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Abstract 20 

Anthropogenic introgressive hybridization is increasingly common in many ecosystems, 21 

with inland waters being particularly sensitive to bioinvasions of interfertile non-native taxa. 22 

Salmonid native populations are detrimentally affected by such human-induced secondary 23 

contacts in several countries promoting sport and commercial salmonid fisheries. In 24 

northern Italy, the Critically Endangered marble trout Salmo marmoratus Cuvier, 1829, is a 25 

species with exceptional cultural, economic, and conservation value. Supporting breeding 26 
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programs based on phenotypic selection of wild-caught and captive broodstock is a 27 

widespread management practice to supplement local marble populations with both 28 

declared conservation and exploitation goals. Using mtDNA and nDNA markers (D-loop; 29 

15 microsatellites) we compare a hatchery-bred sample of marble trout used as 30 

broodstock for support breeding with a smaller sample of wild-caught phenotypically 31 

selected individuals collected in the Toce River, a large glacial river within the Lake 32 

Maggiore basin (northern Italy and southern Switzerland). We measured genetic integrity 33 

and introgression levels with non-native Atlantic S. trutta, a non-native species massively 34 

introduced in the last two centuries. Consistent levels of introgression were found in these 35 

two samples, but asymmetrical introgression with higher mtDNA introgression levels was 36 

observed in hatchery-bred individuals. The detected genetic structure of wild-caught and 37 

domesticated stocks suggest that in synergy with potential domestication effects, 38 

inbreeding and genetic drift, caused by small number of founders and closed reproductive 39 

cycle, this practice can have negative effects on the genetic diversity and integrity of the 40 

wild population. On the other hand, our preliminary analysis of the Toce River sample 41 

suggests that this population may contain genetically pure individuals, thus acting as a key 42 

repository of genetic diversity for the long-term conservation of this species. The lack of 43 

correspondence between a set of coded coloration traits and genetic traits in both samples 44 

highlights the limits of using phenotypic selection during artificial breeding, as also 45 

supported by previous studies on this species. Our results strongly suggest to revise 46 

current supportive breeding programmes of the marble trout in this system. We finally 47 

propose possible future directions for the restoration and sustainable management of the 48 

genetic diversity of the Toce River marble trout population. 49 

 50 

Keywords: asymmetrical introgression, conservation genetics, fish conservation, hatchery 51 

management, genetic diversity, microsatellites, mtDNA, native fishes. 52 
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1. Introduction 54 

Fuelled by the ongoing human-induced habitat modifications, translocations, and climate 55 

change, anthropogenic introgressive events are increasingly common in many aquatic and 56 

terrestrial ecosystems (Ottenburghs 2021). Homoploid introgressive hybridisation is now 57 

being acknowledged as a natural evolutionary process promoting change and adaptation 58 

in a variety of lineages (Mallet 2007; Meier et al. 2017a, Meier et al. 2017b; Schumer et al. 59 

2018; Marques et al. 2019). However, its evolutionary role (e.g., Schumer et al. 2018; 60 

Ottenburghs 2021) and underlying mechanisms are still poorly understood (e.g., Gainsford 61 

et al. 2020). Adaptive anthropogenic introgression resulting from introductions of non-62 

native species have been documented by genomic studies in a fish (Fundulus; Oziolor et 63 

al. 2019) and a moth (Helicoverpa; Valencia-Montoya et al. 2020), and was also 64 

implemented in some carefully planned genetic rescue programmes (Frankham 2015). 65 

With these rare exceptions, anthropogenic introgression is typically unintentional and often 66 

results in the erosion of native genetic diversity, loss of local genetic adaptations, 67 

demographic or genetic swamping, and genetic extinction (Rhymer and Simberloff 1996; 68 

Allendorf et al.2001; Todesco et al. 2016). A special case is exemplified by intentional or 69 

unintentional introductions of domesticated, inbred, and genetically eroded taxa 70 

(Willoughby et al. 2015). Such introductions, whether of native individuals (e.g., in poorly 71 

designed reintroduction programmes) or non-native individuals (e.g., in introductions of 72 

game birds or fish), can lead to hybridisation and outbreeding depression in wild native 73 

populations, lowering their average fitness (Ottenburghs 2021). Therefore, in a 74 

conservation perspective, the default strategy remains to implement actions to prevent 75 

anthropogenic introgressive hybridisation (ISSG 2000; Todesco et al. 2016; Ottenburghs 76 

2021). 77 

 78 
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Among aquatic vertebrates, native fish populations are especially sensitive to bioinvasions 79 

of non-native fishes, since different taxa are frequently interfertile (Smith 1992; Scribner et 80 

al. 2001). In inland waters, the presence of impassable barriers (sea or land) makes 81 

freshwater fish populations both naturally fragmented, and geographically and 82 

evolutionarily isolated (Oberdorff et al. 1997). Such dispersal barriers make these systems 83 

non-equilibrated biogeographic islands that are likely unsaturated with species (Leprieur et 84 

al. 2009). Interactions with other widespread anthropogenic stressors, such as habitat 85 

alteration and homogenisation, make these systems particularly susceptible to 86 

opportunistic invaders (Ricciardi and MacIsaac 2011). Resultantly, native fish populations 87 

of intensely managed fisheries can have a low size relative to the number of stocked 88 

interfertile non-native individuals, increasing the risk of genetic erosion induced by 89 

interbreeding and hybridisation, leading to demographic or genetic swamping, and even 90 

driving local populations to genetic extinction (Hansen 2002; Splendiani et al. 2016; 91 

Pavlova et al. 2017). Native salmonid populations, fuelling some of the economically most 92 

important inland fisheries worldwide (Brown et al. 2019), are heavily affected by 93 

interspecific hybridisation with introduced non-native species in several industrialised 94 

countries (e.g., Young et al. 2016; Mandeville et al. 2020; Fukui et al. 2021). 95 

