

with 21 of those posing potential risk to humans (He et al. 2022). Among the species 438 

that had their virome characterised was the Raccoon dog, this species was identified 439 

as carrying a range of novel pathogens (He et al. 2022), including previous detections 440 

of close relatives of SARS-CoV and SARS-CoV-2 (Guan et al. 2003) and Rotavirus A 441 

(Abe et al. 2010). Raccoon dog meat is often used as a subsidiary component in meat 442 

mixtures, with reports of health deterioration in some consumers (Liu et al. 2017a). 443 

Consequently, a LAMP assay targeting cytochrome b has been developed to detect 444 

Raccoon dog in processed meat, indicating no cross reactivity with seven non-target 445 

species and target DNA detection limits of 0.2 pg (Liu et al. 2017a). These results 446 

indicate a demand for the detection of species common in the IWT and present an 447 

opportunity for multiplex LAMP assays targeting both pathogens and hosts in tandem.  448 

 449 

Detection of other zoonotic diseases has also gained some traction with the 450 

development of a LAMP assay for Leptospira (Chen et al. 2016). Leptospirosis is one 451 

of the most widespread zoonosis and is caused by a pathogen which colonises the 452 

renal tubules of hosts such as dogs, rats, and cattle (Chen et al. 2016). The Leptospira 453 

LAMP assay, targeting the lipL32 and lipL41 genes, offers exceptional sensitivity with 454 

a detection limit of 12 DNA copies. Additionally, LAMP reagents were lyophilised and 455 

stored, remaining stable for as long as 3 months at 4oC (Chen et al. 2016). Storage 456 

and shelf life are additional considerations which are often omitted from publications 457 

concerning field-ready LAMP. These are, however, conditions which will have major 458 

impacts on field suitability and should thus be assessed.  459 

 460 

Salmonella is considered a major food borne pathogen globally, which is responsible 461 

for food contamination leading to food poisoning (Zhao et al. 2010). As such, a myriad 462 

of LAMP assays and related methodologies have been devised for rapid point-of-care 463 

detection (Zhao et al. 2010). Initial studies developed assays targeting the genus 464 

specific InvA target which could detect 214 strains in 45 minutes with a detection limit 465 

of 1 pg of DNA (Zhao et al. 2010). Assessment of LAMP robustness has also been 466 

conducted for Salmonella enterica serovar Typhi, indicating consistency across two 467 
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pH units (7.3-9.3) and temperatures of 57-67oC with maintained specificity (Francois 468 

et al. 2011). This has since progressed with the integration of molecular probes 469 

(Mashooq et al. 2016), development of a related handheld device for the detection of 470 

Salmonella enterica (Jenkins et al. 2011) and integration of disk-based compact micro-471 

reactors for detection of Salmonella spp. (Santiago-Felipe et al. 2016).  472 

 473 

Detection of Haemonchus contortus, a biosecurity risk parasite for ruminants, has also 474 

successfully been showcased (Melville et al. 2014), with an additional study 475 

contrasting LAMP to several other detection methods including (a) McMaster egg 476 

counting; (b) counts post staining with peanut agglutinin (PNA); and (c) quantitative 477 

polymerase chain reaction (qPCR) (Ljungström et al. 2018). The LAMP assay used in 478 

both studies targets the first internal transcribed spacer (ITS-1) with detection in under 479 

1 hour. The initial study which outlined the assays development, highlighted the 480 

superior 10-fold sensitivity of LAMP when contrast with conventional PCR, detecting 481 

10 fg and 100 fg of DNA, respectively (Melville et al. 2014). The comparative study 482 

indicated that an adapted LAMP assay was second to qPCR but with similar sensitivity 483 

results (Ljungström et al. 2018). The authors state that LAMP is a particularly viable 484 

method as it can be applied in resource constrained small diagnostic laboratories, 485 

generating sensitive and reliable results in under 1 hour (Ljungström et al. 2018).  486 

 487 

The role of LAMP in detecting diseases in tandem to species identification for samples 488 

of biosecurity concern could function as an appropriate risk assessment tool at 489 

transnational points of entry. Circumventing resource and time intensive identification 490 

methods by utilising LAMP as a point of care diagnostic system could additionally 491 

reduce the biosecurity risk posed by unknown biosecurity samples, particularly by 492 

reducing the time to outcome and required resources.  493 

 494 

Conclusion: LAMP Integration for biosecurity monitoring and surveillance  495 

Market research has highlighted the demand for integrated field testing for tackling 496 

wildlife crime with the primary concerns of end users spanning contamination risks and 497 

reductions in quality assurance (Masters et al. 2019). Recent advances in molecular 498 

detection methods have led to the development of simple and cheap devices for the 499 
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ultrasensitive detection of nucleic acids for clinical diagnosis, food adulteration 500 

detection and environmental monitoring (Zhang et al. 2019). This has largely been due 501 

to a growing demand for monitoring and detection of nucleic acid biomarkers and the 502 

ever-increasing demand for more stringent sensitivity, specificity, and robustness of 503 

biomonitoring technologies (Zhang et al. 2019). LAMP methods have emerged as a 504 

promising alternative to PCR based systems due to simplicity and point-of-care 505 

capabilities (Nguyen et al. 2019b; Wan et al. 2019; Zhou et al. 2014). The ability of 506 

LAMP based devices to operate in resource constrained environments where 507 

traditional PCR-based technologies may not, has shown to be highly advantageous in 508 

a low resource field-based environment (Raele et al. 2019; Wimbles et al. 2021). The 509 

primary case for the development of microfluidic devices encompassing the LAMP 510 

reaction components is the reduced risk of sample contamination and minimal 511 

required reaction volume (Zhang et al. 2019). Several platforms exploiting isothermal 512 

nucleic acid amplification methods have recently become commercially available, 513 

widespread, and diverse, including OptiGene (http://www.optigene.co.uk/) Genie 514 

systems and the Biomeme (https://shop.biomeme.com/) Franklin.  515 

 516 

Despite the substantial body of literature, LAMP and related microfluidic devices are 517 

yet to receive widespread uptake in research or applied wildlife crime monitoring 518 

detections and enforcement. Limited attention has been directed toward illegal wildlife 519 

trafficking of live animals. In the face of globalisation, applying these techniques to 520 

DNA-based monitoring of highly elusive IWT is well suited. The overwhelming risks 521 

presented by IWT (Cardoso et al. 2021) demands specialist point-of-care capacity. 522 

LAMP as a point of care technology presents great potential for the onsite detection 523 

of trace DNA relating to suspected trafficking of live animals, wildlife parts, medicines, 524 

and ornamental derivatives. The capacity for LAMP to bridge gaps relating to 525 

biosecurity and biodiversity on-site detection, makes it an excellent tool for a range of 526 

field-based applications. Furthermore, the low financial, time and resource-based 527 

costs render isothermal amplification methods well suited for point of entry detection. 528 

Specificity, sensitivity, and robustness comparable to current best practise methods 529 

(Francois et al. 2011) allows the integration of these methods into the wildlife forensic 530 

science arsenal without compromise (Masters et al. 2019). The ever-increasing 531 

interest in LAMP as a point of entry detection method suggests that it may soon 532 
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function in parallel to PCR, providing widespread molecular diagnostic capacity for 533 

biosecurity scenarios.    534 
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