 96 

The Italian subendemic marble trout Salmo marmoratus Cuvier, 1829 is a species with 97 

exceptional cultural, economic, and conservation value (Meraner and Gandolfi 2018a). It is 98 

a large salmonid with distinct marbled colouration, and morphological traits (Delling 2002), 99 

taxonomically consistent with molecular phylogenetic and phylogeographic reconstructions 100 

(reviewed in Polgar et al. 2022a). It is found in lotic and lentic systems of the Adriatic 101 

drainage (Meraner and Gandolfi 2018a) and occasionally in seawater (Soldo 2013). In the 102 

Northern Adriatic region (Fig. 1; Sommani 1960; Lobón-Cerviá et al. 2019; Splendiani et al. 103 
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2020; Merati et al. 2021), it inhabits the orographic left tributaries of the Po River, 104 

characterised by a peculiar geology (Sommani 1960). 105 

 106 

Italian populations of S. marmoratus have been increasingly threatened by almost two 107 

centuries of massive introductions of domestic strains of non-native Atlantic brown trout 108 

Salmo trutta Linnaeus, 1758, to support recreational fishing (Sommani 1948; Borroni and 109 

Grimaldi 1978; Crivelli 1995; Splendiani et al. 2016; Splendiani et al. 2019). This resulted 110 

in well-documented, extensive introgressive hybridisation between the two species 111 

(Meraner and Gandolfi 2018a; Giuffra et al. 1996; Lucarda et al. 2000; Meldgaard et al. 112 

2007; Meraner et al. 2010; Gibertoni et al. 2014). 113 

Although the marble trout is included in the European Union Habitats Directive Annex II 114 

(Council Directive 1992), the Least Concern current classification of S. marmoratus 115 

assigned by the International Union for the Conservation of Nature (IUCN) is not 116 

representative of the species. In fact, this is essentially based on few, isolated, and small 117 

populations living in Slovenian headwaters (Crivelli 2006), thus being in need of updating. 118 

The marble-trout populations of Northern Italy inhabit a much wider variety of 119 

environments, including lowlands, and have been much more heavily affected by 120 

anthropogenic pressures (Zerunian 2003; Turin et al. 2006; Lucarda 2007). These 121 

populations are currently Critically Endangered, due to genetic introgressive hybridisation, 122 

habitat destruction, and habitat degradation, that may determine a future 80% decline 123 

throughout the whole area (Bianco et al. 2013). Anthropic habitat alterations caused by 124 

synergistic changes of land-use, land-cover, and climate (Becciu and Dresti 2015; Saidi et 125 

al. 2018) resulted in loss of ecological connectivity, population bottlenecks (Meraner and 126 

Gandolfi 2018a), and decreased adaptability to climate warming (Simčič et al. 2015). 127 

Natural stochastic events such as floods (Pujolar et al. 2011a) and viral diseases (Pascoli 128 

et al. 2015) further impact these vulnerable populations. In the last 5‒10 years, the genetic 129 
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integrity of the marble trout populations of Northern Italy is further threatened by 130 

introductions of domesticated, non-native, and potentially interfertile peninsular trout 131 

(Gratton et al. 2014; Polgar et al. 2022a, Polgar et al. 2022b). 132 

The Toce River basin is located in the subalpine catchment of Lake Maggiore, within the 133 

Verbano-Cusio-Ossola (VCO) Province (Fig. 1). Local salmonids include S. marmoratus 134 

and three non-native taxa: S. ghigii Pomini, 1941 (Polgar et al. 2022a; pers. obs.), S. 135 

trutta, and the rainbow trout Oncorhynchus mykiss Walbaum, 1792 (Segherloo et al. 2021; 136 

Kottelat and Freyhof 2007). The life history traits of the Toce River marble-trout population 137 

are currently not known. In the only previous study of this population (Gibertoni et al. 138 

2014), the authors assumed that some phenotypic traits indicate the presence of migratory 139 

behaviours between the river and lake systems. However, the provided evidence makes it 140 

unclear whether these individuals might be native lacustrine-adfluvial or fluvial-adfluvial 141 

marble trout populations, straying marble trout stocked in lakes, or hybrids with S. trutta 142 

with atypical morphology or behaviours. 143 

 144 

Recreational fishing is deeply rooted in the local culture of the VCO Province; from 2014 to 145 

2018, a yearly average of ~3,585 resident and non-resident anglers bought a fishing 146 

license to fish in VCO waters (F.I.P.S.A.S. VCO, pers. comm.). Trouts stocked yearly into 147 

the Toce River have been and are being either translocated from other national and 148 

international water bodies, or caught in the wild, phenotypically selected, and restocked 149 

using local hatcheries. Currently, the marble-trout fishery is managed implementing 150 

supportive breeding, consisting in the release of offspring produced in captivity by wild-151 

caught broodstock in closed or nearly closed reproductive cycles. In the hatcheries active 152 

on the Toce River, breeders are routinely selected based on their phenotype, i.e. the lack 153 

of black or red spots and parr marks in their adult marbled colouration, considered to be a 154 
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diagnostic taxonomic trait, and therefore a sign of genetic purity. The progeny of wild-155 

caught founders is used as breeders throughout numerous reproductive cycles, and 156 

phenotypically-selected wild-caught individuals (mostly males, more difficult to keep in 157 

captivity) are very rarely added to the broodstock (M.I., P.V., pers. obs.). The inefficacy of 158 

artificial selection based on phenotypic traits, caused by the scarce correlation between 159 

colouration patterns and genotype in this species (Chiesa et al. 2016; Meraner and 160 

Gandolfi 2018a), the high level of inbreeding caused by the closed reproductive cycle, and 161 

the risk of introducing non-native genes in the restocked wild population, posed by the lack 162 

of genetic screening and monitoring and already documented in other molecular 163 

investigations of Italian hatchery broodstocks (Chiesa et al. 2016; Splendiani et al. 2019), 164 

clearly imply significant conservation risks. 165 

 166 

With the aim to describe the genetic makeup of phenotypically-selected marble-trout 167 

breeders and their progeny used for supportive breeding and restocking in the Toce River 168 

system, we analysed a sample of marble-trout breeders from the main local hatchery, 169 

measuring both introgression rates with non-native S. trutta and their sibship. We also 170 

gathered baseline genetic data on a smaller sample from the Toce River, preliminarily 171 

comparing these two samples. In order to observe whether the measured levels of 172 

introgression are associated with different levels of phenotypic purity, we also tested the 173 

correspondence between a set of coded colouration traits and the genetic traits used to 174 

estimate introgression levels. Based on our results, we highlight the risks of the current 175 

hatchery practices and discuss possible directions for future long-term hatchery 176 

management and research to restore the genetic diversity of the Toce River marble trout 177 

population. 178 

 179 

2. Methods (dx.doi.org/10.17504/protocols.io.bp2l692mdlqe/v1) 180 
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2.1. Study area, fish sampling, phenotypic selection, age determination 181 

The Toce River (length 83.6 km; catchment area ~1,780 km2, average slope 2.4%; 182 

Regione Piemonte 2004) is one of the main tributaries of Lake Maggiore (Fig. 1), rising 183 

from glacier valleys at ~1,720 m above sea level (a.s.l.; Geoportale Piemonte 2021). It is 184 

located in the Italian North-western Alps (Marazzi 2005), in the Padano-Venetian 185 

ichthyogeographic region (Bianco 1998). 186 

Fish samples were collected from May 2016 to November 2020. The sample obtained 187 

from the main hatchery of the VCO F.I.P.S.A.S., located in Caddo (Caddo hatchery) (A, n= 188 

72) was collected by netting haphazardly with a circular dip net (60 cm in diameter) in a 189 

1.5 m (depth) x 5 m (diameter) tank containing >500 hatchery-bred mature and immature 190 

marble trouts. The Caddo hatchery broodstock derives from <50 phenotypically-selected 191 

individuals collected in the Toce River in the late 1990s, with some individuals also 192 

collected from other basins, such as the Stura di Lanzo River in the early 2000s; no wild-193 

caught broodstock were used for at least one decade, managing the stock as a closed 194 

reproductive cycle (M.I., pers. obs.). A smaller sample of wild-caught fish (B, n= 27; Tables 195 

S1, S2; Fig. 1) was also collected in the middle and lower tracts of the Toce River, using 196 

electrofishing and rod-and-line techniques. For electrofishing, we used a built-in-frame 197 

EL64GII electrofishing device (Scubla aquaculture, 3.5 KW, 600 V, DC current) with a 198 

copper cathode (width 2 cm, length 300 cm) and a steel ring anode (thickness 0.8 cm, 199 

diameter 50 cm). Wild-caught fishes were phenotypically selected based on the presence 200 

of marbled spots in their colouration pattern (Table 1; Fig. 2), thus simulating the artificial 201 

selective process occurring in the hatchery. All fish were mildly anaesthetised after capture 202 

(eugenol, i.e. a 1:5 solution of clove oil in ethanol, then adding 2 ml of this solution to 10 l 203 

of water, in accordance with relevant guidelines and regulations), measured (total length: 204 
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TL, in cm, to the nearest mm; wet body mass: W, in g, to the nearest g), and photographed 205 

in lateral view (Figs. S1‒S3; Tables S1; S2). 206 

 207 

2.2. Genetic analyses 208 

Anal fin clips were stored in 96% ethanol at 4°C. Whole genomic DNA was extracted and 209 

purified from the fin clips using a KingFisher Cell and Tissue DNA Kit (Thermo Fisher 210 

Scientific Inc., Fremont, CA, USA), according to manufacturer protocols. The mitochondrial 211 

control region (D-loop) was amplified using LN20 e HN20 primers (Bernatchez and 212 

Danzmann 1993). Sanger sequencing was performed using LN20 primer on a 3130XL 213 

sequencer (Applied Biosystems). Partial d-loop sequences (531 bp) were aligned with 214 

GenBank references and assigned to one of the five major S. trutta complex mtDNA 215 

lineages (Bernatchez 2001) using BLASTN (Altschul et al. 1990; BLASTN 2018). 216 

Individuals were also genotyped at 15 nuclear microsatellite loci amplified with 14 primer 217 

pairs (Meraner and Gandolfi 2018b). The loci were genotyped using a 3130XL sequencer 218 

(Applied Biosystems) and scored using GeneMapper v.4.0 (Applied Biosystems). The 219 

analysis included five reference samples: domesticated Atlantic S. trutta (n= 40; TRUTg); 220 

wild-caught S. marmoratus from the Adda River (n= 30; Adda), Adige River (n= 30; Adige) 221 

and Isonzo River (n= 15; SR; Meraner and Gandolfi 2018b); and a completely introgressed 222 

sample that originated from hybrid Atlantic S. trutta x S. marmoratus founders collected in 223 

the Adige River and reared in a hatchery for several generations (n= 27; MARMxTRUT; 224 

this study). 225 

 226 

The genetic relationships among samples were investigated with factorial correspondence 227 

analysis (FCA) using GENETIX v.4.0 (Belkhir et al. 1999). Population genetic structure 228 

and introgression patterns were estimated using STRUCTURE v.2.3.3 (Pritchard et al. 229 

2000), which implements a Bayesian clustering algorithm that minimises both linkage and 230 
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Hardy-Weinberg disequilibria within inferred clusters (K). Twenty runs were performed for 231 

each value of the genetic clusters from 1 to 10 (100,000 burn-in, 200,000 Markov chain 232 

steps, and admixture model with independent allele frequencies). The most likely number 233 

of genetic clusters was estimated with the ΔK method to describe the uppermost genetic 234 

structure (Evanno et al. 2005); and with MedMed K, MedMean K, Max-Med K, and 235 

MaxMean K statistics, to describe fine-scale genetic structure (Puechmaille 2016), using 236 

StructureSelector (Li and Liu 2018). The individual admixture proportions, i.e., the 237 

proportions of membership of each individual to each of the K genetic clusters (q values) 238 

and their 90% Bayesian credible intervals (BCI) were obtained from a single replicate 239 

representative of the mode having the highest mean posterior probability, as estimated by 240 

CLUMPAK (Kopelman et al. 2015). The same analysis (K= 1‒6) was performed on a 241 

reduced dataset including only TRUTg, Caddo, and Toce samples. Neighbour-Joining (NJ) 242 

trees reconstructing relationships among the detected genetic clusters were built in 243 

STRUCTURE v.2.3.3, using the estimated genetic distance among the clusters (matrix of 244 

allele-frequency divergence). 245 

 246 

Full-sibship (FS, sharing both parents) or half-sibship (HS, sharing one parent) 247 

relationships and the number of families within and between the Caddo and Toce samples 248 

were estimated with a pairwise- and full-likelihood sibship reconstruction method, 249 

respectively, in COLONY v.2.0.6.6 (Jones and Wang 2010), since family relationships 250 

could affect the structure analysis (Anderson and Dunham 2008). A polygamous mating 251 

scheme was assumed for both sexes (allelic dropout rate= 0.0000, other error rate= 252 

0.0001), excluding full-sibship relationships for pairs of individuals not sharing the same 253 

mtDNA haplotype (Excluded Maternal Sibship prior). 254 

 255 

2.3. Correlation between phenotype and genotype 256 
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Individual colouration patterns of the head and body (Fig. 2; Figs. S1‒S3, S5; Table S1) 257 

were observed in digital photos of all individuals (excluding 6 specimens for which photos 258 

were unavailable; n= 93; Table S1), transformed into a numerical score, and correlated to 259 

a numerical score of their measured genetic makeup. Immature individuals of S. 260 

marmoratus exhibit red and black dots, a preopercular blotch, and parr marks, i.e. non-261 

species-specific colouration traits (Delling et al. 2000; Polgar et al. 2022a, Polgar et al. 262 

2022b; Fig. S4). However, sexual maturity could not be observed in 15 wild-caught and 16 263 

hatchery-bred individuals (Table S1), likely due to the timing of the sampling sessions 264 

relative to the reproductive season. Therefore, assuming correlation between size and 265 

sexual maturity, we included in the analysis only individuals with size equal to or larger 266 

than that of the smallest sexually mature individual (Caddo: 23.0 cm TL, n= 69; Toce: 25.4 267 

cm TL, n= 14; Table S1). 268 

 269 

Observed colouration elements include six types of “spots” (Fig. 2; Table 1), i.e. round or 270 

irregular areas larger than one scale, darker than background, and with distinct margins; 271 

one preopercular “blotch”, i.e. a round area larger than a spot, darker than background, 272 

and with diffused and indistinct margins, typically overlapped with darker spots; and parr 273 

“marks”, i.e. vertical areas larger than spots and blotches, slightly darker than background, 274 

and with diffused and indistinct margins, typically overlapped with darker spots. In order to 275 

summarise individual colouration patterns, sets of elements are represented by lowercase 276 

italicised letters separated by “/”. Each pattern includes (i) three elements (m, f, d) on the 277 

scaleless area including the visible portion of the preopeculum, operculum, and cleithrum; 278 

(ii) five elements on the body in lateral view, except dorsal and ventral areas (m, f, d, r, p); 279 

(iii) ocellated spots (c); (iv) a preopercular blotch (b); and (v) parr marks (k) (Fig. 2; Table 280 

1). In each set, the absence of an element is coded as 0. The reference phenotype of a 281 

sexually mature individual of S. marmoratus is defined by the exclusive presence of 282 
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marbled spots, i.e., as m00/m0000/0/0/0 (Fig. S5; Table S1). The S. marmoratus x S. 283 

trutta hybrid phenotype of a sexually mature individual is defined as either m**/m****/0/0/0, 284 

or ***/m****/0/0/0, or m**/*****/0/0/0, (where *= at least one of any element different than 285 

m). In order to minimise researcher effects, three different researchers examined the fish 286 

sample and coded the colouration patterns, and fish were re-examined to eliminate 287 

reading mismatches. Individual phenotypic and genotypic scores (values 0‒1) were 288 

obtained from coded colouration patterns and genetic data (Table S3; Note S1). A t-test 289 

was done, for testing whether the sample Pearson correlation between the phenotypic and 290 

genotypic scores differed significantly from 0. 291 

 292 

3. Results 293 

Native mtDNA haplotypes (MA haplogroup) dominate the Toce River sample (Toce, 294 

77.8%), while non-native haplotypes (AT haplogroup) dominate the captive-bred hatchery 295 

sample (Caddo, 65.3%) (Figs. 3, a2; 4; Bernatchez et al. 1992; Meraner and Gandolfi 296 

2018a; Sanz 2018). Two AT and three MA haplotypes were found. For the covered 297 

sequence length, the first AT haplotype is identical to At1e (GenBank Acc. N. DQ841192 298 

DQ841192; Meraner et al. 2007), largely diffused in non-native domestic Atlantic lineages 299 

[Caddo (n1= 47); Toce (n2= 5)]; the second AT haplotype is first described in this study 300 

(AT-toce1, GenBank Acc. N. OL504771; n2= 1). The three MA haplotypes correspond to 301 

Ma1a (GenBank Acc. N. DQ841191; Meraner et al. 2007; n1= 4, n2= 9); a sequence 302 

shared between Ma2a and Ma2b (DQ841189, and DQ841190, respectively; Meraner et al. 303 

2007; henceforth in this study: Ma2; n1= 19, n2= 11); and MAsl1 (MK948036; Splendiani et 304 

al. 2020; n1= 2, n2= 1). As with previous studies in this region, we did not find Adriatic (AD) 305 

and Mediterranean (ME) mitochondrial haplotypes (Baraldi et al. 2010; Pujolar et al. 306 

2011b; Chiesa et al. 2016); however, we also did not find Danubian (DA) haplotypes, 307 

which were found in the neighbouring Ticino and Adda basins (Pujolar et al. 2011b). 308 
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 309 

Along the FCA factor 1, explaining ~5% of total inertia, S. trutta (TRUTg) is separated from 310 

the S. marmoratus reference samples and the hybrid reference (MARMxTRUT); along this 311 

axis, MARMxTRUT is overlapped with Caddo, Toce, and Adige, but separated from Adda 312 

and SR. Along factor 2 (~3% of total inertia), SR is separated from the other marble trout 313 

references. Adige plus MARMxTRUT are separated from other references along factor 3 314 

(~3% of total inertia), and are separated from each other along factor 4 (~2% of total 315 

inertia; Fig. 5). 316 

 317 

The analysis of the uppermost genetic structure of the entire dataset identifies cluster A 318 

(sky blue) and B (dark green) (Fig. 3a1, 3a2). TRUTg has individual q values of cluster A 319 

(qA)~ 1.000 (average qA or QA= 0.997; Fig. 3a2). Adige, Adda, and SR have individual q 320 

values of cluster B (qB)> 0.985 (Fig. 3a2). MARMxTRUT individuals have variable 321 

assignment proportions for the two clusters (QB= 0.633). Caddo has a high admixture 322 

proportion of cluster B (QB= 0.987), with only three individuals having qB< 0.950. Toce has 323 

a lower QB= 0.858, with 16 individuals having qB> 0.950, and 11 being variably admixed 324 

(qB 0.424‒0.894; Figs. 3 a2; 4 a). 325 

 326 

The analysis of the fine-scale genetic structure of the entire dataset identifies six clusters 327 

(C‒H; Fig. 3b1, 3b2). TRUTg, Adige, Adda, and SR have individual admixture proportions 328 

of clusters C, E, F, and G (i.e. qC, qE, qF, qG), larger than 0.950, respectively. 329 

MARMxTRUT has high individual admixture proportions of cluster D (QD= 0.962); the 330 

detection of this cluster is likely the result of the peculiar genetic composition of 331 

MARMxTRUT, that comes from a captive-bred population that was virtually isolated from 332 

the parental species for several generations, thus likely having highly admixed individual 333 

genomes (Anderson and Dunham 2008). Most individuals of Caddo and Toce have 334 
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substantial proportions of cluster H (Caddo: qH 0.809‒0.991, QH= 0.977; Toce: qH 0.080‒335 

0.991, QH= 0.834), mirroring the uppermost genetic structure observed in the K= 2 336 

solution. Toce also has several individuals with substantial proportions of cluster C and D 337 

(qC 0.063‒0.500, n= 9; qD 0.076‒0.811, n= 4; Fig. 3b2). The NJ tree shows that clusters E 338 

to H are more closely related to each other than to cluster C, while cluster D has an 339 

intermediate position. Cluster H, that characterises Caddo and Toce, is sister to cluster F, 340 

which characterises Adda (Fig. 3b3). Consistently, Adda is the marble trout population 341 

geographically closest to Toce. 342 

 343 

The analysis of the uppermost genetic structure of the reduced dataset identifies two 344 

clusters, as the analysis of the entire dataset, with similar individual admixture proportions 345 

(Figs. 3 c1, c2; 4 b). The analysis of the fine-scale genetic structure of the reduced dataset 346 

identifies three clusters (K‒M, Fig. 3d1). TRUTg has individual admixture proportions of 347 

cluster K (qK) ~1.000. Caddo has individual values of qK< 0.05, while eight Toce individuals 348 

have qK 0.085‒0.472. Both Caddo and Toce individuals are variably admixed with clusters 349 

L (Caddo: qL 0.003‒0.985, QL= 0.285; Toce: qL 0.004‒0.995, QL= 0.769) and M (Caddo: 350 

qM 0.012‒0.995, QM= 0.712; Toce: qM 0.003‒0.994, QM= 0.145), with the two samples 351 

showing opposite admixture patterns (Fig. 3d2). In the NJ tree, clusters L and M are 352 

closely related, both being distantly related to cluster K (Fig. 3d3). 353 

 354 

Fifteen and 26 full-sibship (FS) relationships were estimated within Caddo, 1 and 1 within 355 

Toce, 0 and 2 between them (majority thresholds p> 0.90 and p> 0.50, respectively). Four 356 

and 117 half-sibship (HS) relationships were estimated within Caddo, 4 and 16 within 357 

Toce, 0 and 13 between them (p> 0.90 and p> 0.50, respectively; Table 2; Fig. 6a). 358 

Overall, 79 FS families were reconstructed, originated by 29 males and 50 females: 53 359 

within Caddo, 11 of which represented by more than a single offspring; 25 within Toce, 360 
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with one having 2 offspring; and one more reconstructed family having 2 offspring, each 361 

from one of the two samples (Fig. 6b). 362 

 363 

In the Caddo hatchery sample, the most frequent head colouration pattern is mfd (65% of 364 

the sample) and the most frequent body patterns are m000 (38%) and 0/0/0 (96%); in the 365 

Toce River sample, the most frequent head pattern is still mfd (71%) and the most 366 

frequent ones on the body are mfd00/ (57%) and 0/0/0 (79%) (Table 3). Only 3 individuals 367 

(Caddo hatchery sample) had pure marbled patterns on both head and body 368 

(m00/m0000/0/0/0), and no individuals had pure marbled patterns on head and marbled 369 

patterns with only red or ocellated spots on body (Table S1). No examined individuals 370 

(Caddo hatchery: average size ~38 cm TL; Toce River: ~32 cm TL; Tables 3; S1) showed 371 

parr marks, supporting the assumed sexual maturity (Polgar et al. 2022a). Our data don’t 372 

support any statistically significant correlation between genotype and phenotype scores. 373 

The estimated Pearson correlation coefficient is 0.125, and is not statistically significant (p-374 

value ~0.3; Fig. 7). 375 

 376 

4. Discussion and conclusion 377 

The objective of this study is to investigate the genetic makeup of phenotypically-selected 378 

marble-trout breeders and their progeny, used for supportive breeding and restocking of 379 

the wild Toce population. For this reason, we only examined trouts with marbled elements 380 

in their colouration pattern. In the Caddo hatchery sample, we detected high non-native (S. 381 

trutta) mitochondrial introgression demonstrated by the prevalence of Atlantic haplotypes, 382 

as already observed in different marble-trout breeding stocks from three other hatcheries 383 

of Northern Italy (Chiesa et al. 2016), and consistent with the past and ongoing massive 384 

introductions of non-native S. trutta (section 1). While FCA showed an overlap with the 385 

hybrid reference along FCA factor 1, in line with the high frequency of Atlantic haplotypes, 386 
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the Bayesian analysis detected a relatively small signal of non-native ancestry, showing a 387 

small genetic distance between Caddo and the marble-trout reference groups. This 388 

asymmetric introgression may be related to sex-biased breeders’ selection (hybrid mothers 389 

and less introgressed fathers; Meraner and Gandolfi 2018a; Lucarda 2007), random drift 390 

(Sušnik Bajec et al. 2015), backcrossing (Ostberg et al. 2004), artificial selection of 391 

marbled colouration traits, or a combination of these factors. 392 

 393 

Due to the lack of correspondence between colouration traits and genetic makeup, 394 

consistent with several other studies (e.g., Delling et al. 2000; Djurdjevič et al. 2019), the 395 

use of few phenotypically-selected breeders in a virtually closed reproductive cycle likely 396 

increased the frequency of backcrossing or mating between hybrids and the parental 397 

species, thus diluting rare genetic traits of the parental species after a few generations 398 

(Vrijenhoek 1998; Meraner and Gandolfi 2018b). This is also consistent with the relatively 399 

high proportion of full-sibship relationship detected among hatchery-reared individuals, 400 

which may have inflated the measured genetic structure (Meraner and Gandolfi 2018b; 401 

Anderson and Dunham 2008; Vähä et al. 2006). The possible presence of two slightly 402 

different genetic clusters in the hatchery sample, described by the admixture analysis 403 

conducted on the reduced dataset, is consistent both with the mentioned translocation of 404 

breeders from the Stura di Lanzo River, or with the presence of two distinct groups of more 405 

closely related individuals (Anderson and Dunham 2008). 406 

 407 

In the Toce River sample, our preliminary analysis of selected wild-caught individuals may 408 

underestimate the actual introgression levels of the population (e.g., Meraner and Gandolfi 409 

2018b), since the presence of wild and introgressed marble trout individuals without 410 

marbled colouration elements, not included in our sample, cannot be ruled out. The 411 

mitochondrial and nuclear introgression levels of phenotypically-determined marble trouts 412 

Author-formatted, not peer-reviewed document posted on 09/12/2022. DOI:  https://doi.org/10.3897/arphapreprints.e98622



18 
 

of the Toce River are consistent. Twelve out of 27 Toce River samples show both MA 413 

haplotype and q2≥ 0.99; eight of these also have a lower 90% BCI limit that is at least 0.99, 414 

thus very likely being purebred marble trouts (Meraner and Gandolfi 2018a, Meraner and 415 

Gandolfi 2018b; Fig. 4b). The measured introgression is consistent with previous accounts 416 

of S. marmoratus x Atlantic S. trutta introgressive hybridisation in wild marble trout 417 

populations of northern Italy (Meraner and Gandolfi 2018a), including an account from our 418 

study area (Gibertoni et al. 2014). This scenario is in line with recent and ongoing 419 

anthropogenic hybridisation between the two species in the wild, induced by the ongoing 420 

stocking of Atlantic domesticated trout in these waters. 421 

 422 

Although diagnostic elements in the marble trout colouration patterns can be identified 423 

(Delling 2002), colouration patterns are influenced by numerous factors in salmonids and 424 

in teleosts in general. These include social interactions (Griffith et al. 2006; Watt et al. 425 

2017), reproductive status (Mobley et al. 2021), ontogenetic stages (Delling 2002; Polgar 426 

et al. 2022a, Polgar et al. 2022b), environmental conditions, including domestication, and 427 

genetic makeup (Westley et al. 2013; Jørgensen et al. 2018). Although we did not control 428 

for several of these possibly confounding factors, the observed absence of correlation 429 

between colouration patterns and mitochondrial plus nuclear genes strongly supports the 430 

inefficacy of phenotype-based artificial selection in supportive breeding programmes of S. 431 

marmoratus. Perhaps more importantly, virtually all the examined domesticated marble 432 

trout had colouration elements that are typically found in non-native Salmo species, 433 

demonstrating either a high level of subjectivity in the artificial selection, or relatively loose 434 

selective criteria, or both. This also suggests limited ongoing intentional selection on 435 

broodstock colouration patterns, implying that phenotypic selection essentially occurred 436 

during the early establishment of the breeding stock, more than a decade ago. On the 437 

other hand, domestication can also effectively and unintentionally select a variety of 438 
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biological traits, including wound healing, immune responses, metabolism and even anti-439 

predatory behaviours, even after a single generation (Tymchuk et al. 2009; Christie et al. 440 

2015). 441 

 442 

Supportive breeding is a widely applied practice since the ‘90s (e.g., Ryman and Laikre 443 

1991), with both the declared conservation goal of preventing the introduction of non-444 

native genes into the managed system, and of increasing the wild population size, thus 445 

sustaining the local recreational fishery. However, domestication effects and typically 446 

smaller size and higher reproductive output of the hatchery population relative to the wild 447 

population entail risks of (i) inbreeding and drift-mediated loss of genetic variability 448 

(Hansen et al. 2000; Wang and Ryman 2001), and (ii) carry-over of genetic domestication 449 

effects in wild-born descendants of captive-bred parents (Araki et al. 2009). Such risks are 450 

exacerbated in closed reproductive cycles, since no new native genes are periodically 451 

introduced from selected wild breeders, thus facilitating genome-wide or region-specific 452 

inbreeding depression (Paul et al. 2022) and possibly loss of wild, locally adaptive genetic 453 

variants (Garcia de Leaniz et al. 2007). Such effects can be forestalled through specifically 454 

designed breeding designs, pedigree analyses, and open reproductive cycles (Vrijenhoek 455 

1998; Giles et al. 2004; Anderson et al. 2020; Gandolfi et al. 2020). 456 

 457 

The presence of genetic introgression within the hatchery system, likely a consequence of 458 

hatchery protocols and phenotypic selection of a limited number of founders, is at odds 459 

with the attempt to conserve and support the natural breeding of this endangered species 460 

(Meraner and Gandolfi 2018a, Meraner and Gandolfi 2018b). Even low admixture levels 461 

may induce outbreeding depression (Muhlfeld et al. 2009) and eventually fuel the 462 

formation of hybrid swarms in the wild population, a critical threat to its long-term survival 463 

(Splendiani et al. 2019). Further, the introduction of captive-bred hybrids into the wild may 464 
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act as a genetic bridge, promoting hybridisation and introgression between completely or 465 

partially reproductively isolated native or non-native species (Largiadèr and Scholl 1995; 466 

McDonald et al. 2008). In the last 10‒15 years, the introduction in a vast area from the 467 

South-western Alps to the Lake of Garda of non-native, variably introgressed, and 468 

domesticated “Mediterranean brown trout”, collected from a variety of trout populations 469 

throughout Italy, well exemplifies this risk (Polgar et al. 2022a, Polgar et al. 2022b). 470 

 471 

Conservation genetics is a modern fundamental tool in the management of salmonid 472 

inland sport fisheries (Meraner and Gandolfi 2018a; Ayllón et al. 2019). The marble trout is 473 

a precious subendemism of northern Italy and the risks of genetic erosion and 474 

introgressive hybridisation when introducing non-native salmonids has been repeatedly 475 

demonstrated (e.g., Meraner and Gandolfi 2018a; Bianco et al. 2013). On the other hand, 476 

the moderate levels of introgression in the selected individuals from the Toce River 477 

observed in our preliminary analysis suggest that this population might be a potentially key 478 

repository of genetic diversity for the long-term conservation of this species. 479 

 480 

With the overarching goal of increasing the presence of the native marble trout genome in 481 

this system and considering the measured threats, our results strongly suggest to (i) stop 482 

introductions of non-native trout species and populations (MATTM 2020; Polgar et al. 483 

2022a, Polgar et al. 2022b); (ii) describe the genetic structure and possible 484 

microgeographic patterns of marble trout subpopulations, thus identifying evolutionary 485 

significant units for conservation (ESUs; Meraner and Gandolfi 2018a; Splendiani et al. 486 

2020; Moritz 1994); (iii) implement ESU-specific supportive breeding programmes, 487 

genetically testing and selecting breeders without significant introgression signatures from 488 

the same populations; (iv) implement modern practices in hatchery management, such as 489 

routine genetic screening and selection of breeders, using them for only one reproductive 490 
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cycle (Ferguson 2007; Araki et al. 2007; Rodriguez Barreto et al. 2019; Gandolfi et al. 491 

2020); (v) monitor temporal dynamics of spatial patterns of genetic diversity; and (vi) 492 

evaluate the potential for site-specific genetic conservation and restoration actions. 493 

 494 

The long-term sustainability of inland recreational fisheries is a priority in industrialised 495 

countries, in dire need of shared economic, research, and conservation-oriented goals 496 

(Cooke et al. 2015). Management strategies of such socio-ecological systems must merge 497 

the priorities and needs of all the stakeholders, from conservation scientists to anglers, if 498 

the common goal of bequeathing the structure and function of these valuable ecosystems 499 

to future generations is to be achieved. 500 

 501 
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 1014 

Figure 1. Study site: Caddo hatchery and Toce River. Drainage divide: dashed black 1015 
line (Barbanti 1994). Left inset: position of the study sites (star symbol) in the Italian 1016 
Peninsula. Right inset: geographical distribution of Italian Northern Adriatic populations of 1017 
S. marmoratus (green area), and position of the study sites (star symbol). LM: Lake 1018 

Maggiore; yellow dots: electrofishing sample (A); black crosses: rod-and-line sample (B). 1019 
  1020 

Author-formatted, not peer-reviewed document posted on 09/12/2022. DOI:  https://doi.org/10.3897/arphapreprints.e98622



34 
 

 1021 

 1022 
 1023 
Figure 2. Examples of colouration traits in variably introgressed marble trout. a, 1024 
areas examined for the presence of colouration traits; hd= scaleless area including the 1025 
visible portion of the preopeculum, operculum, and cleithrum areas; bd= scaled area 1026 

including the flanks, except the dorsal and ventral region, where perspective can alter the 1027 
perception of the shape of the colouration traits; b, c, examples of colouration traits on the 1028 
flanks of two trout; d= regular dark spot, f= fused spot, m= marbled spot, p= polygonal 1029 
spot; d, e, examples of the same traits on the head of two other specimens; f, examples of 1030 
c= ocellated spot; g, examples of b= preopercular blotch; h, examples of k= parr mark and 1031 
r= regular red spot (Table 1). 1032 
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 1034 

Figure 3. Bayesian clustering analysis (STRUCTURE), based on data from 15 1035 

polymorphic microsatellite markers, and haplogroup distribution. The entire dataset 1036 
(a, b) includes the two study samples from the captive-bred Caddo hatchery (Caddo) plus 1037 
the Toce River (Toce), and the 5 reference samples Atlantic S. trutta (TRUTg), S. 1038 
marmoratus from the Adige River (Adige), S. marmoratus from the Adda River (Adda), S. 1039 

marmoratus from the Isonzo River (SR), and captive-bred S. marmoratus x S. trutta 1040 
hybrids (MARMxTRUT). The reduced dataset (c, d) includes Caddo, Toce, and TRUTg. 1041 
The uppermost genetic structure (a1, c1) is described by ΔK statistics as a function of two 1042 
genetic clusters (K= 2). The fine-scale genetic structure (b1, d1) is described by MedMed K 1043 
(MMK), MedMean K (MNK), Max-Med K (XMK), and MaxMean K (XNK) statistics as a 1044 

function of six and three genetic clusters (K= 6 and 3, respectively). Barplots (a2, b2, c2, d2) 1045 

illustrate the individual admixture proportions of the identified clusters. For Caddo and 1046 

Toce, the mtDNA D-loop haplogroup (MA, AT) is indicated on top of the admixture 1047 
barplots. NJ distance trees are illustrated (b3, d3) for the entire (K= 6) and simplified (K= 3) 1048 
datasets, respectively. 1049 

1050 
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 1051 

Figure 4. Individual admixture proportions at the uppermost genetic structure level. a 1052 
entire dataset; b reduced dataset; whiskers: 90% BCIs. In both graphs, individuals are in 1053 
ascending order of qB value along the x-axis. Black and orange colours in the Caddo and 1054 
Toce samples indicate MA and AT haplogroups, respectively. Other abbreviations and 1055 
details in Fig. 3a2, 3c2. 1056 
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 1058 

Figure 5. Factorial Correspondence Analysis (FCA). Genetic data from 15 polymorphic 1059 
microsatellite markers, including hatchery captive-bred (Caddo) and Toce River (Toce) 1060 
phenotypically-determined S. marmoratus, and a set of 5 reference samples including S. 1061 
marmoratus from the Adda River (Adda), Adige River (Adige), and Isonzo River (SR), a 1062 

reference sample of captive-bred S. marmoratus x Atlantic S. trutta hybrids 1063 

(MARMxTRUT), and a sample of domesticated Atlantic S. trutta (TRUTg). Percentages of 1064 
total inertia of the FCA factors 1‒4 are in parentheses. Individuals from each sample are 1065 
indicated with different combinations of symbols and colours. 1066 
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 1067 

Figure 6. Sibship and reconstructed families. a pairwise-likelihood sibship arrangement of the hatchery (Caddo) and Toce River 1068 
(Toce) marble-trout samples; full- (FS) or half-sibship (HS) probabilities were estimated for each pair of individuals using multilocus 1069 

genotypic data; b full-likelihood reconstructed FS families. 1070 
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 1071 

Figure 7. Correlation between phenotype and genotype. Plotted phenotypic and genotypic 1072 

scores of S. marmoratus; crosses: Toce River sample, empty circles: Caddo hatchery 1073 
sample. There is no significant correlation between the scores (Pearson’s r 0.125, t-test p 1074 
value 0.26, 95% CI ‒0.09, 0.33). 1075 
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Table 1. Live colouration traits in lateral view, used to describe different trout phenotypes. 1077 

Codes: letters used to describe the coded colouration pattern. 1078 

Colouration traits: definitions Codes 

Marbled spot: spot with amoeboid shape m 

Fused spot: two regular spots overlapped or connected by a streak of 
pigment 

f 

Regular dark spot: dark brown or black spot with round or elliptical 
shape 

d 

Regular red spot: red spot of round or elliptical shape, also 
overlapped with other spots 

r 

Polygonal spot: dark brown or black spot of polygonal or stellate 
shape 

p 

Ocellated spot: regular or irregular spot surrounded by an areola paler 
than both spot and background colour 

c 

Preopercular blotch: oval blotch in preopercular area b 

Parr marks: large marks along flanks k 

 1079 

Author-formatted, not peer-reviewed document posted on 09/12/2022. DOI:  https://doi.org/10.3897/arphapreprints.e98622



41 
 

Table 2. Pairs and sibship relationships within and between the sequenced and genotyped Caddo 1080 
hatchery and Toce marble-trout samples. FS: full-sibship; HS: half-sibship (Fig. 6); n: number of 1081 

individuals; n pairs: number of pairs. 1082 

Pairs/ relationships n n pairs 

Caddo 72 2,556 
Toce 27 351 
between 0 1,944 
overall 99 4,851 

FS p> 0.90 p> 0.50 

Caddo 15 26 
Toce 1 1 
between 0 2 
overall 16 29 

HS p> 0.90 p> 0.50 

Caddo 4 117 
Toce 4 16 
between 0 13 
overall 8 146 

  1083 

Author-formatted, not peer-reviewed document posted on 09/12/2022. DOI:  https://doi.org/10.3897/arphapreprints.e98622



42 
 

Table 3. Frequency of colouration patterns of S. marmoratus in the Caddo hatchery and in Toce 1084 
samples. Caddo hatchery: Caddo hatchery sample (n= 69); Toce River: Toce River sample (n= 1085 

14); n: number of individuals. M: male, F: female, Head: coded head colouration patterns, Body: 1086 

coded body colouration patterns, TL: total length (cm), Age: age in months, ave: average, SD: 1087 
standard deviation. In the Caddo hatchery Toce River samples, three and two individuals have 1088 
unknown age, respectively. 1089 

 Caddo hatchery  Toce River 
 n  n 

M 33  4 
F 23  7 
us 13  3 

Head    

m0d/ 8  0 
mfd/ 45  10 
mf0/ 4  1 
0fd/ 7  2 
m00/ 3  0 
00d/ 2  1 

Body    

m0000/ 26  4 
m0d00/ 10  1 
m00r0/ 6  0 
mfd00/ 17  8 
mfdr0/ 4  1 
mf000/ 1  0 
m0dr0/ 3  0 
mfdrp/ 1  0 
mfd0p/ 1  0 

0/0/0 66  11 
c/0/0 1  0 
0/b/0 2  3 

Size, Age    

TL range 23.0‒80.0  25.4‒45.0 
TL ave±SD 37.9±8.8  32.2±7.1 
Age range 20‒55  32‒80 
Age ave±SD 34±8  43±15 
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